You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhbgst.c 81 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. /* > \brief \b ZHBGST */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZHBGST + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgst.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgst.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgst.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X, */
  508. /* LDX, WORK, RWORK, INFO ) */
  509. /* CHARACTER UPLO, VECT */
  510. /* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N */
  511. /* DOUBLE PRECISION RWORK( * ) */
  512. /* COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ), */
  513. /* $ X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZHBGST reduces a complex Hermitian-definite banded generalized */
  520. /* > eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y, */
  521. /* > such that C has the same bandwidth as A. */
  522. /* > */
  523. /* > B must have been previously factorized as S**H*S by ZPBSTF, using a */
  524. /* > split Cholesky factorization. A is overwritten by C = X**H*A*X, where */
  525. /* > X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the */
  526. /* > bandwidth of A. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] VECT */
  531. /* > \verbatim */
  532. /* > VECT is CHARACTER*1 */
  533. /* > = 'N': do not form the transformation matrix X; */
  534. /* > = 'V': form X. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': Upper triangle of A is stored; */
  541. /* > = 'L': Lower triangle of A is stored. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] N */
  545. /* > \verbatim */
  546. /* > N is INTEGER */
  547. /* > The order of the matrices A and B. N >= 0. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] KA */
  551. /* > \verbatim */
  552. /* > KA is INTEGER */
  553. /* > The number of superdiagonals of the matrix A if UPLO = 'U', */
  554. /* > or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] KB */
  558. /* > \verbatim */
  559. /* > KB is INTEGER */
  560. /* > The number of superdiagonals of the matrix B if UPLO = 'U', */
  561. /* > or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in,out] AB */
  565. /* > \verbatim */
  566. /* > AB is COMPLEX*16 array, dimension (LDAB,N) */
  567. /* > On entry, the upper or lower triangle of the Hermitian band */
  568. /* > matrix A, stored in the first ka+1 rows of the array. The */
  569. /* > j-th column of A is stored in the j-th column of the array AB */
  570. /* > as follows: */
  571. /* > if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for f2cmax(1,j-ka)<=i<=j; */
  572. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+ka). */
  573. /* > */
  574. /* > On exit, the transformed matrix X**H*A*X, stored in the same */
  575. /* > format as A. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDAB */
  579. /* > \verbatim */
  580. /* > LDAB is INTEGER */
  581. /* > The leading dimension of the array AB. LDAB >= KA+1. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] BB */
  585. /* > \verbatim */
  586. /* > BB is COMPLEX*16 array, dimension (LDBB,N) */
  587. /* > The banded factor S from the split Cholesky factorization of */
  588. /* > B, as returned by ZPBSTF, stored in the first kb+1 rows of */
  589. /* > the array. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDBB */
  593. /* > \verbatim */
  594. /* > LDBB is INTEGER */
  595. /* > The leading dimension of the array BB. LDBB >= KB+1. */
  596. /* > \endverbatim */
  597. /* > */
  598. /* > \param[out] X */
  599. /* > \verbatim */
  600. /* > X is COMPLEX*16 array, dimension (LDX,N) */
  601. /* > If VECT = 'V', the n-by-n matrix X. */
  602. /* > If VECT = 'N', the array X is not referenced. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDX */
  606. /* > \verbatim */
  607. /* > LDX is INTEGER */
  608. /* > The leading dimension of the array X. */
  609. /* > LDX >= f2cmax(1,N) if VECT = 'V'; LDX >= 1 otherwise. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX*16 array, dimension (N) */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] RWORK */
  618. /* > \verbatim */
  619. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[out] INFO */
  623. /* > \verbatim */
  624. /* > INFO is INTEGER */
  625. /* > = 0: successful exit */
  626. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  627. /* > \endverbatim */
  628. /* Authors: */
  629. /* ======== */
  630. /* > \author Univ. of Tennessee */
  631. /* > \author Univ. of California Berkeley */
  632. /* > \author Univ. of Colorado Denver */
  633. /* > \author NAG Ltd. */
  634. /* > \date December 2016 */
  635. /* > \ingroup complex16OTHERcomputational */
  636. /* ===================================================================== */
  637. /* Subroutine */ void zhbgst_(char *vect, char *uplo, integer *n, integer *ka,
  638. integer *kb, doublecomplex *ab, integer *ldab, doublecomplex *bb,
  639. integer *ldbb, doublecomplex *x, integer *ldx, doublecomplex *work,
  640. doublereal *rwork, integer *info)
  641. {
  642. /* System generated locals */
  643. integer ab_dim1, ab_offset, bb_dim1, bb_offset, x_dim1, x_offset, i__1,
  644. i__2, i__3, i__4, i__5, i__6, i__7, i__8;
  645. doublereal d__1;
  646. doublecomplex z__1, z__2, z__3, z__4, z__5, z__6, z__7, z__8, z__9, z__10;
  647. /* Local variables */
  648. integer inca;
  649. extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *,
  650. doublecomplex *, integer *, doublereal *, doublecomplex *);
  651. integer i__, j, k, l, m;
  652. doublecomplex t;
  653. extern logical lsame_(char *, char *);
  654. extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
  655. doublecomplex *, integer *, doublecomplex *, integer *,
  656. doublecomplex *, integer *);
  657. integer i0, i1;
  658. logical upper;
  659. integer i2, j1, j2;
  660. extern /* Subroutine */ void zgeru_(integer *, integer *, doublecomplex *,
  661. doublecomplex *, integer *, doublecomplex *, integer *,
  662. doublecomplex *, integer *);
  663. logical wantx;
  664. extern /* Subroutine */ void zlar2v_(integer *, doublecomplex *,
  665. doublecomplex *, doublecomplex *, integer *, doublereal *,
  666. doublecomplex *, integer *);
  667. doublecomplex ra;
  668. integer nr, nx;
  669. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  670. extern void zdscal_(
  671. integer *, doublereal *, doublecomplex *, integer *);
  672. logical update;
  673. extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
  674. ;
  675. integer ka1, kb1;
  676. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  677. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *,
  678. doublecomplex *, doublecomplex *);
  679. doublecomplex ra1;
  680. extern /* Subroutine */ void zlargv_(integer *, doublecomplex *, integer *,
  681. doublecomplex *, integer *, doublereal *, integer *);
  682. integer j1t, j2t;
  683. extern /* Subroutine */ void zlartv_(integer *, doublecomplex *, integer *,
  684. doublecomplex *, integer *, doublereal *, doublecomplex *,
  685. integer *);
  686. doublereal bii;
  687. integer kbt, nrt;
  688. /* -- LAPACK computational routine (version 3.7.0) -- */
  689. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  690. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  691. /* December 2016 */
  692. /* ===================================================================== */
  693. /* Test the input parameters */
  694. /* Parameter adjustments */
  695. ab_dim1 = *ldab;
  696. ab_offset = 1 + ab_dim1 * 1;
  697. ab -= ab_offset;
  698. bb_dim1 = *ldbb;
  699. bb_offset = 1 + bb_dim1 * 1;
  700. bb -= bb_offset;
  701. x_dim1 = *ldx;
  702. x_offset = 1 + x_dim1 * 1;
  703. x -= x_offset;
  704. --work;
  705. --rwork;
  706. /* Function Body */
  707. wantx = lsame_(vect, "V");
  708. upper = lsame_(uplo, "U");
  709. ka1 = *ka + 1;
  710. kb1 = *kb + 1;
  711. *info = 0;
  712. if (! wantx && ! lsame_(vect, "N")) {
  713. *info = -1;
  714. } else if (! upper && ! lsame_(uplo, "L")) {
  715. *info = -2;
  716. } else if (*n < 0) {
  717. *info = -3;
  718. } else if (*ka < 0) {
  719. *info = -4;
  720. } else if (*kb < 0 || *kb > *ka) {
  721. *info = -5;
  722. } else if (*ldab < *ka + 1) {
  723. *info = -7;
  724. } else if (*ldbb < *kb + 1) {
  725. *info = -9;
  726. } else if (*ldx < 1 || wantx && *ldx < f2cmax(1,*n)) {
  727. *info = -11;
  728. }
  729. if (*info != 0) {
  730. i__1 = -(*info);
  731. xerbla_("ZHBGST", &i__1, (ftnlen)6);
  732. return;
  733. }
  734. /* Quick return if possible */
  735. if (*n == 0) {
  736. return;
  737. }
  738. inca = *ldab * ka1;
  739. /* Initialize X to the unit matrix, if needed */
  740. if (wantx) {
  741. zlaset_("Full", n, n, &c_b1, &c_b2, &x[x_offset], ldx);
  742. }
  743. /* Set M to the splitting point m. It must be the same value as is */
  744. /* used in ZPBSTF. The chosen value allows the arrays WORK and RWORK */
