You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zggsvp3.c 34 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c_n1 = -1;
  489. /* > \brief \b ZGGSVP3 */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download ZGGSVP3 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggsvp3
  496. .f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggsvp3
  499. .f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggsvp3
  502. .f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE ZGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  508. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  509. /* IWORK, RWORK, TAU, WORK, LWORK, INFO ) */
  510. /* CHARACTER JOBQ, JOBU, JOBV */
  511. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P, LWORK */
  512. /* DOUBLE PRECISION TOLA, TOLB */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION RWORK( * ) */
  515. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  516. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > ZGGSVP3 computes unitary matrices U, V and Q such that */
  523. /* > */
  524. /* > N-K-L K L */
  525. /* > U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  526. /* > L ( 0 0 A23 ) */
  527. /* > M-K-L ( 0 0 0 ) */
  528. /* > */
  529. /* > N-K-L K L */
  530. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  531. /* > M-K ( 0 0 A23 ) */
  532. /* > */
  533. /* > N-K-L K L */
  534. /* > V**H*B*Q = L ( 0 0 B13 ) */
  535. /* > P-L ( 0 0 0 ) */
  536. /* > */
  537. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  538. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  539. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  540. /* > numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. */
  541. /* > */
  542. /* > This decomposition is the preprocessing step for computing the */
  543. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  544. /* > ZGGSVD3. */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBU */
  549. /* > \verbatim */
  550. /* > JOBU is CHARACTER*1 */
  551. /* > = 'U': Unitary matrix U is computed; */
  552. /* > = 'N': U is not computed. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBV */
  556. /* > \verbatim */
  557. /* > JOBV is CHARACTER*1 */
  558. /* > = 'V': Unitary matrix V is computed; */
  559. /* > = 'N': V is not computed. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] JOBQ */
  563. /* > \verbatim */
  564. /* > JOBQ is CHARACTER*1 */
  565. /* > = 'Q': Unitary matrix Q is computed; */
  566. /* > = 'N': Q is not computed. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] M */
  570. /* > \verbatim */
  571. /* > M is INTEGER */
  572. /* > The number of rows of the matrix A. M >= 0. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] P */
  576. /* > \verbatim */
  577. /* > P is INTEGER */
  578. /* > The number of rows of the matrix B. P >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] N */
  582. /* > \verbatim */
  583. /* > N is INTEGER */
  584. /* > The number of columns of the matrices A and B. N >= 0. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] A */
  588. /* > \verbatim */
  589. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  590. /* > On entry, the M-by-N matrix A. */
  591. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  592. /* > described in the Purpose section. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] B */
  602. /* > \verbatim */
  603. /* > B is COMPLEX*16 array, dimension (LDB,N) */
  604. /* > On entry, the P-by-N matrix B. */
  605. /* > On exit, B contains the triangular matrix described in */
  606. /* > the Purpose section. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDB */
  610. /* > \verbatim */
  611. /* > LDB is INTEGER */
  612. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] TOLA */
  616. /* > \verbatim */
  617. /* > TOLA is DOUBLE PRECISION */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] TOLB */
  621. /* > \verbatim */
  622. /* > TOLB is DOUBLE PRECISION */
  623. /* > */
  624. /* > TOLA and TOLB are the thresholds to determine the effective */
  625. /* > numerical rank of matrix B and a subblock of A. Generally, */
  626. /* > they are set to */
  627. /* > TOLA = MAX(M,N)*norm(A)*MAZHEPS, */
  628. /* > TOLB = MAX(P,N)*norm(B)*MAZHEPS. */
  629. /* > The size of TOLA and TOLB may affect the size of backward */
  630. /* > errors of the decomposition. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] K */
  634. /* > \verbatim */
  635. /* > K is INTEGER */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] L */
  639. /* > \verbatim */
  640. /* > L is INTEGER */
  641. /* > */
  642. /* > On exit, K and L specify the dimension of the subblocks */
  643. /* > described in Purpose section. */
  644. /* > K + L = effective numerical rank of (A**H,B**H)**H. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] U */
  648. /* > \verbatim */
  649. /* > U is COMPLEX*16 array, dimension (LDU,M) */
  650. /* > If JOBU = 'U', U contains the unitary matrix U. */
  651. /* > If JOBU = 'N', U is not referenced. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDU */
  655. /* > \verbatim */
  656. /* > LDU is INTEGER */
  657. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  658. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] V */
  662. /* > \verbatim */
  663. /* > V is COMPLEX*16 array, dimension (LDV,P) */
  664. /* > If JOBV = 'V', V contains the unitary matrix V. */
  665. /* > If JOBV = 'N', V is not referenced. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] LDV */
  669. /* > \verbatim */
