You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaqr5.c 63 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__2 = 2;
  489. static integer c__1 = 1;
  490. static integer c__3 = 3;
  491. /* > \brief \b ZLAQR5 performs a single small-bulge multi-shift QR sweep. */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZLAQR5 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr5.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr5.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr5.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, */
  510. /* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, */
  511. /* WV, LDWV, NH, WH, LDWH ) */
  512. /* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV, */
  513. /* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV */
  514. /* LOGICAL WANTT, WANTZ */
  515. /* COMPLEX*16 H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ), */
  516. /* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > ZLAQR5, called by ZLAQR0, performs a */
  523. /* > single small-bulge multi-shift QR sweep. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] WANTT */
  528. /* > \verbatim */
  529. /* > WANTT is LOGICAL */
  530. /* > WANTT = .true. if the triangular Schur factor */
  531. /* > is being computed. WANTT is set to .false. otherwise. */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] WANTZ */
  535. /* > \verbatim */
  536. /* > WANTZ is LOGICAL */
  537. /* > WANTZ = .true. if the unitary Schur factor is being */
  538. /* > computed. WANTZ is set to .false. otherwise. */
  539. /* > \endverbatim */
  540. /* > */
  541. /* > \param[in] KACC22 */
  542. /* > \verbatim */
  543. /* > KACC22 is INTEGER with value 0, 1, or 2. */
  544. /* > Specifies the computation mode of far-from-diagonal */
  545. /* > orthogonal updates. */
  546. /* > = 0: ZLAQR5 does not accumulate reflections and does not */
  547. /* > use matrix-matrix multiply to update far-from-diagonal */
  548. /* > matrix entries. */
  549. /* > = 1: ZLAQR5 accumulates reflections and uses matrix-matrix */
  550. /* > multiply to update the far-from-diagonal matrix entries. */
  551. /* > = 2: Same as KACC22 = 1. This option used to enable exploiting */
  552. /* > the 2-by-2 structure during matrix multiplications, but */
  553. /* > this is no longer supported. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] N */
  557. /* > \verbatim */
  558. /* > N is INTEGER */
  559. /* > N is the order of the Hessenberg matrix H upon which this */
  560. /* > subroutine operates. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] KTOP */
  564. /* > \verbatim */
  565. /* > KTOP is INTEGER */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] KBOT */
  569. /* > \verbatim */
  570. /* > KBOT is INTEGER */
  571. /* > These are the first and last rows and columns of an */
  572. /* > isolated diagonal block upon which the QR sweep is to be */
  573. /* > applied. It is assumed without a check that */
  574. /* > either KTOP = 1 or H(KTOP,KTOP-1) = 0 */
  575. /* > and */
  576. /* > either KBOT = N or H(KBOT+1,KBOT) = 0. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] NSHFTS */
  580. /* > \verbatim */
  581. /* > NSHFTS is INTEGER */
  582. /* > NSHFTS gives the number of simultaneous shifts. NSHFTS */
  583. /* > must be positive and even. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] S */
  587. /* > \verbatim */
  588. /* > S is COMPLEX*16 array, dimension (NSHFTS) */
  589. /* > S contains the shifts of origin that define the multi- */
  590. /* > shift QR sweep. On output S may be reordered. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in,out] H */
  594. /* > \verbatim */
  595. /* > H is COMPLEX*16 array, dimension (LDH,N) */
  596. /* > On input H contains a Hessenberg matrix. On output a */
  597. /* > multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied */
  598. /* > to the isolated diagonal block in rows and columns KTOP */
  599. /* > through KBOT. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] LDH */
  603. /* > \verbatim */
  604. /* > LDH is INTEGER */
  605. /* > LDH is the leading dimension of H just as declared in the */
  606. /* > calling procedure. LDH >= MAX(1,N). */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] ILOZ */
  610. /* > \verbatim */
  611. /* > ILOZ is INTEGER */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] IHIZ */
  615. /* > \verbatim */
  616. /* > IHIZ is INTEGER */
  617. /* > Specify the rows of Z to which transformations must be */
  618. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in,out] Z */
  622. /* > \verbatim */
  623. /* > Z is COMPLEX*16 array, dimension (LDZ,IHIZ) */
  624. /* > If WANTZ = .TRUE., then the QR Sweep unitary */
  625. /* > similarity transformation is accumulated into */
  626. /* > Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  627. /* > If WANTZ = .FALSE., then Z is unreferenced. */
  628. /* > \endverbatim */
  629. /* > */
  630. /* > \param[in] LDZ */
  631. /* > \verbatim */
  632. /* > LDZ is INTEGER */
  633. /* > LDA is the leading dimension of Z just as declared in */
  634. /* > the calling procedure. LDZ >= N. */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[out] V */
  638. /* > \verbatim */
  639. /* > V is COMPLEX*16 array, dimension (LDV,NSHFTS/2) */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDV */
  643. /* > \verbatim */
  644. /* > LDV is INTEGER */
  645. /* > LDV is the leading dimension of V as declared in the */
  646. /* > calling procedure. LDV >= 3. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] U */
  650. /* > \verbatim */
  651. /* > U is COMPLEX*16 array, dimension (LDU,2*NSHFTS) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDU */
  655. /* > \verbatim */
  656. /* > LDU is INTEGER */
  657. /* > LDU is the leading dimension of U just as declared in the */
  658. /* > in the calling subroutine. LDU >= 2*NSHFTS. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] NV */
  662. /* > \verbatim */
  663. /* > NV is INTEGER */
  664. /* > NV is the number of rows in WV agailable for workspace. */
  665. /* > NV >= 1. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] WV */
  669. /* > \verbatim */
  670. /* > WV is COMPLEX*16 array, dimension (LDWV,2*NSHFTS) */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LDWV */