  745. /* to be of dimension (N). */
  746. m = (*n + *kb) / 2;
  747. /* The routine works in two phases, corresponding to the two halves */
  748. /* of the split Cholesky factorization of B as S**H*S where */
  749. /* S = ( U ) */
  750. /* ( M L ) */
  751. /* with U upper triangular of order m, and L lower triangular of */
  752. /* order n-m. S has the same bandwidth as B. */
  753. /* S is treated as a product of elementary matrices: */
  754. /* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n) */
  755. /* where S(i) is determined by the i-th row of S. */
  756. /* In phase 1, the index i takes the values n, n-1, ... , m+1; */
  757. /* in phase 2, it takes the values 1, 2, ... , m. */
  758. /* For each value of i, the current matrix A is updated by forming */
  759. /* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside */
  760. /* the band of A. The bulge is then pushed down toward the bottom of */
  761. /* A in phase 1, and up toward the top of A in phase 2, by applying */
  762. /* plane rotations. */
  763. /* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1 */
  764. /* of them are linearly independent, so annihilating a bulge requires */
  765. /* only 2*kb-1 plane rotations. The rotations are divided into a 1st */
  766. /* set of kb-1 rotations, and a 2nd set of kb rotations. */
  767. /* Wherever possible, rotations are generated and applied in vector */
  768. /* operations of length NR between the indices J1 and J2 (sometimes */
  769. /* replaced by modified values NRT, J1T or J2T). */
  770. /* The real cosines and complex sines of the rotations are stored in */
  771. /* the arrays RWORK and WORK, those of the 1st set in elements */
  772. /* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n. */
  773. /* The bulges are not formed explicitly; nonzero elements outside the */
  774. /* band are created only when they are required for generating new */
  775. /* rotations; they are stored in the array WORK, in positions where */
  776. /* they are later overwritten by the sines of the rotations which */
  777. /* annihilate them. */
  778. /* **************************** Phase 1 ***************************** */
  779. /* The logical structure of this phase is: */
  780. /* UPDATE = .TRUE. */
  781. /* DO I = N, M + 1, -1 */
  782. /* use S(i) to update A and create a new bulge */
  783. /* apply rotations to push all bulges KA positions downward */
  784. /* END DO */
  785. /* UPDATE = .FALSE. */
  786. /* DO I = M + KA + 1, N - 1 */
  787. /* apply rotations to push all bulges KA positions downward */
  788. /* END DO */
  789. /* To avoid duplicating code, the two loops are merged. */
  790. update = TRUE_;
  791. i__ = *n + 1;
  792. L10:
  793. if (update) {
  794. --i__;
  795. /* Computing MIN */
  796. i__1 = *kb, i__2 = i__ - 1;
  797. kbt = f2cmin(i__1,i__2);
  798. i0 = i__ - 1;
  799. /* Computing MIN */
  800. i__1 = *n, i__2 = i__ + *ka;
  801. i1 = f2cmin(i__1,i__2);
  802. i2 = i__ - kbt + ka1;
  803. if (i__ < m + 1) {
  804. update = FALSE_;
  805. ++i__;
  806. i0 = m;
  807. if (*ka == 0) {
  808. goto L480;
  809. }
  810. goto L10;
  811. }
  812. } else {
  813. i__ += *ka;
  814. if (i__ > *n - 1) {
  815. goto L480;
  816. }
  817. }
  818. if (upper) {
  819. /* Transform A, working with the upper triangle */
  820. if (update) {
  821. /* Form inv(S(i))**H * A * inv(S(i)) */
  822. i__1 = kb1 + i__ * bb_dim1;
  823. bii = bb[i__1].r;
  824. i__1 = ka1 + i__ * ab_dim1;
  825. i__2 = ka1 + i__ * ab_dim1;
  826. d__1 = ab[i__2].r / bii / bii;
  827. ab[i__1].r = d__1, ab[i__1].i = 0.;
  828. i__1 = i1;
  829. for (j = i__ + 1; j <= i__1; ++j) {
  830. i__2 = i__ - j + ka1 + j * ab_dim1;
  831. i__3 = i__ - j + ka1 + j * ab_dim1;
  832. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  833. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  834. /* L20: */
  835. }
  836. /* Computing MAX */
  837. i__1 = 1, i__2 = i__ - *ka;
  838. i__3 = i__ - 1;
  839. for (j = f2cmax(i__1,i__2); j <= i__3; ++j) {
  840. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  841. i__2 = j - i__ + ka1 + i__ * ab_dim1;
  842. z__1.r = ab[i__2].r / bii, z__1.i = ab[i__2].i / bii;
  843. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  844. /* L30: */
  845. }
  846. i__3 = i__ - 1;
  847. for (k = i__ - kbt; k <= i__3; ++k) {
  848. i__1 = k;
  849. for (j = i__ - kbt; j <= i__1; ++j) {
  850. i__2 = j - k + ka1 + k * ab_dim1;
  851. i__4 = j - k + ka1 + k * ab_dim1;
  852. i__5 = j - i__ + kb1 + i__ * bb_dim1;
  853. d_cnjg(&z__5, &ab[k - i__ + ka1 + i__ * ab_dim1]);
  854. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  855. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  856. z__5.r;
  857. z__3.r = ab[i__4].r - z__4.r, z__3.i = ab[i__4].i -
  858. z__4.i;
  859. d_cnjg(&z__7, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  860. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  861. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  862. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  863. .r;
  864. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  865. i__7 = ka1 + i__ * ab_dim1;
  866. d__1 = ab[i__7].r;
  867. i__8 = j - i__ + kb1 + i__ * bb_dim1;
  868. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  869. d_cnjg(&z__10, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  870. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  871. z__9.r * z__10.i + z__9.i * z__10.r;
  872. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  873. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  874. /* L40: */
  875. }
  876. /* Computing MAX */
  877. i__1 = 1, i__2 = i__ - *ka;
  878. i__4 = i__ - kbt - 1;
  879. for (j = f2cmax(i__1,i__2); j <= i__4; ++j) {
  880. i__1 = j - k + ka1 + k * ab_dim1;
  881. i__2 = j - k + ka1 + k * ab_dim1;
  882. d_cnjg(&z__3, &bb[k - i__ + kb1 + i__ * bb_dim1]);
  883. i__5 = j - i__ + ka1 + i__ * ab_dim1;
  884. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  885. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  886. .r;
  887. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  888. z__2.i;
  889. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  890. /* L50: */
  891. }
  892. /* L60: */
  893. }
  894. i__3 = i1;
  895. for (j = i__; j <= i__3; ++j) {
  896. /* Computing MAX */
  897. i__4 = j - *ka, i__1 = i__ - kbt;
  898. i__2 = i__ - 1;
  899. for (k = f2cmax(i__4,i__1); k <= i__2; ++k) {
  900. i__4 = k - j + ka1 + j * ab_dim1;
  901. i__1 = k - j + ka1 + j * ab_dim1;
  902. i__5 = k - i__ + kb1 + i__ * bb_dim1;
  903. i__6 = i__ - j + ka1 + j * ab_dim1;
  904. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  905. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  906. * ab[i__6].r;
  907. z__1.r = ab[i__1].r - z__2.r, z__1.i = ab[i__1].i -
  908. z__2.i;
  909. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  910. /* L70: */
  911. }
  912. /* L80: */
  913. }
  914. if (wantx) {
  915. /* post-multiply X by inv(S(i)) */
  916. i__3 = *n - m;
  917. d__1 = 1. / bii;
  918. zdscal_(&i__3, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  919. if (kbt > 0) {
  920. i__3 = *n - m;
  921. z__1.r = -1., z__1.i = 0.;
  922. zgerc_(&i__3, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  923. c__1, &bb[kb1 - kbt + i__ * bb_dim1], &c__1, &x[m
  924. + 1 + (i__ - kbt) * x_dim1], ldx);
  925. }
  926. }
  927. /* store a(i,i1) in RA1 for use in next loop over K */
  928. i__3 = i__ - i1 + ka1 + i1 * ab_dim1;
  929. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  930. }
  931. /* Generate and apply vectors of rotations to chase all the */
  932. /* existing bulges KA positions down toward the bottom of the */
  933. /* band */
  934. i__3 = *kb - 1;
  935. for (k = 1; k <= i__3; ++k) {
  936. if (update) {
  937. /* Determine the rotations which would annihilate the bulge */
  938. /* which has in theory just been created */
  939. if (i__ - k + *ka < *n && i__ - k > 1) {
  940. /* generate rotation to annihilate a(i,i-k+ka+1) */
  941. zlartg_(&ab[k + 1 + (i__ - k + *ka) * ab_dim1], &ra1, &
  942. rwork[i__ - k + *ka - m], &work[i__ - k + *ka - m]
  943. , &ra);
  944. /* create nonzero element a(i-k,i-k+ka+1) outside the */
  945. /* band and store it in WORK(i-k) */
  946. i__2 = kb1 - k + i__ * bb_dim1;
  947. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  948. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  949. * ra1.i + z__2.i * ra1.r;
  950. t.r = z__1.r, t.i = z__1.i;
  951. i__2 = i__ - k;
  952. i__4 = i__ - k + *ka - m;
  953. z__2.r = rwork[i__4] * t.r, z__2.i = rwork[i__4] * t.i;
  954. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  955. i__1 = (i__ - k + *ka) * ab_dim1 + 1;
  956. z__3.r = z__4.r * ab[i__1].r - z__4.i * ab[i__1].i,
  957. z__3.i = z__4.r * ab[i__1].i + z__4.i * ab[i__1]
  958. .r;
  959. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  960. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  961. i__2 = (i__ - k + *ka) * ab_dim1 + 1;
  962. i__4 = i__ - k + *ka - m;
  963. z__2.r = work[i__4].r * t.r - work[i__4].i * t.i, z__2.i =
  964. work[i__4].r * t.i + work[i__4].i * t.r;
  965. i__1 = i__ - k + *ka - m;
  966. i__5 = (i__ - k + *ka) * ab_dim1 + 1;
  967. z__3.r = rwork[i__1] * ab[i__5].r, z__3.i = rwork[i__1] *
  968. ab[i__5].i;
  969. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  970. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  971. ra1.r = ra.r, ra1.i = ra.i;
  972. }
  973. }
  974. /* Computing MAX */
  975. i__2 = 1, i__4 = k - i0 + 2;
  976. j2 = i__ - k - 1 + f2cmax(i__2,i__4) * ka1;
  977. nr = (*n - j2 + *ka) / ka1;
  978. j1 = j2 + (nr - 1) * ka1;
  979. if (update) {
  980. /* Computing MAX */
  981. i__2 = j2, i__4 = i__ + (*ka << 1) - k + 1;
  982. j2t = f2cmax(i__2,i__4);
  983. } else {
  984. j2t = j2;
  985. }
  986. nrt = (*n - j2t + *ka) / ka1;
  987. i__2 = j1;
  988. i__4 = ka1;
  989. for (j = j2t; i__4 < 0 ? j >= i__2 : j <= i__2; j += i__4) {
  990. /* create nonzero element a(j-ka,j+1) outside the band */
  991. /* and store it in WORK(j-m) */
  992. i__1 = j - m;
  993. i__5 = j - m;
  994. i__6 = (j + 1) * ab_dim1 + 1;
  995. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  996. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  997. * ab[i__6].r;
  998. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  999. i__1 = (j + 1) * ab_dim1 + 1;
  1000. i__5 = j - m;
  1001. i__6 = (j + 1) * ab_dim1 + 1;
  1002. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1003. i__6].i;
  1004. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1005. /* L90: */
  1006. }
  1007. /* generate rotations in 1st set to annihilate elements which */
  1008. /* have been created outside the band */
  1009. if (nrt > 0) {
  1010. zlargv_(&nrt, &ab[j2t * ab_dim1 + 1], &inca, &work[j2t - m], &
  1011. ka1, &rwork[j2t - m], &ka1);
  1012. }
  1013. if (nr > 0) {
  1014. /* apply rotations in 1st set from the right */
  1015. i__4 = *ka - 1;
  1016. for (l = 1; l <= i__4; ++l) {
  1017. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1018. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 - m],
  1019. &work[j2 - m], &ka1);
  1020. /* L100: */
  1021. }
  1022. /* apply rotations in 1st set from both sides to diagonal */
  1023. /* blocks */
  1024. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1025. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1026. rwork[j2 - m], &work[j2 - m], &ka1);
  1027. zlacgv_(&nr, &work[j2 - m], &ka1);
  1028. }
  1029. /* start applying rotations in 1st set from the left */
  1030. i__4 = *kb - k + 1;
  1031. for (l = *ka - 1; l >= i__4; --l) {
  1032. nrt = (*n - j2 + l) / ka1;
  1033. if (nrt > 0) {
  1034. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1035. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1036. rwork[j2 - m], &work[j2 - m], &ka1);
  1037. }
  1038. /* L110: */
  1039. }
  1040. if (wantx) {
  1041. /* post-multiply X by product of rotations in 1st set */
  1042. i__4 = j1;
  1043. i__2 = ka1;
  1044. for (j = j2; i__2 < 0 ? j >= i__4 : j <= i__4; j += i__2) {
  1045. i__1 = *n - m;
  1046. d_cnjg(&z__1, &work[j - m]);
  1047. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1048. + 1) * x_dim1], &c__1, &rwork[j - m], &z__1);
  1049. /* L120: */
  1050. }
  1051. }
  1052. /* L130: */
  1053. }
  1054. if (update) {
  1055. if (i2 <= *n && kbt > 0) {
  1056. /* create nonzero element a(i-kbt,i-kbt+ka+1) outside the */
  1057. /* band and store it in WORK(i-kbt) */
  1058. i__3 = i__ - kbt;
  1059. i__2 = kb1 - kbt + i__ * bb_dim1;
  1060. z__2.r = -bb[i__2].r, z__2.i = -bb[i__2].i;
  1061. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1062. ra1.i + z__2.i * ra1.r;
  1063. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1064. }
  1065. }
  1066. for (k = *kb; k >= 1; --k) {
  1067. if (update) {
  1068. /* Computing MAX */
  1069. i__3 = 2, i__2 = k - i0 + 1;
  1070. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1071. } else {
  1072. /* Computing MAX */
  1073. i__3 = 1, i__2 = k - i0 + 1;
  1074. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1075. }
  1076. /* finish applying rotations in 2nd set from the left */
  1077. for (l = *kb - k; l >= 1; --l) {
  1078. nrt = (*n - j2 + *ka + l) / ka1;
  1079. if (nrt > 0) {
  1080. zlartv_(&nrt, &ab[l + (j2 - l + 1) * ab_dim1], &inca, &ab[
  1081. l + 1 + (j2 - l + 1) * ab_dim1], &inca, &rwork[j2
  1082. - *ka], &work[j2 - *ka], &ka1);
  1083. }
  1084. /* L140: */
  1085. }
  1086. nr = (*n - j2 + *ka) / ka1;
  1087. j1 = j2 + (nr - 1) * ka1;
  1088. i__3 = j2;
  1089. i__2 = -ka1;
  1090. for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1091. i__4 = j;
  1092. i__1 = j - *ka;
  1093. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1094. rwork[j] = rwork[j - *ka];
  1095. /* L150: */
  1096. }
  1097. i__2 = j1;
  1098. i__3 = ka1;
  1099. for (j = j2; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) {
  1100. /* create nonzero element a(j-ka,j+1) outside the band */
  1101. /* and store it in WORK(j) */
  1102. i__4 = j;
  1103. i__1 = j;
  1104. i__5 = (j + 1) * ab_dim1 + 1;
  1105. z__1.r = work[i__1].r * ab[i__5].r - work[i__1].i * ab[i__5]
  1106. .i, z__1.i = work[i__1].r * ab[i__5].i + work[i__1].i
  1107. * ab[i__5].r;
  1108. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1109. i__4 = (j + 1) * ab_dim1 + 1;
  1110. i__1 = j;
  1111. i__5 = (j + 1) * ab_dim1 + 1;
  1112. z__1.r = rwork[i__1] * ab[i__5].r, z__1.i = rwork[i__1] * ab[
  1113. i__5].i;
  1114. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1115. /* L160: */
  1116. }
  1117. if (update) {
  1118. if (i__ - k < *n - *ka && k <= kbt) {
  1119. i__3 = i__ - k + *ka;
  1120. i__2 = i__ - k;
  1121. work[i__3].r = work[i__2].r, work[i__3].i = work[i__2].i;
  1122. }
  1123. }
  1124. /* L170: */
  1125. }
  1126. for (k = *kb; k >= 1; --k) {
  1127. /* Computing MAX */
  1128. i__3 = 1, i__2 = k - i0 + 1;
  1129. j2 = i__ - k - 1 + f2cmax(i__3,i__2) * ka1;
  1130. nr = (*n - j2 + *ka) / ka1;
  1131. j1 = j2 + (nr - 1) * ka1;
  1132. if (nr > 0) {
  1133. /* generate rotations in 2nd set to annihilate elements */
  1134. /* which have been created outside the band */
  1135. zlargv_(&nr, &ab[j2 * ab_dim1 + 1], &inca, &work[j2], &ka1, &
  1136. rwork[j2], &ka1);
  1137. /* apply rotations in 2nd set from the right */
  1138. i__3 = *ka - 1;
  1139. for (l = 1; l <= i__3; ++l) {
  1140. zlartv_(&nr, &ab[ka1 - l + j2 * ab_dim1], &inca, &ab[*ka
  1141. - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2], &
  1142. work[j2], &ka1);
  1143. /* L180: */
  1144. }
  1145. /* apply rotations in 2nd set from both sides to diagonal */
  1146. /* blocks */
  1147. zlar2v_(&nr, &ab[ka1 + j2 * ab_dim1], &ab[ka1 + (j2 + 1) *
  1148. ab_dim1], &ab[*ka + (j2 + 1) * ab_dim1], &inca, &
  1149. rwork[j2], &work[j2], &ka1);
  1150. zlacgv_(&nr, &work[j2], &ka1);
  1151. }
  1152. /* start applying rotations in 2nd set from the left */
  1153. i__3 = *kb - k + 1;
  1154. for (l = *ka - 1; l >= i__3; --l) {
  1155. nrt = (*n - j2 + l) / ka1;
  1156. if (nrt > 0) {
  1157. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1158. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1159. rwork[j2], &work[j2], &ka1);
  1160. }
  1161. /* L190: */
  1162. }
  1163. if (wantx) {
  1164. /* post-multiply X by product of rotations in 2nd set */
  1165. i__3 = j1;
  1166. i__2 = ka1;
  1167. for (j = j2; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) {
  1168. i__4 = *n - m;
  1169. d_cnjg(&z__1, &work[j]);
  1170. zrot_(&i__4, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1171. + 1) * x_dim1], &c__1, &rwork[j], &z__1);
  1172. /* L200: */
  1173. }
  1174. }
  1175. /* L210: */
  1176. }
  1177. i__2 = *kb - 1;
  1178. for (k = 1; k <= i__2; ++k) {
  1179. /* Computing MAX */
  1180. i__3 = 1, i__4 = k - i0 + 2;
  1181. j2 = i__ - k - 1 + f2cmax(i__3,i__4) * ka1;
  1182. /* finish applying rotations in 1st set from the left */
  1183. for (l = *kb - k; l >= 1; --l) {
  1184. nrt = (*n - j2 + l) / ka1;
  1185. if (nrt > 0) {
  1186. zlartv_(&nrt, &ab[l + (j2 + ka1 - l) * ab_dim1], &inca, &
  1187. ab[l + 1 + (j2 + ka1 - l) * ab_dim1], &inca, &
  1188. rwork[j2 - m], &work[j2 - m], &ka1);
  1189. }
  1190. /* L220: */
  1191. }
  1192. /* L230: */
  1193. }
  1194. if (*kb > 1) {
  1195. i__2 = j2 + *ka;
  1196. for (j = *n - 1; j >= i__2; --j) {
  1197. rwork[j - m] = rwork[j - *ka - m];
  1198. i__3 = j - m;
  1199. i__4 = j - *ka - m;
  1200. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1201. /* L240: */
  1202. }
  1203. }
  1204. } else {
  1205. /* Transform A, working with the lower triangle */
  1206. if (update) {
  1207. /* Form inv(S(i))**H * A * inv(S(i)) */
  1208. i__2 = i__ * bb_dim1 + 1;
  1209. bii = bb[i__2].r;