  674. /* > \verbatim */
  675. /* > LDWV is INTEGER */
  676. /* > LDWV is the leading dimension of WV as declared in the */
  677. /* > in the calling subroutine. LDWV >= NV. */
  678. /* > \endverbatim */
  679. /* > \param[in] NH */
  680. /* > \verbatim */
  681. /* > NH is INTEGER */
  682. /* > NH is the number of columns in array WH available for */
  683. /* > workspace. NH >= 1. */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[out] WH */
  687. /* > \verbatim */
  688. /* > WH is COMPLEX*16 array, dimension (LDWH,NH) */
  689. /* > \endverbatim */
  690. /* > */
  691. /* > \param[in] LDWH */
  692. /* > \verbatim */
  693. /* > LDWH is INTEGER */
  694. /* > Leading dimension of WH just as declared in the */
  695. /* > calling procedure. LDWH >= 2*NSHFTS. */
  696. /* > \endverbatim */
  697. /* > */
  698. /* Authors: */
  699. /* ======== */
  700. /* > \author Univ. of Tennessee */
  701. /* > \author Univ. of California Berkeley */
  702. /* > \author Univ. of Colorado Denver */
  703. /* > \author NAG Ltd. */
  704. /* > \date January 2021 */
  705. /* > \ingroup complex16OTHERauxiliary */
  706. /* > \par Contributors: */
  707. /* ================== */
  708. /* > */
  709. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  710. /* > University of Kansas, USA */
  711. /* > */
  712. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang */
  713. /* > */
  714. /* > Thijs Steel, Department of Computer science, */
  715. /* > KU Leuven, Belgium */
  716. /* > \par References: */
  717. /* ================ */
  718. /* > */
  719. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  720. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  721. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  722. /* > 929--947, 2002. */
  723. /* > */
  724. /* > Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed */
  725. /* > chains of bulges in multishift QR algorithms. */
  726. /* > ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014). */
  727. /* > */
  728. /* ===================================================================== */
  729. /* Subroutine */ void zlaqr5_(logical *wantt, logical *wantz, integer *kacc22,
  730. integer *n, integer *ktop, integer *kbot, integer *nshfts,
  731. doublecomplex *s, doublecomplex *h__, integer *ldh, integer *iloz,
  732. integer *ihiz, doublecomplex *z__, integer *ldz, doublecomplex *v,
  733. integer *ldv, doublecomplex *u, integer *ldu, integer *nv,
  734. doublecomplex *wv, integer *ldwv, integer *nh, doublecomplex *wh,
  735. integer *ldwh)
  736. {
  737. /* System generated locals */
  738. integer h_dim1, h_offset, u_dim1, u_offset, v_dim1, v_offset, wh_dim1,
  739. wh_offset, wv_dim1, wv_offset, z_dim1, z_offset, i__1, i__2, i__3,
  740. i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11;
  741. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8, d__9, d__10;
  742. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8;
  743. /* Local variables */
  744. doublecomplex beta;
  745. logical bmp22;
  746. integer jcol, jlen, jbot, mbot, jtop, jrow, mtop, j, k, m;
  747. doublecomplex alpha;
  748. logical accum;
  749. integer ndcol, incol, krcol, nbmps;
  750. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  751. integer *, doublecomplex *, doublecomplex *, integer *,
  752. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  753. integer *);
  754. integer i2, k1, i4;
  755. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  756. doublereal h11, h12, h21, h22;
  757. extern /* Subroutine */ void zlaqr1_(integer *, doublecomplex *, integer *,
  758. doublecomplex *, doublecomplex *, doublecomplex *);
  759. integer m22;
  760. extern doublereal dlamch_(char *);
  761. integer ns, nu;
  762. doublecomplex vt[3];
  763. doublereal safmin, safmax;
  764. extern /* Subroutine */ void zlarfg_(integer *, doublecomplex *,
  765. doublecomplex *, integer *, doublecomplex *);
  766. doublecomplex refsum;
  767. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  768. doublecomplex *, integer *, doublecomplex *, integer *),
  769. zlaset_(char *, integer *, integer *, doublecomplex *,
  770. doublecomplex *, doublecomplex *, integer *);
  771. doublereal smlnum, scl;
  772. integer kdu, kms;
  773. doublereal ulp;
  774. doublereal tst1, tst2;
  775. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  776. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  777. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  778. /* June 2016 */
  779. /* ================================================================ */
  780. /* ==== If there are no shifts, then there is nothing to do. ==== */
  781. /* Parameter adjustments */
  782. --s;
  783. h_dim1 = *ldh;
  784. h_offset = 1 + h_dim1 * 1;
  785. h__ -= h_offset;
  786. z_dim1 = *ldz;
  787. z_offset = 1 + z_dim1 * 1;
  788. z__ -= z_offset;
  789. v_dim1 = *ldv;
  790. v_offset = 1 + v_dim1 * 1;
  791. v -= v_offset;
  792. u_dim1 = *ldu;
  793. u_offset = 1 + u_dim1 * 1;
  794. u -= u_offset;
  795. wv_dim1 = *ldwv;
  796. wv_offset = 1 + wv_dim1 * 1;
  797. wv -= wv_offset;
  798. wh_dim1 = *ldwh;
  799. wh_offset = 1 + wh_dim1 * 1;
  800. wh -= wh_offset;
  801. /* Function Body */
  802. if (*nshfts < 2) {
  803. return;
  804. }
  805. /* ==== If the active block is empty or 1-by-1, then there */
  806. /* . is nothing to do. ==== */
  807. if (*ktop >= *kbot) {
  808. return;
  809. }
  810. /* ==== NSHFTS is supposed to be even, but if it is odd, */
  811. /* . then simply reduce it by one. ==== */
  812. ns = *nshfts - *nshfts % 2;
  813. /* ==== Machine constants for deflation ==== */
  814. safmin = dlamch_("SAFE MINIMUM");
  815. safmax = 1. / safmin;
  816. dlabad_(&safmin, &safmax);
  817. ulp = dlamch_("PRECISION");
  818. smlnum = safmin * ((doublereal) (*n) / ulp);
  819. /* ==== Use accumulated reflections to update far-from-diagonal */
  820. /* . entries ? ==== */
  821. accum = *kacc22 == 1 || *kacc22 == 2;
  822. /* ==== clear trash ==== */
  823. if (*ktop + 2 <= *kbot) {
  824. i__1 = *ktop + 2 + *ktop * h_dim1;
  825. h__[i__1].r = 0., h__[i__1].i = 0.;
  826. }
  827. /* ==== NBMPS = number of 2-shift bulges in the chain ==== */
  828. nbmps = ns / 2;
  829. /* ==== KDU = width of slab ==== */
  830. kdu = nbmps << 2;