  1210. i__2 = i__ * ab_dim1 + 1;
  1211. i__3 = i__ * ab_dim1 + 1;
  1212. d__1 = ab[i__3].r / bii / bii;
  1213. ab[i__2].r = d__1, ab[i__2].i = 0.;
  1214. i__2 = i1;
  1215. for (j = i__ + 1; j <= i__2; ++j) {
  1216. i__3 = j - i__ + 1 + i__ * ab_dim1;
  1217. i__4 = j - i__ + 1 + i__ * ab_dim1;
  1218. z__1.r = ab[i__4].r / bii, z__1.i = ab[i__4].i / bii;
  1219. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1220. /* L250: */
  1221. }
  1222. /* Computing MAX */
  1223. i__2 = 1, i__3 = i__ - *ka;
  1224. i__4 = i__ - 1;
  1225. for (j = f2cmax(i__2,i__3); j <= i__4; ++j) {
  1226. i__2 = i__ - j + 1 + j * ab_dim1;
  1227. i__3 = i__ - j + 1 + j * ab_dim1;
  1228. z__1.r = ab[i__3].r / bii, z__1.i = ab[i__3].i / bii;
  1229. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1230. /* L260: */
  1231. }
  1232. i__4 = i__ - 1;
  1233. for (k = i__ - kbt; k <= i__4; ++k) {
  1234. i__2 = k;
  1235. for (j = i__ - kbt; j <= i__2; ++j) {
  1236. i__3 = k - j + 1 + j * ab_dim1;
  1237. i__1 = k - j + 1 + j * ab_dim1;
  1238. i__5 = i__ - j + 1 + j * bb_dim1;
  1239. d_cnjg(&z__5, &ab[i__ - k + 1 + k * ab_dim1]);
  1240. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1241. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1242. z__5.r;
  1243. z__3.r = ab[i__1].r - z__4.r, z__3.i = ab[i__1].i -
  1244. z__4.i;
  1245. d_cnjg(&z__7, &bb[i__ - k + 1 + k * bb_dim1]);
  1246. i__6 = i__ - j + 1 + j * ab_dim1;
  1247. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1248. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1249. .r;
  1250. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1251. i__7 = i__ * ab_dim1 + 1;
  1252. d__1 = ab[i__7].r;
  1253. i__8 = i__ - j + 1 + j * bb_dim1;
  1254. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1255. d_cnjg(&z__10, &bb[i__ - k + 1 + k * bb_dim1]);
  1256. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1257. z__9.r * z__10.i + z__9.i * z__10.r;
  1258. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1259. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1260. /* L270: */
  1261. }
  1262. /* Computing MAX */
  1263. i__2 = 1, i__3 = i__ - *ka;
  1264. i__1 = i__ - kbt - 1;
  1265. for (j = f2cmax(i__2,i__3); j <= i__1; ++j) {
  1266. i__2 = k - j + 1 + j * ab_dim1;
  1267. i__3 = k - j + 1 + j * ab_dim1;
  1268. d_cnjg(&z__3, &bb[i__ - k + 1 + k * bb_dim1]);
  1269. i__5 = i__ - j + 1 + j * ab_dim1;
  1270. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1271. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1272. .r;
  1273. z__1.r = ab[i__3].r - z__2.r, z__1.i = ab[i__3].i -
  1274. z__2.i;
  1275. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1276. /* L280: */
  1277. }
  1278. /* L290: */
  1279. }
  1280. i__4 = i1;
  1281. for (j = i__; j <= i__4; ++j) {
  1282. /* Computing MAX */
  1283. i__1 = j - *ka, i__2 = i__ - kbt;
  1284. i__3 = i__ - 1;
  1285. for (k = f2cmax(i__1,i__2); k <= i__3; ++k) {
  1286. i__1 = j - k + 1 + k * ab_dim1;
  1287. i__2 = j - k + 1 + k * ab_dim1;
  1288. i__5 = i__ - k + 1 + k * bb_dim1;
  1289. i__6 = j - i__ + 1 + i__ * ab_dim1;
  1290. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1291. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1292. * ab[i__6].r;
  1293. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1294. z__2.i;
  1295. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1296. /* L300: */
  1297. }
  1298. /* L310: */
  1299. }
  1300. if (wantx) {
  1301. /* post-multiply X by inv(S(i)) */
  1302. i__4 = *n - m;
  1303. d__1 = 1. / bii;
  1304. zdscal_(&i__4, &d__1, &x[m + 1 + i__ * x_dim1], &c__1);
  1305. if (kbt > 0) {
  1306. i__4 = *n - m;
  1307. z__1.r = -1., z__1.i = 0.;
  1308. i__3 = *ldbb - 1;
  1309. zgeru_(&i__4, &kbt, &z__1, &x[m + 1 + i__ * x_dim1], &
  1310. c__1, &bb[kbt + 1 + (i__ - kbt) * bb_dim1], &i__3,
  1311. &x[m + 1 + (i__ - kbt) * x_dim1], ldx);
  1312. }
  1313. }
  1314. /* store a(i1,i) in RA1 for use in next loop over K */
  1315. i__4 = i1 - i__ + 1 + i__ * ab_dim1;
  1316. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  1317. }
  1318. /* Generate and apply vectors of rotations to chase all the */
  1319. /* existing bulges KA positions down toward the bottom of the */
  1320. /* band */
  1321. i__4 = *kb - 1;
  1322. for (k = 1; k <= i__4; ++k) {
  1323. if (update) {
  1324. /* Determine the rotations which would annihilate the bulge */
  1325. /* which has in theory just been created */
  1326. if (i__ - k + *ka < *n && i__ - k > 1) {
  1327. /* generate rotation to annihilate a(i-k+ka+1,i) */
  1328. zlartg_(&ab[ka1 - k + i__ * ab_dim1], &ra1, &rwork[i__ -
  1329. k + *ka - m], &work[i__ - k + *ka - m], &ra);
  1330. /* create nonzero element a(i-k+ka+1,i-k) outside the */
  1331. /* band and store it in WORK(i-k) */
  1332. i__3 = k + 1 + (i__ - k) * bb_dim1;
  1333. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1334. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1335. * ra1.i + z__2.i * ra1.r;
  1336. t.r = z__1.r, t.i = z__1.i;
  1337. i__3 = i__ - k;
  1338. i__1 = i__ - k + *ka - m;
  1339. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1340. d_cnjg(&z__4, &work[i__ - k + *ka - m]);
  1341. i__2 = ka1 + (i__ - k) * ab_dim1;
  1342. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1343. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1344. .r;
  1345. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1346. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1347. i__3 = ka1 + (i__ - k) * ab_dim1;
  1348. i__1 = i__ - k + *ka - m;
  1349. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1350. work[i__1].r * t.i + work[i__1].i * t.r;
  1351. i__2 = i__ - k + *ka - m;
  1352. i__5 = ka1 + (i__ - k) * ab_dim1;
  1353. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1354. ab[i__5].i;
  1355. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1356. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  1357. ra1.r = ra.r, ra1.i = ra.i;
  1358. }
  1359. }
  1360. /* Computing MAX */
  1361. i__3 = 1, i__1 = k - i0 + 2;
  1362. j2 = i__ - k - 1 + f2cmax(i__3,i__1) * ka1;
  1363. nr = (*n - j2 + *ka) / ka1;
  1364. j1 = j2 + (nr - 1) * ka1;
  1365. if (update) {
  1366. /* Computing MAX */
  1367. i__3 = j2, i__1 = i__ + (*ka << 1) - k + 1;
  1368. j2t = f2cmax(i__3,i__1);
  1369. } else {
  1370. j2t = j2;
  1371. }
  1372. nrt = (*n - j2t + *ka) / ka1;
  1373. i__3 = j1;
  1374. i__1 = ka1;
  1375. for (j = j2t; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  1376. /* create nonzero element a(j+1,j-ka) outside the band */
  1377. /* and store it in WORK(j-m) */
  1378. i__2 = j - m;
  1379. i__5 = j - m;
  1380. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1381. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1382. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1383. * ab[i__6].r;
  1384. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1385. i__2 = ka1 + (j - *ka + 1) * ab_dim1;
  1386. i__5 = j - m;
  1387. i__6 = ka1 + (j - *ka + 1) * ab_dim1;
  1388. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1389. i__6].i;
  1390. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1391. /* L320: */
  1392. }
  1393. /* generate rotations in 1st set to annihilate elements which */
  1394. /* have been created outside the band */
  1395. if (nrt > 0) {
  1396. zlargv_(&nrt, &ab[ka1 + (j2t - *ka) * ab_dim1], &inca, &work[
  1397. j2t - m], &ka1, &rwork[j2t - m], &ka1);
  1398. }
  1399. if (nr > 0) {
  1400. /* apply rotations in 1st set from the left */
  1401. i__1 = *ka - 1;
  1402. for (l = 1; l <= i__1; ++l) {
  1403. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1404. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2 - m]
  1405. , &work[j2 - m], &ka1);
  1406. /* L330: */
  1407. }
  1408. /* apply rotations in 1st set from both sides to diagonal */
  1409. /* blocks */
  1410. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1411. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2 - m], &
  1412. work[j2 - m], &ka1);
  1413. zlacgv_(&nr, &work[j2 - m], &ka1);
  1414. }
  1415. /* start applying rotations in 1st set from the right */
  1416. i__1 = *kb - k + 1;
  1417. for (l = *ka - 1; l >= i__1; --l) {
  1418. nrt = (*n - j2 + l) / ka1;
  1419. if (nrt > 0) {
  1420. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1421. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1422. m], &work[j2 - m], &ka1);
  1423. }
  1424. /* L340: */
  1425. }
  1426. if (wantx) {
  1427. /* post-multiply X by product of rotations in 1st set */
  1428. i__1 = j1;
  1429. i__3 = ka1;
  1430. for (j = j2; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  1431. i__2 = *n - m;
  1432. zrot_(&i__2, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1433. + 1) * x_dim1], &c__1, &rwork[j - m], &work[j - m]
  1434. );
  1435. /* L350: */
  1436. }
  1437. }
  1438. /* L360: */
  1439. }
  1440. if (update) {
  1441. if (i2 <= *n && kbt > 0) {
  1442. /* create nonzero element a(i-kbt+ka+1,i-kbt) outside the */
  1443. /* band and store it in WORK(i-kbt) */
  1444. i__4 = i__ - kbt;
  1445. i__3 = kbt + 1 + (i__ - kbt) * bb_dim1;
  1446. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  1447. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1448. ra1.i + z__2.i * ra1.r;
  1449. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1450. }
  1451. }
  1452. for (k = *kb; k >= 1; --k) {
  1453. if (update) {
  1454. /* Computing MAX */
  1455. i__4 = 2, i__3 = k - i0 + 1;
  1456. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1457. } else {
  1458. /* Computing MAX */
  1459. i__4 = 1, i__3 = k - i0 + 1;
  1460. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1461. }
  1462. /* finish applying rotations in 2nd set from the right */
  1463. for (l = *kb - k; l >= 1; --l) {
  1464. nrt = (*n - j2 + *ka + l) / ka1;
  1465. if (nrt > 0) {
  1466. zlartv_(&nrt, &ab[ka1 - l + 1 + (j2 - *ka) * ab_dim1], &
  1467. inca, &ab[ka1 - l + (j2 - *ka + 1) * ab_dim1], &
  1468. inca, &rwork[j2 - *ka], &work[j2 - *ka], &ka1);
  1469. }
  1470. /* L370: */
  1471. }
  1472. nr = (*n - j2 + *ka) / ka1;
  1473. j1 = j2 + (nr - 1) * ka1;
  1474. i__4 = j2;
  1475. i__3 = -ka1;
  1476. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1477. i__1 = j;
  1478. i__2 = j - *ka;
  1479. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1480. rwork[j] = rwork[j - *ka];
  1481. /* L380: */
  1482. }
  1483. i__3 = j1;
  1484. i__4 = ka1;
  1485. for (j = j2; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1486. /* create nonzero element a(j+1,j-ka) outside the band */
  1487. /* and store it in WORK(j) */
  1488. i__1 = j;
  1489. i__2 = j;
  1490. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1491. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1492. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1493. * ab[i__5].r;
  1494. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1495. i__1 = ka1 + (j - *ka + 1) * ab_dim1;
  1496. i__2 = j;
  1497. i__5 = ka1 + (j - *ka + 1) * ab_dim1;
  1498. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1499. i__5].i;
  1500. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1501. /* L390: */
  1502. }
  1503. if (update) {
  1504. if (i__ - k < *n - *ka && k <= kbt) {
  1505. i__4 = i__ - k + *ka;
  1506. i__3 = i__ - k;
  1507. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  1508. }
  1509. }
  1510. /* L400: */
  1511. }
  1512. for (k = *kb; k >= 1; --k) {
  1513. /* Computing MAX */
  1514. i__4 = 1, i__3 = k - i0 + 1;
  1515. j2 = i__ - k - 1 + f2cmax(i__4,i__3) * ka1;
  1516. nr = (*n - j2 + *ka) / ka1;
  1517. j1 = j2 + (nr - 1) * ka1;
  1518. if (nr > 0) {
  1519. /* generate rotations in 2nd set to annihilate elements */
  1520. /* which have been created outside the band */
  1521. zlargv_(&nr, &ab[ka1 + (j2 - *ka) * ab_dim1], &inca, &work[j2]
  1522. , &ka1, &rwork[j2], &ka1);
  1523. /* apply rotations in 2nd set from the left */
  1524. i__4 = *ka - 1;
  1525. for (l = 1; l <= i__4; ++l) {
  1526. zlartv_(&nr, &ab[l + 1 + (j2 - l) * ab_dim1], &inca, &ab[
  1527. l + 2 + (j2 - l) * ab_dim1], &inca, &rwork[j2], &
  1528. work[j2], &ka1);
  1529. /* L410: */
  1530. }
  1531. /* apply rotations in 2nd set from both sides to diagonal */
  1532. /* blocks */
  1533. zlar2v_(&nr, &ab[j2 * ab_dim1 + 1], &ab[(j2 + 1) * ab_dim1 +
  1534. 1], &ab[j2 * ab_dim1 + 2], &inca, &rwork[j2], &work[
  1535. j2], &ka1);
  1536. zlacgv_(&nr, &work[j2], &ka1);
  1537. }
  1538. /* start applying rotations in 2nd set from the right */
  1539. i__4 = *kb - k + 1;
  1540. for (l = *ka - 1; l >= i__4; --l) {
  1541. nrt = (*n - j2 + l) / ka1;
  1542. if (nrt > 0) {
  1543. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1544. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2],
  1545. &work[j2], &ka1);
  1546. }
  1547. /* L420: */
  1548. }
  1549. if (wantx) {
  1550. /* post-multiply X by product of rotations in 2nd set */
  1551. i__4 = j1;
  1552. i__3 = ka1;
  1553. for (j = j2; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1554. i__1 = *n - m;
  1555. zrot_(&i__1, &x[m + 1 + j * x_dim1], &c__1, &x[m + 1 + (j
  1556. + 1) * x_dim1], &c__1, &rwork[j], &work[j]);
  1557. /* L430: */
  1558. }
  1559. }
  1560. /* L440: */
  1561. }
  1562. i__3 = *kb - 1;
  1563. for (k = 1; k <= i__3; ++k) {
  1564. /* Computing MAX */
  1565. i__4 = 1, i__1 = k - i0 + 2;
  1566. j2 = i__ - k - 1 + f2cmax(i__4,i__1) * ka1;
  1567. /* finish applying rotations in 1st set from the right */
  1568. for (l = *kb - k; l >= 1; --l) {
  1569. nrt = (*n - j2 + l) / ka1;
  1570. if (nrt > 0) {
  1571. zlartv_(&nrt, &ab[ka1 - l + 1 + j2 * ab_dim1], &inca, &ab[
  1572. ka1 - l + (j2 + 1) * ab_dim1], &inca, &rwork[j2 -
  1573. m], &work[j2 - m], &ka1);
  1574. }
  1575. /* L450: */
  1576. }
  1577. /* L460: */
  1578. }
  1579. if (*kb > 1) {
  1580. i__3 = j2 + *ka;
  1581. for (j = *n - 1; j >= i__3; --j) {
  1582. rwork[j - m] = rwork[j - *ka - m];
  1583. i__4 = j - m;
  1584. i__1 = j - *ka - m;
  1585. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  1586. /* L470: */
  1587. }
  1588. }
  1589. }
  1590. goto L10;
  1591. L480:
  1592. /* **************************** Phase 2 ***************************** */
  1593. /* The logical structure of this phase is: */
  1594. /* UPDATE = .TRUE. */
  1595. /* DO I = 1, M */
  1596. /* use S(i) to update A and create a new bulge */
  1597. /* apply rotations to push all bulges KA positions upward */
  1598. /* END DO */
  1599. /* UPDATE = .FALSE. */
  1600. /* DO I = M - KA - 1, 2, -1 */
  1601. /* apply rotations to push all bulges KA positions upward */
  1602. /* END DO */
  1603. /* To avoid duplicating code, the two loops are merged. */
  1604. update = TRUE_;
  1605. i__ = 0;
  1606. L490:
  1607. if (update) {
  1608. ++i__;
  1609. /* Computing MIN */
  1610. i__3 = *kb, i__4 = m - i__;
  1611. kbt = f2cmin(i__3,i__4);
  1612. i0 = i__ + 1;
  1613. /* Computing MAX */
  1614. i__3 = 1, i__4 = i__ - *ka;
  1615. i1 = f2cmax(i__3,i__4);
  1616. i2 = i__ + kbt - ka1;
  1617. if (i__ > m) {
  1618. update = FALSE_;
  1619. --i__;
  1620. i0 = m + 1;
  1621. if (*ka == 0) {
  1622. return;
  1623. }
  1624. goto L490;
  1625. }
  1626. } else {
  1627. i__ -= *ka;
  1628. if (i__ < 2) {
  1629. return;
  1630. }
  1631. }
  1632. if (i__ < m - kbt) {
  1633. nx = m;
  1634. } else {
  1635. nx = *n;
  1636. }
  1637. if (upper) {
  1638. /* Transform A, working with the upper triangle */
  1639. if (update) {
  1640. /* Form inv(S(i))**H * A * inv(S(i)) */
  1641. i__3 = kb1 + i__ * bb_dim1;
  1642. bii = bb[i__3].r;
  1643. i__3 = ka1 + i__ * ab_dim1;
  1644. i__4 = ka1 + i__ * ab_dim1;
  1645. d__1 = ab[i__4].r / bii / bii;
  1646. ab[i__3].r = d__1, ab[i__3].i = 0.;
  1647. i__3 = i__ - 1;
  1648. for (j = i1; j <= i__3; ++j) {
  1649. i__4 = j - i__ + ka1 + i__ * ab_dim1;
  1650. i__1 = j - i__ + ka1 + i__ * ab_dim1;
  1651. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1652. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1653. /* L500: */
  1654. }
  1655. /* Computing MIN */
  1656. i__4 = *n, i__1 = i__ + *ka;
  1657. i__3 = f2cmin(i__4,i__1);
  1658. for (j = i__ + 1; j <= i__3; ++j) {
  1659. i__4 = i__ - j + ka1 + j * ab_dim1;
  1660. i__1 = i__ - j + ka1 + j * ab_dim1;
  1661. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  1662. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1663. /* L510: */
  1664. }
  1665. i__3 = i__ + kbt;
  1666. for (k = i__ + 1; k <= i__3; ++k) {
  1667. i__4 = i__ + kbt;
  1668. for (j = k; j <= i__4; ++j) {
  1669. i__1 = k - j + ka1 + j * ab_dim1;
  1670. i__2 = k - j + ka1 + j * ab_dim1;
  1671. i__5 = i__ - j + kb1 + j * bb_dim1;
  1672. d_cnjg(&z__5, &ab[i__ - k + ka1 + k * ab_dim1]);
  1673. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  1674. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  1675. z__5.r;
  1676. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  1677. z__4.i;
  1678. d_cnjg(&z__7, &bb[i__ - k + kb1 + k * bb_dim1]);
  1679. i__6 = i__ - j + ka1 + j * ab_dim1;
  1680. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  1681. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  1682. .r;
  1683. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  1684. i__7 = ka1 + i__ * ab_dim1;
  1685. d__1 = ab[i__7].r;
  1686. i__8 = i__ - j + kb1 + j * bb_dim1;
  1687. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  1688. d_cnjg(&z__10, &bb[i__ - k + kb1 + k * bb_dim1]);
  1689. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  1690. z__9.r * z__10.i + z__9.i * z__10.r;
  1691. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  1692. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1693. /* L520: */
  1694. }
  1695. /* Computing MIN */
  1696. i__1 = *n, i__2 = i__ + *ka;
  1697. i__4 = f2cmin(i__1,i__2);