  831. /* ==== Create and chase chains of NBMPS bulges ==== */
  832. i__1 = *kbot - 2;
  833. i__2 = nbmps << 1;
  834. for (incol = *ktop - (nbmps << 1) + 1; i__2 < 0 ? incol >= i__1 : incol <=
  835. i__1; incol += i__2) {
  836. /* JTOP = Index from which updates from the right start. */
  837. if (accum) {
  838. jtop = f2cmax(*ktop,incol);
  839. } else if (*wantt) {
  840. jtop = 1;
  841. } else {
  842. jtop = *ktop;
  843. }
  844. ndcol = incol + kdu;
  845. if (accum) {
  846. zlaset_("ALL", &kdu, &kdu, &c_b1, &c_b2, &u[u_offset], ldu);
  847. }
  848. /* ==== Near-the-diagonal bulge chase. The following loop */
  849. /* . performs the near-the-diagonal part of a small bulge */
  850. /* . multi-shift QR sweep. Each 4*NBMPS column diagonal */
  851. /* . chunk extends from column INCOL to column NDCOL */
  852. /* . (including both column INCOL and column NDCOL). The */
  853. /* . following loop chases a 2*NBMPS+1 column long chain of */
  854. /* . NBMPS bulges 2*NBMPS columns to the right. (INCOL */
  855. /* . may be less than KTOP and and NDCOL may be greater than */
  856. /* . KBOT indicating phantom columns from which to chase */
  857. /* . bulges before they are actually introduced or to which */
  858. /* . to chase bulges beyond column KBOT.) ==== */
  859. /* Computing MIN */
  860. i__4 = incol + (nbmps << 1) - 1, i__5 = *kbot - 2;
  861. i__3 = f2cmin(i__4,i__5);
  862. for (krcol = incol; krcol <= i__3; ++krcol) {
  863. /* ==== Bulges number MTOP to MBOT are active double implicit */
  864. /* . shift bulges. There may or may not also be small */
  865. /* . 2-by-2 bulge, if there is room. The inactive bulges */
  866. /* . (if any) must wait until the active bulges have moved */
  867. /* . down the diagonal to make room. The phantom matrix */
  868. /* . paradigm described above helps keep track. ==== */
  869. /* Computing MAX */
  870. i__4 = 1, i__5 = (*ktop - krcol) / 2 + 1;
  871. mtop = f2cmax(i__4,i__5);
  872. /* Computing MIN */
  873. i__4 = nbmps, i__5 = (*kbot - krcol - 1) / 2;
  874. mbot = f2cmin(i__4,i__5);
  875. m22 = mbot + 1;
  876. bmp22 = mbot < nbmps && krcol + (m22 - 1 << 1) == *kbot - 2;
  877. /* ==== Generate reflections to chase the chain right */
  878. /* . one column. (The minimum value of K is KTOP-1.) ==== */
  879. if (bmp22) {
  880. /* ==== Special case: 2-by-2 reflection at bottom treated */
  881. /* . separately ==== */
  882. k = krcol + (m22 - 1 << 1);
  883. if (k == *ktop - 1) {
  884. zlaqr1_(&c__2, &h__[k + 1 + (k + 1) * h_dim1], ldh, &s[(
  885. m22 << 1) - 1], &s[m22 * 2], &v[m22 * v_dim1 + 1])
  886. ;
  887. i__4 = m22 * v_dim1 + 1;
  888. beta.r = v[i__4].r, beta.i = v[i__4].i;
  889. zlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  890. * v_dim1 + 1]);
  891. } else {
  892. i__4 = k + 1 + k * h_dim1;
  893. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  894. i__4 = m22 * v_dim1 + 2;
  895. i__5 = k + 2 + k * h_dim1;
  896. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  897. zlarfg_(&c__2, &beta, &v[m22 * v_dim1 + 2], &c__1, &v[m22
  898. * v_dim1 + 1]);
  899. i__4 = k + 1 + k * h_dim1;
  900. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  901. i__4 = k + 2 + k * h_dim1;
  902. h__[i__4].r = 0., h__[i__4].i = 0.;
  903. }
  904. /* ==== Perform update from right within */
  905. /* . computational window. ==== */
  906. /* Computing MIN */
  907. i__5 = *kbot, i__6 = k + 3;
  908. i__4 = f2cmin(i__5,i__6);
  909. for (j = jtop; j <= i__4; ++j) {
  910. i__5 = m22 * v_dim1 + 1;
  911. i__6 = j + (k + 1) * h_dim1;
  912. i__7 = m22 * v_dim1 + 2;
  913. i__8 = j + (k + 2) * h_dim1;
  914. z__3.r = v[i__7].r * h__[i__8].r - v[i__7].i * h__[i__8]
  915. .i, z__3.i = v[i__7].r * h__[i__8].i + v[i__7].i *
  916. h__[i__8].r;
  917. z__2.r = h__[i__6].r + z__3.r, z__2.i = h__[i__6].i +
  918. z__3.i;
  919. z__1.r = v[i__5].r * z__2.r - v[i__5].i * z__2.i, z__1.i =
  920. v[i__5].r * z__2.i + v[i__5].i * z__2.r;
  921. refsum.r = z__1.r, refsum.i = z__1.i;
  922. i__5 = j + (k + 1) * h_dim1;
  923. i__6 = j + (k + 1) * h_dim1;
  924. z__1.r = h__[i__6].r - refsum.r, z__1.i = h__[i__6].i -
  925. refsum.i;
  926. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  927. i__5 = j + (k + 2) * h_dim1;
  928. i__6 = j + (k + 2) * h_dim1;
  929. d_cnjg(&z__3, &v[m22 * v_dim1 + 2]);
  930. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i, z__2.i =
  931. refsum.r * z__3.i + refsum.i * z__3.r;
  932. z__1.r = h__[i__6].r - z__2.r, z__1.i = h__[i__6].i -
  933. z__2.i;
  934. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  935. /* L30: */
  936. }
  937. /* ==== Perform update from left within */
  938. /* . computational window. ==== */
  939. if (accum) {
  940. jbot = f2cmin(ndcol,*kbot);
  941. } else if (*wantt) {
  942. jbot = *n;
  943. } else {
  944. jbot = *kbot;
  945. }
  946. i__4 = jbot;
  947. for (j = k + 1; j <= i__4; ++j) {
  948. d_cnjg(&z__2, &v[m22 * v_dim1 + 1]);
  949. i__5 = k + 1 + j * h_dim1;
  950. d_cnjg(&z__5, &v[m22 * v_dim1 + 2]);
  951. i__6 = k + 2 + j * h_dim1;
  952. z__4.r = z__5.r * h__[i__6].r - z__5.i * h__[i__6].i,
  953. z__4.i = z__5.r * h__[i__6].i + z__5.i * h__[i__6]
  954. .r;
  955. z__3.r = h__[i__5].r + z__4.r, z__3.i = h__[i__5].i +
  956. z__4.i;
  957. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  958. z__2.r * z__3.i + z__2.i * z__3.r;
  959. refsum.r = z__1.r, refsum.i = z__1.i;
  960. i__5 = k + 1 + j * h_dim1;
  961. i__6 = k + 1 + j * h_dim1;
  962. z__1.r = h__[i__6].r - refsum.r, z__1.i = h__[i__6].i -
  963. refsum.i;
  964. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  965. i__5 = k + 2 + j * h_dim1;
  966. i__6 = k + 2 + j * h_dim1;
  967. i__7 = m22 * v_dim1 + 2;
  968. z__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i,
  969. z__2.i = refsum.r * v[i__7].i + refsum.i * v[i__7]
  970. .r;
  971. z__1.r = h__[i__6].r - z__2.r, z__1.i = h__[i__6].i -
  972. z__2.i;
  973. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  974. /* L40: */
  975. }
  976. /* ==== The following convergence test requires that */
  977. /* . the tradition small-compared-to-nearby-diagonals */
  978. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  979. /* . criteria both be satisfied. The latter improves */
  980. /* . accuracy in some examples. Falling back on an */