  1698. for (j = i__ + kbt + 1; j <= i__4; ++j) {
  1699. i__1 = k - j + ka1 + j * ab_dim1;
  1700. i__2 = k - j + ka1 + j * ab_dim1;
  1701. d_cnjg(&z__3, &bb[i__ - k + kb1 + k * bb_dim1]);
  1702. i__5 = i__ - j + ka1 + j * ab_dim1;
  1703. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  1704. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  1705. .r;
  1706. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1707. z__2.i;
  1708. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1709. /* L530: */
  1710. }
  1711. /* L540: */
  1712. }
  1713. i__3 = i__;
  1714. for (j = i1; j <= i__3; ++j) {
  1715. /* Computing MIN */
  1716. i__1 = j + *ka, i__2 = i__ + kbt;
  1717. i__4 = f2cmin(i__1,i__2);
  1718. for (k = i__ + 1; k <= i__4; ++k) {
  1719. i__1 = j - k + ka1 + k * ab_dim1;
  1720. i__2 = j - k + ka1 + k * ab_dim1;
  1721. i__5 = i__ - k + kb1 + k * bb_dim1;
  1722. i__6 = j - i__ + ka1 + i__ * ab_dim1;
  1723. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  1724. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  1725. * ab[i__6].r;
  1726. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  1727. z__2.i;
  1728. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1729. /* L550: */
  1730. }
  1731. /* L560: */
  1732. }
  1733. if (wantx) {
  1734. /* post-multiply X by inv(S(i)) */
  1735. d__1 = 1. / bii;
  1736. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  1737. if (kbt > 0) {
  1738. z__1.r = -1., z__1.i = 0.;
  1739. i__3 = *ldbb - 1;
  1740. zgeru_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  1741. *kb + (i__ + 1) * bb_dim1], &i__3, &x[(i__ + 1) *
  1742. x_dim1 + 1], ldx);
  1743. }
  1744. }
  1745. /* store a(i1,i) in RA1 for use in next loop over K */
  1746. i__3 = i1 - i__ + ka1 + i__ * ab_dim1;
  1747. ra1.r = ab[i__3].r, ra1.i = ab[i__3].i;
  1748. }
  1749. /* Generate and apply vectors of rotations to chase all the */
  1750. /* existing bulges KA positions up toward the top of the band */
  1751. i__3 = *kb - 1;
  1752. for (k = 1; k <= i__3; ++k) {
  1753. if (update) {
  1754. /* Determine the rotations which would annihilate the bulge */
  1755. /* which has in theory just been created */
  1756. if (i__ + k - ka1 > 0 && i__ + k < m) {
  1757. /* generate rotation to annihilate a(i+k-ka-1,i) */
  1758. zlartg_(&ab[k + 1 + i__ * ab_dim1], &ra1, &rwork[i__ + k
  1759. - *ka], &work[i__ + k - *ka], &ra);
  1760. /* create nonzero element a(i+k-ka-1,i+k) outside the */
  1761. /* band and store it in WORK(m-kb+i+k) */
  1762. i__4 = kb1 - k + (i__ + k) * bb_dim1;
  1763. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1764. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  1765. * ra1.i + z__2.i * ra1.r;
  1766. t.r = z__1.r, t.i = z__1.i;
  1767. i__4 = m - *kb + i__ + k;
  1768. i__1 = i__ + k - *ka;
  1769. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  1770. d_cnjg(&z__4, &work[i__ + k - *ka]);
  1771. i__2 = (i__ + k) * ab_dim1 + 1;
  1772. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  1773. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  1774. .r;
  1775. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  1776. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  1777. i__4 = (i__ + k) * ab_dim1 + 1;
  1778. i__1 = i__ + k - *ka;
  1779. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  1780. work[i__1].r * t.i + work[i__1].i * t.r;
  1781. i__2 = i__ + k - *ka;
  1782. i__5 = (i__ + k) * ab_dim1 + 1;
  1783. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  1784. ab[i__5].i;
  1785. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  1786. ab[i__4].r = z__1.r, ab[i__4].i = z__1.i;
  1787. ra1.r = ra.r, ra1.i = ra.i;
  1788. }
  1789. }
  1790. /* Computing MAX */
  1791. i__4 = 1, i__1 = k + i0 - m + 1;
  1792. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  1793. nr = (j2 + *ka - 1) / ka1;
  1794. j1 = j2 - (nr - 1) * ka1;
  1795. if (update) {
  1796. /* Computing MIN */
  1797. i__4 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  1798. j2t = f2cmin(i__4,i__1);
  1799. } else {
  1800. j2t = j2;
  1801. }
  1802. nrt = (j2t + *ka - 1) / ka1;
  1803. i__4 = j2t;
  1804. i__1 = ka1;
  1805. for (j = j1; i__1 < 0 ? j >= i__4 : j <= i__4; j += i__1) {
  1806. /* create nonzero element a(j-1,j+ka) outside the band */
  1807. /* and store it in WORK(j) */
  1808. i__2 = j;
  1809. i__5 = j;
  1810. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1811. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  1812. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  1813. * ab[i__6].r;
  1814. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1815. i__2 = (j + *ka - 1) * ab_dim1 + 1;
  1816. i__5 = j;
  1817. i__6 = (j + *ka - 1) * ab_dim1 + 1;
  1818. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  1819. i__6].i;
  1820. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  1821. /* L570: */
  1822. }
  1823. /* generate rotations in 1st set to annihilate elements which */
  1824. /* have been created outside the band */
  1825. if (nrt > 0) {
  1826. zlargv_(&nrt, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[j1],
  1827. &ka1, &rwork[j1], &ka1);
  1828. }
  1829. if (nr > 0) {
  1830. /* apply rotations in 1st set from the left */
  1831. i__1 = *ka - 1;
  1832. for (l = 1; l <= i__1; ++l) {
  1833. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1834. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[
  1835. j1], &work[j1], &ka1);
  1836. /* L580: */
  1837. }
  1838. /* apply rotations in 1st set from both sides to diagonal */
  1839. /* blocks */
  1840. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1841. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[j1],
  1842. &work[j1], &ka1);
  1843. zlacgv_(&nr, &work[j1], &ka1);
  1844. }
  1845. /* start applying rotations in 1st set from the right */
  1846. i__1 = *kb - k + 1;
  1847. for (l = *ka - 1; l >= i__1; --l) {
  1848. nrt = (j2 + l - 1) / ka1;
  1849. j1t = j2 - (nrt - 1) * ka1;
  1850. if (nrt > 0) {
  1851. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1852. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  1853. j1t], &ka1);
  1854. }
  1855. /* L590: */
  1856. }
  1857. if (wantx) {
  1858. /* post-multiply X by product of rotations in 1st set */
  1859. i__1 = j2;
  1860. i__4 = ka1;
  1861. for (j = j1; i__4 < 0 ? j >= i__1 : j <= i__1; j += i__4) {
  1862. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1863. + 1], &c__1, &rwork[j], &work[j]);
  1864. /* L600: */
  1865. }
  1866. }
  1867. /* L610: */
  1868. }
  1869. if (update) {
  1870. if (i2 > 0 && kbt > 0) {
  1871. /* create nonzero element a(i+kbt-ka-1,i+kbt) outside the */
  1872. /* band and store it in WORK(m-kb+i+kbt) */
  1873. i__3 = m - *kb + i__ + kbt;
  1874. i__4 = kb1 - kbt + (i__ + kbt) * bb_dim1;
  1875. z__2.r = -bb[i__4].r, z__2.i = -bb[i__4].i;
  1876. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  1877. ra1.i + z__2.i * ra1.r;
  1878. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  1879. }
  1880. }
  1881. for (k = *kb; k >= 1; --k) {
  1882. if (update) {
  1883. /* Computing MAX */
  1884. i__3 = 2, i__4 = k + i0 - m;
  1885. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1886. } else {
  1887. /* Computing MAX */
  1888. i__3 = 1, i__4 = k + i0 - m;
  1889. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1890. }
  1891. /* finish applying rotations in 2nd set from the right */
  1892. for (l = *kb - k; l >= 1; --l) {
  1893. nrt = (j2 + *ka + l - 1) / ka1;
  1894. j1t = j2 - (nrt - 1) * ka1;
  1895. if (nrt > 0) {
  1896. zlartv_(&nrt, &ab[l + (j1t + *ka) * ab_dim1], &inca, &ab[
  1897. l + 1 + (j1t + *ka - 1) * ab_dim1], &inca, &rwork[
  1898. m - *kb + j1t + *ka], &work[m - *kb + j1t + *ka],
  1899. &ka1);
  1900. }
  1901. /* L620: */
  1902. }
  1903. nr = (j2 + *ka - 1) / ka1;
  1904. j1 = j2 - (nr - 1) * ka1;
  1905. i__3 = j2;
  1906. i__4 = ka1;
  1907. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1908. i__1 = m - *kb + j;
  1909. i__2 = m - *kb + j + *ka;
  1910. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  1911. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  1912. /* L630: */
  1913. }
  1914. i__4 = j2;
  1915. i__3 = ka1;
  1916. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  1917. /* create nonzero element a(j-1,j+ka) outside the band */
  1918. /* and store it in WORK(m-kb+j) */
  1919. i__1 = m - *kb + j;
  1920. i__2 = m - *kb + j;
  1921. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1922. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  1923. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  1924. * ab[i__5].r;
  1925. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  1926. i__1 = (j + *ka - 1) * ab_dim1 + 1;
  1927. i__2 = m - *kb + j;
  1928. i__5 = (j + *ka - 1) * ab_dim1 + 1;
  1929. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  1930. i__5].i;