  981. /* . alternate convergence criterion when TST1 or TST2 */
  982. /* . is zero (as done here) is traditional but probably */
  983. /* . unnecessary. ==== */
  984. if (k >= *ktop) {
  985. i__4 = k + 1 + k * h_dim1;
  986. if (h__[i__4].r != 0. || h__[i__4].i != 0.) {
  987. i__4 = k + k * h_dim1;
  988. i__5 = k + 1 + (k + 1) * h_dim1;
  989. tst1 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  990. d_imag(&h__[k + k * h_dim1]), abs(d__2)) + ((
  991. d__3 = h__[i__5].r, abs(d__3)) + (d__4 =
  992. d_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  993. d__4)));
  994. if (tst1 == 0.) {
  995. if (k >= *ktop + 1) {
  996. i__4 = k + (k - 1) * h_dim1;
  997. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  998. d__2 = d_imag(&h__[k + (k - 1) *
  999. h_dim1]), abs(d__2));
  1000. }
  1001. if (k >= *ktop + 2) {
  1002. i__4 = k + (k - 2) * h_dim1;
  1003. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  1004. d__2 = d_imag(&h__[k + (k - 2) *
  1005. h_dim1]), abs(d__2));
  1006. }
  1007. if (k >= *ktop + 3) {
  1008. i__4 = k + (k - 3) * h_dim1;
  1009. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  1010. d__2 = d_imag(&h__[k + (k - 3) *
  1011. h_dim1]), abs(d__2));
  1012. }
  1013. if (k <= *kbot - 2) {
  1014. i__4 = k + 2 + (k + 1) * h_dim1;
  1015. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  1016. d__2 = d_imag(&h__[k + 2 + (k + 1) *
  1017. h_dim1]), abs(d__2));
  1018. }
  1019. if (k <= *kbot - 3) {
  1020. i__4 = k + 3 + (k + 1) * h_dim1;
  1021. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  1022. d__2 = d_imag(&h__[k + 3 + (k + 1) *
  1023. h_dim1]), abs(d__2));
  1024. }
  1025. if (k <= *kbot - 4) {
  1026. i__4 = k + 4 + (k + 1) * h_dim1;
  1027. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (
  1028. d__2 = d_imag(&h__[k + 4 + (k + 1) *
  1029. h_dim1]), abs(d__2));
  1030. }
  1031. }
  1032. i__4 = k + 1 + k * h_dim1;
  1033. /* Computing MAX */
  1034. d__3 = smlnum, d__4 = ulp * tst1;
  1035. if ((d__1 = h__[i__4].r, abs(d__1)) + (d__2 = d_imag(&
  1036. h__[k + 1 + k * h_dim1]), abs(d__2)) <= f2cmax(
  1037. d__3,d__4)) {
  1038. /* Computing MAX */
  1039. i__4 = k + 1 + k * h_dim1;
  1040. i__5 = k + (k + 1) * h_dim1;
  1041. d__5 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1042. d_imag(&h__[k + 1 + k * h_dim1]), abs(
  1043. d__2)), d__6 = (d__3 = h__[i__5].r, abs(
  1044. d__3)) + (d__4 = d_imag(&h__[k + (k + 1) *
  1045. h_dim1]), abs(d__4));
  1046. h12 = f2cmax(d__5,d__6);
  1047. /* Computing MIN */
  1048. i__4 = k + 1 + k * h_dim1;
  1049. i__5 = k + (k + 1) * h_dim1;
  1050. d__5 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1051. d_imag(&h__[k + 1 + k * h_dim1]), abs(
  1052. d__2)), d__6 = (d__3 = h__[i__5].r, abs(
  1053. d__3)) + (d__4 = d_imag(&h__[k + (k + 1) *
  1054. h_dim1]), abs(d__4));
  1055. h21 = f2cmin(d__5,d__6);
  1056. i__4 = k + k * h_dim1;
  1057. i__5 = k + 1 + (k + 1) * h_dim1;
  1058. z__2.r = h__[i__4].r - h__[i__5].r, z__2.i = h__[
  1059. i__4].i - h__[i__5].i;
  1060. z__1.r = z__2.r, z__1.i = z__2.i;
  1061. /* Computing MAX */
  1062. i__6 = k + 1 + (k + 1) * h_dim1;
  1063. d__5 = (d__1 = h__[i__6].r, abs(d__1)) + (d__2 =
  1064. d_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1065. abs(d__2)), d__6 = (d__3 = z__1.r, abs(
  1066. d__3)) + (d__4 = d_imag(&z__1), abs(d__4))
  1067. ;
  1068. h11 = f2cmax(d__5,d__6);
  1069. i__4 = k + k * h_dim1;
  1070. i__5 = k + 1 + (k + 1) * h_dim1;
  1071. z__2.r = h__[i__4].r - h__[i__5].r, z__2.i = h__[
  1072. i__4].i - h__[i__5].i;
  1073. z__1.r = z__2.r, z__1.i = z__2.i;
  1074. /* Computing MIN */
  1075. i__6 = k + 1 + (k + 1) * h_dim1;
  1076. d__5 = (d__1 = h__[i__6].r, abs(d__1)) + (d__2 =
  1077. d_imag(&h__[k + 1 + (k + 1) * h_dim1]),
  1078. abs(d__2)), d__6 = (d__3 = z__1.r, abs(
  1079. d__3)) + (d__4 = d_imag(&z__1), abs(d__4))
  1080. ;
  1081. h22 = f2cmin(d__5,d__6);
  1082. scl = h11 + h12;
  1083. tst2 = h22 * (h11 / scl);
  1084. /* Computing MAX */
  1085. d__1 = smlnum, d__2 = ulp * tst2;
  1086. if (tst2 == 0. || h21 * (h12 / scl) <= f2cmax(d__1,
  1087. d__2)) {
  1088. i__4 = k + 1 + k * h_dim1;
  1089. h__[i__4].r = 0., h__[i__4].i = 0.;
  1090. }
  1091. }
  1092. }
  1093. }
  1094. /* ==== Accumulate orthogonal transformations. ==== */
  1095. if (accum) {
  1096. kms = k - incol;
  1097. /* Computing MAX */
  1098. i__4 = 1, i__5 = *ktop - incol;
  1099. i__6 = kdu;
  1100. for (j = f2cmax(i__4,i__5); j <= i__6; ++j) {
  1101. i__4 = m22 * v_dim1 + 1;
  1102. i__5 = j + (kms + 1) * u_dim1;
  1103. i__7 = m22 * v_dim1 + 2;
  1104. i__8 = j + (kms + 2) * u_dim1;
  1105. z__3.r = v[i__7].r * u[i__8].r - v[i__7].i * u[i__8]
  1106. .i, z__3.i = v[i__7].r * u[i__8].i + v[i__7]
  1107. .i * u[i__8].r;
  1108. z__2.r = u[i__5].r + z__3.r, z__2.i = u[i__5].i +
  1109. z__3.i;
  1110. z__1.r = v[i__4].r * z__2.r - v[i__4].i * z__2.i,
  1111. z__1.i = v[i__4].r * z__2.i + v[i__4].i *
  1112. z__2.r;
  1113. refsum.r = z__1.r, refsum.i = z__1.i;
  1114. i__4 = j + (kms + 1) * u_dim1;
  1115. i__5 = j + (kms + 1) * u_dim1;
  1116. z__1.r = u[i__5].r - refsum.r, z__1.i = u[i__5].i -
  1117. refsum.i;
  1118. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1119. i__4 = j + (kms + 2) * u_dim1;
  1120. i__5 = j + (kms + 2) * u_dim1;
  1121. d_cnjg(&z__3, &v[m22 * v_dim1 + 2]);
  1122. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1123. z__2.i = refsum.r * z__3.i + refsum.i *
  1124. z__3.r;
  1125. z__1.r = u[i__5].r - z__2.r, z__1.i = u[i__5].i -
  1126. z__2.i;
  1127. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1128. /* L50: */
  1129. }
  1130. } else if (*wantz) {
  1131. i__6 = *ihiz;
  1132. for (j = *iloz; j <= i__6; ++j) {
  1133. i__4 = m22 * v_dim1 + 1;
  1134. i__5 = j + (k + 1) * z_dim1;
  1135. i__7 = m22 * v_dim1 + 2;
  1136. i__8 = j + (k + 2) * z_dim1;
  1137. z__3.r = v[i__7].r * z__[i__8].r - v[i__7].i * z__[
  1138. i__8].i, z__3.i = v[i__7].r * z__[i__8].i + v[
  1139. i__7].i * z__[i__8].r;
  1140. z__2.r = z__[i__5].r + z__3.r, z__2.i = z__[i__5].i +
  1141. z__3.i;
  1142. z__1.r = v[i__4].r * z__2.r - v[i__4].i * z__2.i,
  1143. z__1.i = v[i__4].r * z__2.i + v[i__4].i *
  1144. z__2.r;
  1145. refsum.r = z__1.r, refsum.i = z__1.i;
  1146. i__4 = j + (k + 1) * z_dim1;