  1931. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  1932. /* L640: */
  1933. }
  1934. if (update) {
  1935. if (i__ + k > ka1 && k <= kbt) {
  1936. i__3 = m - *kb + i__ + k - *ka;
  1937. i__4 = m - *kb + i__ + k;
  1938. work[i__3].r = work[i__4].r, work[i__3].i = work[i__4].i;
  1939. }
  1940. }
  1941. /* L650: */
  1942. }
  1943. for (k = *kb; k >= 1; --k) {
  1944. /* Computing MAX */
  1945. i__3 = 1, i__4 = k + i0 - m;
  1946. j2 = i__ + k + 1 - f2cmax(i__3,i__4) * ka1;
  1947. nr = (j2 + *ka - 1) / ka1;
  1948. j1 = j2 - (nr - 1) * ka1;
  1949. if (nr > 0) {
  1950. /* generate rotations in 2nd set to annihilate elements */
  1951. /* which have been created outside the band */
  1952. zlargv_(&nr, &ab[(j1 + *ka) * ab_dim1 + 1], &inca, &work[m - *
  1953. kb + j1], &ka1, &rwork[m - *kb + j1], &ka1);
  1954. /* apply rotations in 2nd set from the left */
  1955. i__3 = *ka - 1;
  1956. for (l = 1; l <= i__3; ++l) {
  1957. zlartv_(&nr, &ab[ka1 - l + (j1 + l) * ab_dim1], &inca, &
  1958. ab[*ka - l + (j1 + l) * ab_dim1], &inca, &rwork[m
  1959. - *kb + j1], &work[m - *kb + j1], &ka1);
  1960. /* L660: */
  1961. }
  1962. /* apply rotations in 2nd set from both sides to diagonal */
  1963. /* blocks */
  1964. zlar2v_(&nr, &ab[ka1 + j1 * ab_dim1], &ab[ka1 + (j1 - 1) *
  1965. ab_dim1], &ab[*ka + j1 * ab_dim1], &inca, &rwork[m - *
  1966. kb + j1], &work[m - *kb + j1], &ka1);
  1967. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  1968. }
  1969. /* start applying rotations in 2nd set from the right */
  1970. i__3 = *kb - k + 1;
  1971. for (l = *ka - 1; l >= i__3; --l) {
  1972. nrt = (j2 + l - 1) / ka1;
  1973. j1t = j2 - (nrt - 1) * ka1;
  1974. if (nrt > 0) {
  1975. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  1976. j1t - 1) * ab_dim1], &inca, &rwork[m - *kb + j1t],
  1977. &work[m - *kb + j1t], &ka1);
  1978. }
  1979. /* L670: */
  1980. }
  1981. if (wantx) {
  1982. /* post-multiply X by product of rotations in 2nd set */
  1983. i__3 = j2;
  1984. i__4 = ka1;
  1985. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  1986. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  1987. + 1], &c__1, &rwork[m - *kb + j], &work[m - *kb +
  1988. j]);
  1989. /* L680: */
  1990. }
  1991. }
  1992. /* L690: */
  1993. }
  1994. i__4 = *kb - 1;
  1995. for (k = 1; k <= i__4; ++k) {
  1996. /* Computing MAX */
  1997. i__3 = 1, i__1 = k + i0 - m + 1;
  1998. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  1999. /* finish applying rotations in 1st set from the right */
  2000. for (l = *kb - k; l >= 1; --l) {
  2001. nrt = (j2 + l - 1) / ka1;
  2002. j1t = j2 - (nrt - 1) * ka1;
  2003. if (nrt > 0) {
  2004. zlartv_(&nrt, &ab[l + j1t * ab_dim1], &inca, &ab[l + 1 + (
  2005. j1t - 1) * ab_dim1], &inca, &rwork[j1t], &work[
  2006. j1t], &ka1);
  2007. }
  2008. /* L700: */
  2009. }
  2010. /* L710: */
  2011. }
  2012. if (*kb > 1) {
  2013. i__4 = i2 - *ka;
  2014. for (j = 2; j <= i__4; ++j) {
  2015. rwork[j] = rwork[j + *ka];
  2016. i__3 = j;
  2017. i__1 = j + *ka;
  2018. work[i__3].r = work[i__1].r, work[i__3].i = work[i__1].i;
  2019. /* L720: */
  2020. }
  2021. }
  2022. } else {
  2023. /* Transform A, working with the lower triangle */
  2024. if (update) {
  2025. /* Form inv(S(i))**H * A * inv(S(i)) */
  2026. i__4 = i__ * bb_dim1 + 1;
  2027. bii = bb[i__4].r;
  2028. i__4 = i__ * ab_dim1 + 1;
  2029. i__3 = i__ * ab_dim1 + 1;
  2030. d__1 = ab[i__3].r / bii / bii;
  2031. ab[i__4].r = d__1, ab[i__4].i = 0.;
  2032. i__4 = i__ - 1;
  2033. for (j = i1; j <= i__4; ++j) {
  2034. i__3 = i__ - j + 1 + j * ab_dim1;
  2035. i__1 = i__ - j + 1 + j * ab_dim1;
  2036. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2037. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2038. /* L730: */
  2039. }
  2040. /* Computing MIN */
  2041. i__3 = *n, i__1 = i__ + *ka;
  2042. i__4 = f2cmin(i__3,i__1);
  2043. for (j = i__ + 1; j <= i__4; ++j) {
  2044. i__3 = j - i__ + 1 + i__ * ab_dim1;
  2045. i__1 = j - i__ + 1 + i__ * ab_dim1;
  2046. z__1.r = ab[i__1].r / bii, z__1.i = ab[i__1].i / bii;
  2047. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2048. /* L740: */
  2049. }
  2050. i__4 = i__ + kbt;
  2051. for (k = i__ + 1; k <= i__4; ++k) {
  2052. i__3 = i__ + kbt;
  2053. for (j = k; j <= i__3; ++j) {
  2054. i__1 = j - k + 1 + k * ab_dim1;
  2055. i__2 = j - k + 1 + k * ab_dim1;
  2056. i__5 = j - i__ + 1 + i__ * bb_dim1;
  2057. d_cnjg(&z__5, &ab[k - i__ + 1 + i__ * ab_dim1]);
  2058. z__4.r = bb[i__5].r * z__5.r - bb[i__5].i * z__5.i,
  2059. z__4.i = bb[i__5].r * z__5.i + bb[i__5].i *
  2060. z__5.r;
  2061. z__3.r = ab[i__2].r - z__4.r, z__3.i = ab[i__2].i -
  2062. z__4.i;
  2063. d_cnjg(&z__7, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2064. i__6 = j - i__ + 1 + i__ * ab_dim1;
  2065. z__6.r = z__7.r * ab[i__6].r - z__7.i * ab[i__6].i,
  2066. z__6.i = z__7.r * ab[i__6].i + z__7.i * ab[i__6]
  2067. .r;
  2068. z__2.r = z__3.r - z__6.r, z__2.i = z__3.i - z__6.i;
  2069. i__7 = i__ * ab_dim1 + 1;
  2070. d__1 = ab[i__7].r;
  2071. i__8 = j - i__ + 1 + i__ * bb_dim1;
  2072. z__9.r = d__1 * bb[i__8].r, z__9.i = d__1 * bb[i__8].i;
  2073. d_cnjg(&z__10, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2074. z__8.r = z__9.r * z__10.r - z__9.i * z__10.i, z__8.i =
  2075. z__9.r * z__10.i + z__9.i * z__10.r;
  2076. z__1.r = z__2.r + z__8.r, z__1.i = z__2.i + z__8.i;
  2077. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2078. /* L750: */
  2079. }
  2080. /* Computing MIN */
  2081. i__1 = *n, i__2 = i__ + *ka;
  2082. i__3 = f2cmin(i__1,i__2);
  2083. for (j = i__ + kbt + 1; j <= i__3; ++j) {
  2084. i__1 = j - k + 1 + k * ab_dim1;
  2085. i__2 = j - k + 1 + k * ab_dim1;
  2086. d_cnjg(&z__3, &bb[k - i__ + 1 + i__ * bb_dim1]);
  2087. i__5 = j - i__ + 1 + i__ * ab_dim1;
  2088. z__2.r = z__3.r * ab[i__5].r - z__3.i * ab[i__5].i,
  2089. z__2.i = z__3.r * ab[i__5].i + z__3.i * ab[i__5]
  2090. .r;
  2091. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2092. z__2.i;
  2093. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2094. /* L760: */
  2095. }
  2096. /* L770: */
  2097. }
  2098. i__4 = i__;
  2099. for (j = i1; j <= i__4; ++j) {
  2100. /* Computing MIN */
  2101. i__1 = j + *ka, i__2 = i__ + kbt;
  2102. i__3 = f2cmin(i__1,i__2);
  2103. for (k = i__ + 1; k <= i__3; ++k) {
  2104. i__1 = k - j + 1 + j * ab_dim1;
  2105. i__2 = k - j + 1 + j * ab_dim1;
  2106. i__5 = k - i__ + 1 + i__ * bb_dim1;
  2107. i__6 = i__ - j + 1 + j * ab_dim1;
  2108. z__2.r = bb[i__5].r * ab[i__6].r - bb[i__5].i * ab[i__6]
  2109. .i, z__2.i = bb[i__5].r * ab[i__6].i + bb[i__5].i
  2110. * ab[i__6].r;
  2111. z__1.r = ab[i__2].r - z__2.r, z__1.i = ab[i__2].i -
  2112. z__2.i;
  2113. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2114. /* L780: */
  2115. }
  2116. /* L790: */
  2117. }
  2118. if (wantx) {
  2119. /* post-multiply X by inv(S(i)) */
  2120. d__1 = 1. / bii;
  2121. zdscal_(&nx, &d__1, &x[i__ * x_dim1 + 1], &c__1);
  2122. if (kbt > 0) {
  2123. z__1.r = -1., z__1.i = 0.;
  2124. zgerc_(&nx, &kbt, &z__1, &x[i__ * x_dim1 + 1], &c__1, &bb[
  2125. i__ * bb_dim1 + 2], &c__1, &x[(i__ + 1) * x_dim1
  2126. + 1], ldx);
  2127. }
  2128. }
  2129. /* store a(i,i1) in RA1 for use in next loop over K */
  2130. i__4 = i__ - i1 + 1 + i1 * ab_dim1;
  2131. ra1.r = ab[i__4].r, ra1.i = ab[i__4].i;
  2132. }
  2133. /* Generate and apply vectors of rotations to chase all the */
  2134. /* existing bulges KA positions up toward the top of the band */
  2135. i__4 = *kb - 1;
  2136. for (k = 1; k <= i__4; ++k) {
  2137. if (update) {
  2138. /* Determine the rotations which would annihilate the bulge */
  2139. /* which has in theory just been created */
  2140. if (i__ + k - ka1 > 0 && i__ + k < m) {
  2141. /* generate rotation to annihilate a(i,i+k-ka-1) */
  2142. zlartg_(&ab[ka1 - k + (i__ + k - *ka) * ab_dim1], &ra1, &
  2143. rwork[i__ + k - *ka], &work[i__ + k - *ka], &ra);
  2144. /* create nonzero element a(i+k,i+k-ka-1) outside the */
  2145. /* band and store it in WORK(m-kb+i+k) */
  2146. i__3 = k + 1 + i__ * bb_dim1;
  2147. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2148. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r
  2149. * ra1.i + z__2.i * ra1.r;
  2150. t.r = z__1.r, t.i = z__1.i;
  2151. i__3 = m - *kb + i__ + k;
  2152. i__1 = i__ + k - *ka;
  2153. z__2.r = rwork[i__1] * t.r, z__2.i = rwork[i__1] * t.i;
  2154. d_cnjg(&z__4, &work[i__ + k - *ka]);
  2155. i__2 = ka1 + (i__ + k - *ka) * ab_dim1;
  2156. z__3.r = z__4.r * ab[i__2].r - z__4.i * ab[i__2].i,
  2157. z__3.i = z__4.r * ab[i__2].i + z__4.i * ab[i__2]
  2158. .r;
  2159. z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
  2160. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  2161. i__3 = ka1 + (i__ + k - *ka) * ab_dim1;
  2162. i__1 = i__ + k - *ka;
  2163. z__2.r = work[i__1].r * t.r - work[i__1].i * t.i, z__2.i =