  1147. i__5 = j + (k + 1) * z_dim1;
  1148. z__1.r = z__[i__5].r - refsum.r, z__1.i = z__[i__5].i
  1149. - refsum.i;
  1150. z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
  1151. i__4 = j + (k + 2) * z_dim1;
  1152. i__5 = j + (k + 2) * z_dim1;
  1153. d_cnjg(&z__3, &v[m22 * v_dim1 + 2]);
  1154. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1155. z__2.i = refsum.r * z__3.i + refsum.i *
  1156. z__3.r;
  1157. z__1.r = z__[i__5].r - z__2.r, z__1.i = z__[i__5].i -
  1158. z__2.i;
  1159. z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
  1160. /* L60: */
  1161. }
  1162. }
  1163. }
  1164. /* ==== Normal case: Chain of 3-by-3 reflections ==== */
  1165. i__6 = mtop;
  1166. for (m = mbot; m >= i__6; --m) {
  1167. k = krcol + (m - 1 << 1);
  1168. if (k == *ktop - 1) {
  1169. zlaqr1_(&c__3, &h__[*ktop + *ktop * h_dim1], ldh, &s[(m <<
  1170. 1) - 1], &s[m * 2], &v[m * v_dim1 + 1]);
  1171. i__4 = m * v_dim1 + 1;
  1172. alpha.r = v[i__4].r, alpha.i = v[i__4].i;
  1173. zlarfg_(&c__3, &alpha, &v[m * v_dim1 + 2], &c__1, &v[m *
  1174. v_dim1 + 1]);
  1175. } else {
  1176. /* ==== Perform delayed transformation of row below */
  1177. /* . Mth bulge. Exploit fact that first two elements */
  1178. /* . of row are actually zero. ==== */
  1179. i__4 = m * v_dim1 + 1;
  1180. i__5 = m * v_dim1 + 3;
  1181. z__2.r = v[i__4].r * v[i__5].r - v[i__4].i * v[i__5].i,
  1182. z__2.i = v[i__4].r * v[i__5].i + v[i__4].i * v[
  1183. i__5].r;
  1184. i__7 = k + 3 + (k + 2) * h_dim1;
  1185. z__1.r = z__2.r * h__[i__7].r - z__2.i * h__[i__7].i,
  1186. z__1.i = z__2.r * h__[i__7].i + z__2.i * h__[i__7]
  1187. .r;
  1188. refsum.r = z__1.r, refsum.i = z__1.i;
  1189. i__4 = k + 3 + k * h_dim1;
  1190. z__1.r = -refsum.r, z__1.i = -refsum.i;
  1191. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1192. i__4 = k + 3 + (k + 1) * h_dim1;
  1193. z__2.r = -refsum.r, z__2.i = -refsum.i;
  1194. d_cnjg(&z__3, &v[m * v_dim1 + 2]);
  1195. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  1196. z__2.r * z__3.i + z__2.i * z__3.r;
  1197. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1198. i__4 = k + 3 + (k + 2) * h_dim1;
  1199. i__5 = k + 3 + (k + 2) * h_dim1;
  1200. d_cnjg(&z__3, &v[m * v_dim1 + 3]);
  1201. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i, z__2.i =
  1202. refsum.r * z__3.i + refsum.i * z__3.r;
  1203. z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i -
  1204. z__2.i;
  1205. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1206. /* ==== Calculate reflection to move */
  1207. /* . Mth bulge one step. ==== */
  1208. i__4 = k + 1 + k * h_dim1;
  1209. beta.r = h__[i__4].r, beta.i = h__[i__4].i;
  1210. i__4 = m * v_dim1 + 2;
  1211. i__5 = k + 2 + k * h_dim1;
  1212. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1213. i__4 = m * v_dim1 + 3;
  1214. i__5 = k + 3 + k * h_dim1;
  1215. v[i__4].r = h__[i__5].r, v[i__4].i = h__[i__5].i;
  1216. zlarfg_(&c__3, &beta, &v[m * v_dim1 + 2], &c__1, &v[m *
  1217. v_dim1 + 1]);
  1218. /* ==== A Bulge may collapse because of vigilant */
  1219. /* . deflation or destructive underflow. In the */
  1220. /* . underflow case, try the two-small-subdiagonals */
  1221. /* . trick to try to reinflate the bulge. ==== */
  1222. i__4 = k + 3 + k * h_dim1;
  1223. i__5 = k + 3 + (k + 1) * h_dim1;
  1224. i__7 = k + 3 + (k + 2) * h_dim1;
  1225. if (h__[i__4].r != 0. || h__[i__4].i != 0. || (h__[i__5]
  1226. .r != 0. || h__[i__5].i != 0.) || h__[i__7].r ==
  1227. 0. && h__[i__7].i == 0.) {
  1228. /* ==== Typical case: not collapsed (yet). ==== */
  1229. i__4 = k + 1 + k * h_dim1;
  1230. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1231. i__4 = k + 2 + k * h_dim1;
  1232. h__[i__4].r = 0., h__[i__4].i = 0.;
  1233. i__4 = k + 3 + k * h_dim1;
  1234. h__[i__4].r = 0., h__[i__4].i = 0.;
  1235. } else {
  1236. /* ==== Atypical case: collapsed. Attempt to */
  1237. /* . reintroduce ignoring H(K+1,K) and H(K+2,K). */
  1238. /* . If the fill resulting from the new */
  1239. /* . reflector is too large, then abandon it. */
  1240. /* . Otherwise, use the new one. ==== */
  1241. zlaqr1_(&c__3, &h__[k + 1 + (k + 1) * h_dim1], ldh, &
  1242. s[(m << 1) - 1], &s[m * 2], vt);
  1243. alpha.r = vt[0].r, alpha.i = vt[0].i;
  1244. zlarfg_(&c__3, &alpha, &vt[1], &c__1, vt);
  1245. d_cnjg(&z__2, vt);
  1246. i__4 = k + 1 + k * h_dim1;
  1247. d_cnjg(&z__5, &vt[1]);
  1248. i__5 = k + 2 + k * h_dim1;
  1249. z__4.r = z__5.r * h__[i__5].r - z__5.i * h__[i__5].i,
  1250. z__4.i = z__5.r * h__[i__5].i + z__5.i * h__[
  1251. i__5].r;
  1252. z__3.r = h__[i__4].r + z__4.r, z__3.i = h__[i__4].i +
  1253. z__4.i;
  1254. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  1255. z__2.r * z__3.i + z__2.i * z__3.r;
  1256. refsum.r = z__1.r, refsum.i = z__1.i;
  1257. i__4 = k + 2 + k * h_dim1;
  1258. z__3.r = refsum.r * vt[1].r - refsum.i * vt[1].i,
  1259. z__3.i = refsum.r * vt[1].i + refsum.i * vt[1]
  1260. .r;
  1261. z__2.r = h__[i__4].r - z__3.r, z__2.i = h__[i__4].i -
  1262. z__3.i;
  1263. z__1.r = z__2.r, z__1.i = z__2.i;
  1264. z__5.r = refsum.r * vt[2].r - refsum.i * vt[2].i,
  1265. z__5.i = refsum.r * vt[2].i + refsum.i * vt[2]
  1266. .r;
  1267. z__4.r = z__5.r, z__4.i = z__5.i;
  1268. i__5 = k + k * h_dim1;
  1269. i__7 = k + 1 + (k + 1) * h_dim1;
  1270. i__8 = k + 2 + (k + 2) * h_dim1;
  1271. if ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1)
  1272. , abs(d__2)) + ((d__3 = z__4.r, abs(d__3)) + (
  1273. d__4 = d_imag(&z__4), abs(d__4))) > ulp * ((
  1274. d__5 = h__[i__5].r, abs(d__5)) + (d__6 =
  1275. d_imag(&h__[k + k * h_dim1]), abs(d__6)) + ((
  1276. d__7 = h__[i__7].r, abs(d__7)) + (d__8 =
  1277. d_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1278. d__8))) + ((d__9 = h__[i__8].r, abs(d__9)) + (
  1279. d__10 = d_imag(&h__[k + 2 + (k + 2) * h_dim1])
  1280. , abs(d__10))))) {
  1281. /* ==== Starting a new bulge here would */
  1282. /* . create non-negligible fill. Use */
  1283. /* . the old one with trepidation. ==== */
  1284. i__4 = k + 1 + k * h_dim1;
  1285. h__[i__4].r = beta.r, h__[i__4].i = beta.i;
  1286. i__4 = k + 2 + k * h_dim1;
  1287. h__[i__4].r = 0., h__[i__4].i = 0.;
  1288. i__4 = k + 3 + k * h_dim1;
  1289. h__[i__4].r = 0., h__[i__4].i = 0.;
  1290. } else {
  1291. /* ==== Starting a new bulge here would */
  1292. /* . create only negligible fill. */
  1293. /* . Replace the old reflector with */
  1294. /* . the new one. ==== */
  1295. i__4 = k + 1 + k * h_dim1;
  1296. i__5 = k + 1 + k * h_dim1;
  1297. z__1.r = h__[i__5].r - refsum.r, z__1.i = h__[
  1298. i__5].i - refsum.i;
  1299. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1300. i__4 = k + 2 + k * h_dim1;
  1301. h__[i__4].r = 0., h__[i__4].i = 0.;
  1302. i__4 = k + 3 + k * h_dim1;
  1303. h__[i__4].r = 0., h__[i__4].i = 0.;
  1304. i__4 = m * v_dim1 + 1;
  1305. v[i__4].r = vt[0].r, v[i__4].i = vt[0].i;
  1306. i__4 = m * v_dim1 + 2;
  1307. v[i__4].r = vt[1].r, v[i__4].i = vt[1].i;
  1308. i__4 = m * v_dim1 + 3;
  1309. v[i__4].r = vt[2].r, v[i__4].i = vt[2].i;
  1310. }
  1311. }
  1312. }
  1313. /* ==== Apply reflection from the right and */
  1314. /* . the first column of update from the left. */
  1315. /* . These updates are required for the vigilant */
  1316. /* . deflation check. We still delay most of the */
  1317. /* . updates from the left for efficiency. ==== */
  1318. /* Computing MIN */
  1319. i__5 = *kbot, i__7 = k + 3;
  1320. i__4 = f2cmin(i__5,i__7);
  1321. for (j = jtop; j <= i__4; ++j) {
  1322. i__5 = m * v_dim1 + 1;
  1323. i__7 = j + (k + 1) * h_dim1;
  1324. i__8 = m * v_dim1 + 2;
  1325. i__9 = j + (k + 2) * h_dim1;
  1326. z__4.r = v[i__8].r * h__[i__9].r - v[i__8].i * h__[i__9]
  1327. .i, z__4.i = v[i__8].r * h__[i__9].i + v[i__8].i *
  1328. h__[i__9].r;
  1329. z__3.r = h__[i__7].r + z__4.r, z__3.i = h__[i__7].i +
  1330. z__4.i;
  1331. i__10 = m * v_dim1 + 3;
  1332. i__11 = j + (k + 3) * h_dim1;
  1333. z__5.r = v[i__10].r * h__[i__11].r - v[i__10].i * h__[
  1334. i__11].i, z__5.i = v[i__10].r * h__[i__11].i + v[
  1335. i__10].i * h__[i__11].r;
  1336. z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i;
  1337. z__1.r = v[i__5].r * z__2.r - v[i__5].i * z__2.i, z__1.i =
  1338. v[i__5].r * z__2.i + v[i__5].i * z__2.r;
  1339. refsum.r = z__1.r, refsum.i = z__1.i;
  1340. i__5 = j + (k + 1) * h_dim1;
  1341. i__7 = j + (k + 1) * h_dim1;
  1342. z__1.r = h__[i__7].r - refsum.r, z__1.i = h__[i__7].i -
  1343. refsum.i;
  1344. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  1345. i__5 = j + (k + 2) * h_dim1;
  1346. i__7 = j + (k + 2) * h_dim1;
  1347. d_cnjg(&z__3, &v[m * v_dim1 + 2]);
  1348. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i, z__2.i =
  1349. refsum.r * z__3.i + refsum.i * z__3.r;
  1350. z__1.r = h__[i__7].r - z__2.r, z__1.i = h__[i__7].i -
  1351. z__2.i;
  1352. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  1353. i__5 = j + (k + 3) * h_dim1;
  1354. i__7 = j + (k + 3) * h_dim1;
  1355. d_cnjg(&z__3, &v[m * v_dim1 + 3]);
  1356. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i, z__2.i =
  1357. refsum.r * z__3.i + refsum.i * z__3.r;
  1358. z__1.r = h__[i__7].r - z__2.r, z__1.i = h__[i__7].i -
  1359. z__2.i;
  1360. h__[i__5].r = z__1.r, h__[i__5].i = z__1.i;
  1361. /* L70: */
  1362. }
  1363. /* ==== Perform update from left for subsequent */
  1364. /* . column. ==== */
  1365. d_cnjg(&z__2, &v[m * v_dim1 + 1]);
  1366. i__4 = k + 1 + (k + 1) * h_dim1;
  1367. d_cnjg(&z__6, &v[m * v_dim1 + 2]);
  1368. i__5 = k + 2 + (k + 1) * h_dim1;
  1369. z__5.r = z__6.r * h__[i__5].r - z__6.i * h__[i__5].i, z__5.i =
  1370. z__6.r * h__[i__5].i + z__6.i * h__[i__5].r;
  1371. z__4.r = h__[i__4].r + z__5.r, z__4.i = h__[i__4].i + z__5.i;
  1372. d_cnjg(&z__8, &v[m * v_dim1 + 3]);
  1373. i__7 = k + 3 + (k + 1) * h_dim1;
  1374. z__7.r = z__8.r * h__[i__7].r - z__8.i * h__[i__7].i, z__7.i =
  1375. z__8.r * h__[i__7].i + z__8.i * h__[i__7].r;
  1376. z__3.r = z__4.r + z__7.r, z__3.i = z__4.i + z__7.i;
  1377. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i = z__2.r *
  1378. z__3.i + z__2.i * z__3.r;
  1379. refsum.r = z__1.r, refsum.i = z__1.i;
  1380. i__4 = k + 1 + (k + 1) * h_dim1;
  1381. i__5 = k + 1 + (k + 1) * h_dim1;
  1382. z__1.r = h__[i__5].r - refsum.r, z__1.i = h__[i__5].i -
  1383. refsum.i;
  1384. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1385. i__4 = k + 2 + (k + 1) * h_dim1;
  1386. i__5 = k + 2 + (k + 1) * h_dim1;
  1387. i__7 = m * v_dim1 + 2;
  1388. z__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, z__2.i =
  1389. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1390. z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
  1391. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1392. i__4 = k + 3 + (k + 1) * h_dim1;
  1393. i__5 = k + 3 + (k + 1) * h_dim1;
  1394. i__7 = m * v_dim1 + 3;
  1395. z__2.r = refsum.r * v[i__7].r - refsum.i * v[i__7].i, z__2.i =
  1396. refsum.r * v[i__7].i + refsum.i * v[i__7].r;
  1397. z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i - z__2.i;
  1398. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1399. /* ==== The following convergence test requires that */
  1400. /* . the tradition small-compared-to-nearby-diagonals */
  1401. /* . criterion and the Ahues & Tisseur (LAWN 122, 1997) */
  1402. /* . criteria both be satisfied. The latter improves */
  1403. /* . accuracy in some examples. Falling back on an */
  1404. /* . alternate convergence criterion when TST1 or TST2 */
  1405. /* . is zero (as done here) is traditional but probably */
  1406. /* . unnecessary. ==== */
  1407. if (k < *ktop) {
  1408. mycycle_();
  1409. }
  1410. i__4 = k + 1 + k * h_dim1;
  1411. if (h__[i__4].r != 0. || h__[i__4].i != 0.) {
  1412. i__4 = k + k * h_dim1;
  1413. i__5 = k + 1 + (k + 1) * h_dim1;
  1414. tst1 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 = d_imag(&
  1415. h__[k + k * h_dim1]), abs(d__2)) + ((d__3 = h__[
  1416. i__5].r, abs(d__3)) + (d__4 = d_imag(&h__[k + 1 +
  1417. (k + 1) * h_dim1]), abs(d__4)));
  1418. if (tst1 == 0.) {
  1419. if (k >= *ktop + 1) {
  1420. i__4 = k + (k - 1) * h_dim1;
  1421. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1422. d_imag(&h__[k + (k - 1) * h_dim1]), abs(
  1423. d__2));
  1424. }
  1425. if (k >= *ktop + 2) {
  1426. i__4 = k + (k - 2) * h_dim1;
  1427. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1428. d_imag(&h__[k + (k - 2) * h_dim1]), abs(
  1429. d__2));
  1430. }
  1431. if (k >= *ktop + 3) {
  1432. i__4 = k + (k - 3) * h_dim1;