  2164. work[i__1].r * t.i + work[i__1].i * t.r;
  2165. i__2 = i__ + k - *ka;
  2166. i__5 = ka1 + (i__ + k - *ka) * ab_dim1;
  2167. z__3.r = rwork[i__2] * ab[i__5].r, z__3.i = rwork[i__2] *
  2168. ab[i__5].i;
  2169. z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
  2170. ab[i__3].r = z__1.r, ab[i__3].i = z__1.i;
  2171. ra1.r = ra.r, ra1.i = ra.i;
  2172. }
  2173. }
  2174. /* Computing MAX */
  2175. i__3 = 1, i__1 = k + i0 - m + 1;
  2176. j2 = i__ + k + 1 - f2cmax(i__3,i__1) * ka1;
  2177. nr = (j2 + *ka - 1) / ka1;
  2178. j1 = j2 - (nr - 1) * ka1;
  2179. if (update) {
  2180. /* Computing MIN */
  2181. i__3 = j2, i__1 = i__ - (*ka << 1) + k - 1;
  2182. j2t = f2cmin(i__3,i__1);
  2183. } else {
  2184. j2t = j2;
  2185. }
  2186. nrt = (j2t + *ka - 1) / ka1;
  2187. i__3 = j2t;
  2188. i__1 = ka1;
  2189. for (j = j1; i__1 < 0 ? j >= i__3 : j <= i__3; j += i__1) {
  2190. /* create nonzero element a(j+ka,j-1) outside the band */
  2191. /* and store it in WORK(j) */
  2192. i__2 = j;
  2193. i__5 = j;
  2194. i__6 = ka1 + (j - 1) * ab_dim1;
  2195. z__1.r = work[i__5].r * ab[i__6].r - work[i__5].i * ab[i__6]
  2196. .i, z__1.i = work[i__5].r * ab[i__6].i + work[i__5].i
  2197. * ab[i__6].r;
  2198. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  2199. i__2 = ka1 + (j - 1) * ab_dim1;
  2200. i__5 = j;
  2201. i__6 = ka1 + (j - 1) * ab_dim1;
  2202. z__1.r = rwork[i__5] * ab[i__6].r, z__1.i = rwork[i__5] * ab[
  2203. i__6].i;
  2204. ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
  2205. /* L800: */
  2206. }
  2207. /* generate rotations in 1st set to annihilate elements which */
  2208. /* have been created outside the band */
  2209. if (nrt > 0) {
  2210. zlargv_(&nrt, &ab[ka1 + j1 * ab_dim1], &inca, &work[j1], &ka1,
  2211. &rwork[j1], &ka1);
  2212. }
  2213. if (nr > 0) {
  2214. /* apply rotations in 1st set from the right */
  2215. i__1 = *ka - 1;
  2216. for (l = 1; l <= i__1; ++l) {
  2217. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2218. + (j1 - 1) * ab_dim1], &inca, &rwork[j1], &work[
  2219. j1], &ka1);
  2220. /* L810: */
  2221. }
  2222. /* apply rotations in 1st set from both sides to diagonal */
  2223. /* blocks */
  2224. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2225. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[j1], &
  2226. work[j1], &ka1);
  2227. zlacgv_(&nr, &work[j1], &ka1);
  2228. }
  2229. /* start applying rotations in 1st set from the left */
  2230. i__1 = *kb - k + 1;
  2231. for (l = *ka - 1; l >= i__1; --l) {
  2232. nrt = (j2 + l - 1) / ka1;
  2233. j1t = j2 - (nrt - 1) * ka1;
  2234. if (nrt > 0) {
  2235. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2236. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2237. &inca, &rwork[j1t], &work[j1t], &ka1);
  2238. }
  2239. /* L820: */
  2240. }
  2241. if (wantx) {
  2242. /* post-multiply X by product of rotations in 1st set */
  2243. i__1 = j2;
  2244. i__3 = ka1;
  2245. for (j = j1; i__3 < 0 ? j >= i__1 : j <= i__1; j += i__3) {
  2246. d_cnjg(&z__1, &work[j]);
  2247. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2248. + 1], &c__1, &rwork[j], &z__1);
  2249. /* L830: */
  2250. }
  2251. }
  2252. /* L840: */
  2253. }
  2254. if (update) {
  2255. if (i2 > 0 && kbt > 0) {
  2256. /* create nonzero element a(i+kbt,i+kbt-ka-1) outside the */
  2257. /* band and store it in WORK(m-kb+i+kbt) */
  2258. i__4 = m - *kb + i__ + kbt;
  2259. i__3 = kbt + 1 + i__ * bb_dim1;
  2260. z__2.r = -bb[i__3].r, z__2.i = -bb[i__3].i;
  2261. z__1.r = z__2.r * ra1.r - z__2.i * ra1.i, z__1.i = z__2.r *
  2262. ra1.i + z__2.i * ra1.r;
  2263. work[i__4].r = z__1.r, work[i__4].i = z__1.i;
  2264. }
  2265. }
  2266. for (k = *kb; k >= 1; --k) {
  2267. if (update) {
  2268. /* Computing MAX */
  2269. i__4 = 2, i__3 = k + i0 - m;
  2270. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2271. } else {
  2272. /* Computing MAX */
  2273. i__4 = 1, i__3 = k + i0 - m;
  2274. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2275. }
  2276. /* finish applying rotations in 2nd set from the left */
  2277. for (l = *kb - k; l >= 1; --l) {
  2278. nrt = (j2 + *ka + l - 1) / ka1;
  2279. j1t = j2 - (nrt - 1) * ka1;
  2280. if (nrt > 0) {
  2281. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t + l - 1) * ab_dim1],
  2282. &inca, &ab[ka1 - l + (j1t + l - 1) * ab_dim1], &
  2283. inca, &rwork[m - *kb + j1t + *ka], &work[m - *kb
  2284. + j1t + *ka], &ka1);
  2285. }
  2286. /* L850: */
  2287. }
  2288. nr = (j2 + *ka - 1) / ka1;
  2289. j1 = j2 - (nr - 1) * ka1;
  2290. i__4 = j2;
  2291. i__3 = ka1;
  2292. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2293. i__1 = m - *kb + j;
  2294. i__2 = m - *kb + j + *ka;
  2295. work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
  2296. rwork[m - *kb + j] = rwork[m - *kb + j + *ka];
  2297. /* L860: */
  2298. }
  2299. i__3 = j2;
  2300. i__4 = ka1;
  2301. for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
  2302. /* create nonzero element a(j+ka,j-1) outside the band */
  2303. /* and store it in WORK(m-kb+j) */
  2304. i__1 = m - *kb + j;
  2305. i__2 = m - *kb + j;
  2306. i__5 = ka1 + (j - 1) * ab_dim1;
  2307. z__1.r = work[i__2].r * ab[i__5].r - work[i__2].i * ab[i__5]
  2308. .i, z__1.i = work[i__2].r * ab[i__5].i + work[i__2].i
  2309. * ab[i__5].r;
  2310. work[i__1].r = z__1.r, work[i__1].i = z__1.i;
  2311. i__1 = ka1 + (j - 1) * ab_dim1;
  2312. i__2 = m - *kb + j;
  2313. i__5 = ka1 + (j - 1) * ab_dim1;
  2314. z__1.r = rwork[i__2] * ab[i__5].r, z__1.i = rwork[i__2] * ab[
  2315. i__5].i;
  2316. ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
  2317. /* L870: */
  2318. }
  2319. if (update) {
  2320. if (i__ + k > ka1 && k <= kbt) {
  2321. i__4 = m - *kb + i__ + k - *ka;
  2322. i__3 = m - *kb + i__ + k;
  2323. work[i__4].r = work[i__3].r, work[i__4].i = work[i__3].i;
  2324. }
  2325. }
  2326. /* L880: */
  2327. }
  2328. for (k = *kb; k >= 1; --k) {
  2329. /* Computing MAX */
  2330. i__4 = 1, i__3 = k + i0 - m;
  2331. j2 = i__ + k + 1 - f2cmax(i__4,i__3) * ka1;
  2332. nr = (j2 + *ka - 1) / ka1;
  2333. j1 = j2 - (nr - 1) * ka1;
  2334. if (nr > 0) {
  2335. /* generate rotations in 2nd set to annihilate elements */
  2336. /* which have been created outside the band */
  2337. zlargv_(&nr, &ab[ka1 + j1 * ab_dim1], &inca, &work[m - *kb +
  2338. j1], &ka1, &rwork[m - *kb + j1], &ka1);
  2339. /* apply rotations in 2nd set from the right */
  2340. i__4 = *ka - 1;
  2341. for (l = 1; l <= i__4; ++l) {
  2342. zlartv_(&nr, &ab[l + 1 + j1 * ab_dim1], &inca, &ab[l + 2
  2343. + (j1 - 1) * ab_dim1], &inca, &rwork[m - *kb + j1]
  2344. , &work[m - *kb + j1], &ka1);
  2345. /* L890: */
  2346. }
  2347. /* apply rotations in 2nd set from both sides to diagonal */
  2348. /* blocks */
  2349. zlar2v_(&nr, &ab[j1 * ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 +
  2350. 1], &ab[(j1 - 1) * ab_dim1 + 2], &inca, &rwork[m - *
  2351. kb + j1], &work[m - *kb + j1], &ka1);
  2352. zlacgv_(&nr, &work[m - *kb + j1], &ka1);
  2353. }
  2354. /* start applying rotations in 2nd set from the left */
  2355. i__4 = *kb - k + 1;
  2356. for (l = *ka - 1; l >= i__4; --l) {
  2357. nrt = (j2 + l - 1) / ka1;
  2358. j1t = j2 - (nrt - 1) * ka1;
  2359. if (nrt > 0) {
  2360. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2361. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2362. &inca, &rwork[m - *kb + j1t], &work[m - *kb +
  2363. j1t], &ka1);
  2364. }
  2365. /* L900: */
  2366. }
  2367. if (wantx) {
  2368. /* post-multiply X by product of rotations in 2nd set */
  2369. i__4 = j2;
  2370. i__3 = ka1;
  2371. for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) {
  2372. d_cnjg(&z__1, &work[m - *kb + j]);
  2373. zrot_(&nx, &x[j * x_dim1 + 1], &c__1, &x[(j - 1) * x_dim1
  2374. + 1], &c__1, &rwork[m - *kb + j], &z__1);
  2375. /* L910: */
  2376. }
  2377. }
  2378. /* L920: */
  2379. }
  2380. i__3 = *kb - 1;
  2381. for (k = 1; k <= i__3; ++k) {
  2382. /* Computing MAX */
  2383. i__4 = 1, i__1 = k + i0 - m + 1;
  2384. j2 = i__ + k + 1 - f2cmax(i__4,i__1) * ka1;
  2385. /* finish applying rotations in 1st set from the left */
  2386. for (l = *kb - k; l >= 1; --l) {
  2387. nrt = (j2 + l - 1) / ka1;
  2388. j1t = j2 - (nrt - 1) * ka1;
  2389. if (nrt > 0) {
  2390. zlartv_(&nrt, &ab[ka1 - l + 1 + (j1t - ka1 + l) * ab_dim1]
  2391. , &inca, &ab[ka1 - l + (j1t - ka1 + l) * ab_dim1],
  2392. &inca, &rwork[j1t], &work[j1t], &ka1);
  2393. }
  2394. /* L930: */
  2395. }
  2396. /* L940: */
  2397. }
  2398. if (*kb > 1) {
  2399. i__3 = i2 - *ka;
  2400. for (j = 2; j <= i__3; ++j) {
  2401. rwork[j] = rwork[j + *ka];
  2402. i__4 = j;
  2403. i__1 = j + *ka;
  2404. work[i__4].r = work[i__1].r, work[i__4].i = work[i__1].i;
  2405. /* L950: */
  2406. }
  2407. }
  2408. }
  2409. goto L490;
  2410. /* End of ZHBGST */
  2411. } /* zhbgst_ */