  1433. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1434. d_imag(&h__[k + (k - 3) * h_dim1]), abs(
  1435. d__2));
  1436. }
  1437. if (k <= *kbot - 2) {
  1438. i__4 = k + 2 + (k + 1) * h_dim1;
  1439. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1440. d_imag(&h__[k + 2 + (k + 1) * h_dim1]),
  1441. abs(d__2));
  1442. }
  1443. if (k <= *kbot - 3) {
  1444. i__4 = k + 3 + (k + 1) * h_dim1;
  1445. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1446. d_imag(&h__[k + 3 + (k + 1) * h_dim1]),
  1447. abs(d__2));
  1448. }
  1449. if (k <= *kbot - 4) {
  1450. i__4 = k + 4 + (k + 1) * h_dim1;
  1451. tst1 += (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1452. d_imag(&h__[k + 4 + (k + 1) * h_dim1]),
  1453. abs(d__2));
  1454. }
  1455. }
  1456. i__4 = k + 1 + k * h_dim1;
  1457. /* Computing MAX */
  1458. d__3 = smlnum, d__4 = ulp * tst1;
  1459. if ((d__1 = h__[i__4].r, abs(d__1)) + (d__2 = d_imag(&h__[
  1460. k + 1 + k * h_dim1]), abs(d__2)) <= f2cmax(d__3,d__4)
  1461. ) {
  1462. /* Computing MAX */
  1463. i__4 = k + 1 + k * h_dim1;
  1464. i__5 = k + (k + 1) * h_dim1;
  1465. d__5 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1466. d_imag(&h__[k + 1 + k * h_dim1]), abs(d__2)),
  1467. d__6 = (d__3 = h__[i__5].r, abs(d__3)) + (
  1468. d__4 = d_imag(&h__[k + (k + 1) * h_dim1]),
  1469. abs(d__4));
  1470. h12 = f2cmax(d__5,d__6);
  1471. /* Computing MIN */
  1472. i__4 = k + 1 + k * h_dim1;
  1473. i__5 = k + (k + 1) * h_dim1;
  1474. d__5 = (d__1 = h__[i__4].r, abs(d__1)) + (d__2 =
  1475. d_imag(&h__[k + 1 + k * h_dim1]), abs(d__2)),
  1476. d__6 = (d__3 = h__[i__5].r, abs(d__3)) + (
  1477. d__4 = d_imag(&h__[k + (k + 1) * h_dim1]),
  1478. abs(d__4));
  1479. h21 = f2cmin(d__5,d__6);
  1480. i__4 = k + k * h_dim1;
  1481. i__5 = k + 1 + (k + 1) * h_dim1;
  1482. z__2.r = h__[i__4].r - h__[i__5].r, z__2.i = h__[i__4]
  1483. .i - h__[i__5].i;
  1484. z__1.r = z__2.r, z__1.i = z__2.i;
  1485. /* Computing MAX */
  1486. i__7 = k + 1 + (k + 1) * h_dim1;
  1487. d__5 = (d__1 = h__[i__7].r, abs(d__1)) + (d__2 =
  1488. d_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1489. d__2)), d__6 = (d__3 = z__1.r, abs(d__3)) + (
  1490. d__4 = d_imag(&z__1), abs(d__4));
  1491. h11 = f2cmax(d__5,d__6);
  1492. i__4 = k + k * h_dim1;
  1493. i__5 = k + 1 + (k + 1) * h_dim1;
  1494. z__2.r = h__[i__4].r - h__[i__5].r, z__2.i = h__[i__4]
  1495. .i - h__[i__5].i;
  1496. z__1.r = z__2.r, z__1.i = z__2.i;
  1497. /* Computing MIN */
  1498. i__7 = k + 1 + (k + 1) * h_dim1;
  1499. d__5 = (d__1 = h__[i__7].r, abs(d__1)) + (d__2 =
  1500. d_imag(&h__[k + 1 + (k + 1) * h_dim1]), abs(
  1501. d__2)), d__6 = (d__3 = z__1.r, abs(d__3)) + (
  1502. d__4 = d_imag(&z__1), abs(d__4));
  1503. h22 = f2cmin(d__5,d__6);
  1504. scl = h11 + h12;
  1505. tst2 = h22 * (h11 / scl);
  1506. /* Computing MAX */
  1507. d__1 = smlnum, d__2 = ulp * tst2;
  1508. if (tst2 == 0. || h21 * (h12 / scl) <= f2cmax(d__1,d__2))
  1509. {
  1510. i__4 = k + 1 + k * h_dim1;
  1511. h__[i__4].r = 0., h__[i__4].i = 0.;
  1512. }
  1513. }
  1514. }
  1515. /* L80: */
  1516. }
  1517. /* ==== Multiply H by reflections from the left ==== */
  1518. if (accum) {
  1519. jbot = f2cmin(ndcol,*kbot);
  1520. } else if (*wantt) {
  1521. jbot = *n;
  1522. } else {
  1523. jbot = *kbot;
  1524. }
  1525. i__6 = mtop;
  1526. for (m = mbot; m >= i__6; --m) {
  1527. k = krcol + (m - 1 << 1);
  1528. /* Computing MAX */
  1529. i__4 = *ktop, i__5 = krcol + (m << 1);
  1530. i__7 = jbot;
  1531. for (j = f2cmax(i__4,i__5); j <= i__7; ++j) {
  1532. d_cnjg(&z__2, &v[m * v_dim1 + 1]);
  1533. i__4 = k + 1 + j * h_dim1;
  1534. d_cnjg(&z__6, &v[m * v_dim1 + 2]);
  1535. i__5 = k + 2 + j * h_dim1;
  1536. z__5.r = z__6.r * h__[i__5].r - z__6.i * h__[i__5].i,
  1537. z__5.i = z__6.r * h__[i__5].i + z__6.i * h__[i__5]
  1538. .r;
  1539. z__4.r = h__[i__4].r + z__5.r, z__4.i = h__[i__4].i +
  1540. z__5.i;
  1541. d_cnjg(&z__8, &v[m * v_dim1 + 3]);
  1542. i__8 = k + 3 + j * h_dim1;
  1543. z__7.r = z__8.r * h__[i__8].r - z__8.i * h__[i__8].i,
  1544. z__7.i = z__8.r * h__[i__8].i + z__8.i * h__[i__8]
  1545. .r;
  1546. z__3.r = z__4.r + z__7.r, z__3.i = z__4.i + z__7.i;
  1547. z__1.r = z__2.r * z__3.r - z__2.i * z__3.i, z__1.i =
  1548. z__2.r * z__3.i + z__2.i * z__3.r;
  1549. refsum.r = z__1.r, refsum.i = z__1.i;
  1550. i__4 = k + 1 + j * h_dim1;
  1551. i__5 = k + 1 + j * h_dim1;
  1552. z__1.r = h__[i__5].r - refsum.r, z__1.i = h__[i__5].i -
  1553. refsum.i;
  1554. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1555. i__4 = k + 2 + j * h_dim1;
  1556. i__5 = k + 2 + j * h_dim1;
  1557. i__8 = m * v_dim1 + 2;
  1558. z__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1559. z__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1560. .r;
  1561. z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i -
  1562. z__2.i;
  1563. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1564. i__4 = k + 3 + j * h_dim1;
  1565. i__5 = k + 3 + j * h_dim1;
  1566. i__8 = m * v_dim1 + 3;
  1567. z__2.r = refsum.r * v[i__8].r - refsum.i * v[i__8].i,
  1568. z__2.i = refsum.r * v[i__8].i + refsum.i * v[i__8]
  1569. .r;
  1570. z__1.r = h__[i__5].r - z__2.r, z__1.i = h__[i__5].i -
  1571. z__2.i;
  1572. h__[i__4].r = z__1.r, h__[i__4].i = z__1.i;
  1573. /* L90: */
  1574. }
  1575. /* L100: */
  1576. }
  1577. /* ==== Accumulate orthogonal transformations. ==== */
  1578. if (accum) {
  1579. /* ==== Accumulate U. (If needed, update Z later */
  1580. /* . with an efficient matrix-matrix */
  1581. /* . multiply.) ==== */
  1582. i__6 = mtop;
  1583. for (m = mbot; m >= i__6; --m) {
  1584. k = krcol + (m - 1 << 1);
  1585. kms = k - incol;
  1586. /* Computing MAX */
  1587. i__7 = 1, i__4 = *ktop - incol;
  1588. i2 = f2cmax(i__7,i__4);
  1589. /* Computing MAX */
  1590. i__7 = i2, i__4 = kms - (krcol - incol) + 1;
  1591. i2 = f2cmax(i__7,i__4);
  1592. /* Computing MIN */
  1593. i__7 = kdu, i__4 = krcol + (mbot - 1 << 1) - incol + 5;
  1594. i4 = f2cmin(i__7,i__4);
  1595. i__7 = i4;
  1596. for (j = i2; j <= i__7; ++j) {
  1597. i__4 = m * v_dim1 + 1;
  1598. i__5 = j + (kms + 1) * u_dim1;
  1599. i__8 = m * v_dim1 + 2;
  1600. i__9 = j + (kms + 2) * u_dim1;
  1601. z__4.r = v[i__8].r * u[i__9].r - v[i__8].i * u[i__9]
  1602. .i, z__4.i = v[i__8].r * u[i__9].i + v[i__8]
  1603. .i * u[i__9].r;
  1604. z__3.r = u[i__5].r + z__4.r, z__3.i = u[i__5].i +
  1605. z__4.i;
  1606. i__10 = m * v_dim1 + 3;
  1607. i__11 = j + (kms + 3) * u_dim1;
  1608. z__5.r = v[i__10].r * u[i__11].r - v[i__10].i * u[
  1609. i__11].i, z__5.i = v[i__10].r * u[i__11].i +
  1610. v[i__10].i * u[i__11].r;
  1611. z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i;
  1612. z__1.r = v[i__4].r * z__2.r - v[i__4].i * z__2.i,
  1613. z__1.i = v[i__4].r * z__2.i + v[i__4].i *
  1614. z__2.r;
  1615. refsum.r = z__1.r, refsum.i = z__1.i;
  1616. i__4 = j + (kms + 1) * u_dim1;
  1617. i__5 = j + (kms + 1) * u_dim1;
  1618. z__1.r = u[i__5].r - refsum.r, z__1.i = u[i__5].i -
  1619. refsum.i;
  1620. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1621. i__4 = j + (kms + 2) * u_dim1;
  1622. i__5 = j + (kms + 2) * u_dim1;
  1623. d_cnjg(&z__3, &v[m * v_dim1 + 2]);
  1624. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1625. z__2.i = refsum.r * z__3.i + refsum.i *
  1626. z__3.r;
  1627. z__1.r = u[i__5].r - z__2.r, z__1.i = u[i__5].i -
  1628. z__2.i;
  1629. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1630. i__4 = j + (kms + 3) * u_dim1;
  1631. i__5 = j + (kms + 3) * u_dim1;
  1632. d_cnjg(&z__3, &v[m * v_dim1 + 3]);
  1633. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1634. z__2.i = refsum.r * z__3.i + refsum.i *
  1635. z__3.r;
  1636. z__1.r = u[i__5].r - z__2.r, z__1.i = u[i__5].i -
  1637. z__2.i;
  1638. u[i__4].r = z__1.r, u[i__4].i = z__1.i;
  1639. /* L110: */
  1640. }
  1641. /* L120: */
  1642. }
  1643. } else if (*wantz) {
  1644. /* ==== U is not accumulated, so update Z */
  1645. /* . now by multiplying by reflections */
  1646. /* . from the right. ==== */
  1647. i__6 = mtop;
  1648. for (m = mbot; m >= i__6; --m) {
  1649. k = krcol + (m - 1 << 1);
  1650. i__7 = *ihiz;
  1651. for (j = *iloz; j <= i__7; ++j) {
  1652. i__4 = m * v_dim1 + 1;
  1653. i__5 = j + (k + 1) * z_dim1;
  1654. i__8 = m * v_dim1 + 2;
  1655. i__9 = j + (k + 2) * z_dim1;
  1656. z__4.r = v[i__8].r * z__[i__9].r - v[i__8].i * z__[
  1657. i__9].i, z__4.i = v[i__8].r * z__[i__9].i + v[
  1658. i__8].i * z__[i__9].r;
  1659. z__3.r = z__[i__5].r + z__4.r, z__3.i = z__[i__5].i +
  1660. z__4.i;
  1661. i__10 = m * v_dim1 + 3;
  1662. i__11 = j + (k + 3) * z_dim1;
  1663. z__5.r = v[i__10].r * z__[i__11].r - v[i__10].i * z__[
  1664. i__11].i, z__5.i = v[i__10].r * z__[i__11].i
  1665. + v[i__10].i * z__[i__11].r;
  1666. z__2.r = z__3.r + z__5.r, z__2.i = z__3.i + z__5.i;
  1667. z__1.r = v[i__4].r * z__2.r - v[i__4].i * z__2.i,
  1668. z__1.i = v[i__4].r * z__2.i + v[i__4].i *
  1669. z__2.r;
  1670. refsum.r = z__1.r, refsum.i = z__1.i;
  1671. i__4 = j + (k + 1) * z_dim1;
  1672. i__5 = j + (k + 1) * z_dim1;
  1673. z__1.r = z__[i__5].r - refsum.r, z__1.i = z__[i__5].i
  1674. - refsum.i;
  1675. z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
  1676. i__4 = j + (k + 2) * z_dim1;
  1677. i__5 = j + (k + 2) * z_dim1;
  1678. d_cnjg(&z__3, &v[m * v_dim1 + 2]);
  1679. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1680. z__2.i = refsum.r * z__3.i + refsum.i *
  1681. z__3.r;
  1682. z__1.r = z__[i__5].r - z__2.r, z__1.i = z__[i__5].i -
  1683. z__2.i;
  1684. z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
  1685. i__4 = j + (k + 3) * z_dim1;
  1686. i__5 = j + (k + 3) * z_dim1;
  1687. d_cnjg(&z__3, &v[m * v_dim1 + 3]);
  1688. z__2.r = refsum.r * z__3.r - refsum.i * z__3.i,
  1689. z__2.i = refsum.r * z__3.i + refsum.i *
  1690. z__3.r;
  1691. z__1.r = z__[i__5].r - z__2.r, z__1.i = z__[i__5].i -
  1692. z__2.i;
  1693. z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
  1694. /* L130: */
  1695. }
  1696. /* L140: */
  1697. }
  1698. }
  1699. /* ==== End of near-the-diagonal bulge chase. ==== */
  1700. /* L145: */
  1701. }
  1702. /* ==== Use U (if accumulated) to update far-from-diagonal */
  1703. /* . entries in H. If required, use U to update Z as */
  1704. /* . well. ==== */
  1705. if (accum) {
  1706. if (*wantt) {
  1707. jtop = 1;
  1708. jbot = *n;
  1709. } else {
  1710. jtop = *ktop;
  1711. jbot = *kbot;
  1712. }
  1713. /* Computing MAX */
  1714. i__3 = 1, i__6 = *ktop - incol;
  1715. k1 = f2cmax(i__3,i__6);
  1716. /* Computing MAX */
  1717. i__3 = 0, i__6 = ndcol - *kbot;
  1718. nu = kdu - f2cmax(i__3,i__6) - k1 + 1;
  1719. /* ==== Horizontal Multiply ==== */
  1720. i__3 = jbot;
  1721. i__6 = *nh;
  1722. for (jcol = f2cmin(ndcol,*kbot) + 1; i__6 < 0 ? jcol >= i__3 : jcol
  1723. <= i__3; jcol += i__6) {
  1724. /* Computing MIN */
  1725. i__7 = *nh, i__4 = jbot - jcol + 1;
  1726. jlen = f2cmin(i__7,i__4);
  1727. zgemm_("C", "N", &nu, &jlen, &nu, &c_b2, &u[k1 + k1 * u_dim1],
  1728. ldu, &h__[incol + k1 + jcol * h_dim1], ldh, &c_b1, &
  1729. wh[wh_offset], ldwh);
  1730. zlacpy_("ALL", &nu, &jlen, &wh[wh_offset], ldwh, &h__[incol +
  1731. k1 + jcol * h_dim1], ldh);
  1732. /* L150: */
  1733. }
  1734. /* ==== Vertical multiply ==== */
  1735. i__6 = f2cmax(*ktop,incol) - 1;
  1736. i__3 = *nv;
  1737. for (jrow = jtop; i__3 < 0 ? jrow >= i__6 : jrow <= i__6; jrow +=
  1738. i__3) {
  1739. /* Computing MIN */
  1740. i__7 = *nv, i__4 = f2cmax(*ktop,incol) - jrow;
  1741. jlen = f2cmin(i__7,i__4);
  1742. zgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &h__[jrow + (incol +
  1743. k1) * h_dim1], ldh, &u[k1 + k1 * u_dim1], ldu, &c_b1,
  1744. &wv[wv_offset], ldwv);
  1745. zlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &h__[jrow + (
  1746. incol + k1) * h_dim1], ldh);
  1747. /* L160: */
  1748. }
  1749. /* ==== Z multiply (also vertical) ==== */
  1750. if (*wantz) {
  1751. i__3 = *ihiz;
  1752. i__6 = *nv;
  1753. for (jrow = *iloz; i__6 < 0 ? jrow >= i__3 : jrow <= i__3;
  1754. jrow += i__6) {
  1755. /* Computing MIN */
  1756. i__7 = *nv, i__4 = *ihiz - jrow + 1;
  1757. jlen = f2cmin(i__7,i__4);
  1758. zgemm_("N", "N", &jlen, &nu, &nu, &c_b2, &z__[jrow + (
  1759. incol + k1) * z_dim1], ldz, &u[k1 + k1 * u_dim1],
  1760. ldu, &c_b1, &wv[wv_offset], ldwv);
  1761. zlacpy_("ALL", &jlen, &nu, &wv[wv_offset], ldwv, &z__[
  1762. jrow + (incol + k1) * z_dim1], ldz);
  1763. /* L170: */
  1764. }
  1765. }
  1766. }
  1767. /* L180: */
  1768. }
  1769. /* ==== End of ZLAQR5 ==== */
  1770. return;
  1771. } /* zlaqr5_ */