  670. /* > LDV is INTEGER */
  671. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  672. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] Q */
  676. /* > \verbatim */
  677. /* > Q is COMPLEX*16 array, dimension (LDQ,N) */
  678. /* > If JOBQ = 'Q', Q contains the unitary matrix Q. */
  679. /* > If JOBQ = 'N', Q is not referenced. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[in] LDQ */
  683. /* > \verbatim */
  684. /* > LDQ is INTEGER */
  685. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  686. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] IWORK */
  690. /* > \verbatim */
  691. /* > IWORK is INTEGER array, dimension (N) */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] RWORK */
  695. /* > \verbatim */
  696. /* > RWORK is DOUBLE PRECISION array, dimension (2*N) */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] TAU */
  700. /* > \verbatim */
  701. /* > TAU is COMPLEX*16 array, dimension (N) */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] WORK */
  705. /* > \verbatim */
  706. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  707. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  708. /* > \endverbatim */
  709. /* > */
  710. /* > \param[in] LWORK */
  711. /* > \verbatim */
  712. /* > LWORK is INTEGER */
  713. /* > The dimension of the array WORK. */
  714. /* > */
  715. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  716. /* > only calculates the optimal size of the WORK array, returns */
  717. /* > this value as the first entry of the WORK array, and no error */
  718. /* > message related to LWORK is issued by XERBLA. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] INFO */
  722. /* > \verbatim */
  723. /* > INFO is INTEGER */
  724. /* > = 0: successful exit */
  725. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  726. /* > \endverbatim */
  727. /* Authors: */
  728. /* ======== */
  729. /* > \author Univ. of Tennessee */
  730. /* > \author Univ. of California Berkeley */
  731. /* > \author Univ. of Colorado Denver */
  732. /* > \author NAG Ltd. */
  733. /* > \date August 2015 */
  734. /* > \ingroup complex16OTHERcomputational */
  735. /* > \par Further Details: */
  736. /* ===================== */
  737. /* > \verbatim */
  738. /* > */
  739. /* > The subroutine uses LAPACK subroutine ZGEQP3 for the QR factorization */
  740. /* > with column pivoting to detect the effective numerical rank of the */
  741. /* > a matrix. It may be replaced by a better rank determination strategy. */
  742. /* > */
  743. /* > ZGGSVP3 replaces the deprecated subroutine ZGGSVP. */
  744. /* > */
  745. /* > \endverbatim */
  746. /* > */
  747. /* ===================================================================== */
  748. /* Subroutine */ void zggsvp3_(char *jobu, char *jobv, char *jobq, integer *m,
  749. integer *p, integer *n, doublecomplex *a, integer *lda, doublecomplex
  750. *b, integer *ldb, doublereal *tola, doublereal *tolb, integer *k,
  751. integer *l, doublecomplex *u, integer *ldu, doublecomplex *v, integer
  752. *ldv, doublecomplex *q, integer *ldq, integer *iwork, doublereal *
  753. rwork, doublecomplex *tau, doublecomplex *work, integer *lwork,
  754. integer *info)
  755. {
  756. /* System generated locals */
  757. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  758. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  759. doublecomplex z__1;
  760. /* Local variables */
  761. integer i__, j;
  762. extern logical lsame_(char *, char *);
  763. logical wantq, wantu, wantv;
  764. extern /* Subroutine */ void zgeqp3_(integer *, integer *, doublecomplex *,
  765. integer *, integer *, doublecomplex *, doublecomplex *, integer *
  766. , doublereal *, integer *), zgeqr2_(integer *, integer *,
  767. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  768. integer *), zgerq2_(integer *, integer *, doublecomplex *,
  769. integer *, doublecomplex *, doublecomplex *, integer *), zung2r_(
  770. integer *, integer *, integer *, doublecomplex *, integer *,
  771. doublecomplex *, doublecomplex *, integer *), zunm2r_(char *,
  772. char *, integer *, integer *, integer *, doublecomplex *, integer
  773. *, doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  774. integer *), zunmr2_(char *, char *, integer *,
  775. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  776. doublecomplex *, integer *, doublecomplex *, integer *);
  777. extern int xerbla_(char *, integer *, ftnlen);
  778. extern void zlacpy_(char *,
  779. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  780. integer *);
  781. logical forwrd;
  782. extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
  783. doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlapmt_(logical *, integer *, integer *, doublecomplex *,
  784. integer *, integer *);
  785. integer lwkopt;
  786. logical lquery;
  787. /* -- LAPACK computational routine (version 3.7.0) -- */
  788. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  789. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  790. /* August 2015 */
  791. /* ===================================================================== */
  792. /* Test the input parameters */
  793. /* Parameter adjustments */
  794. a_dim1 = *lda;
  795. a_offset = 1 + a_dim1 * 1;
  796. a -= a_offset;
  797. b_dim1 = *ldb;
  798. b_offset = 1 + b_dim1 * 1;
  799. b -= b_offset;
  800. u_dim1 = *ldu;
  801. u_offset = 1 + u_dim1 * 1;
  802. u -= u_offset;
  803. v_dim1 = *ldv;
  804. v_offset = 1 + v_dim1 * 1;
  805. v -= v_offset;
  806. q_dim1 = *ldq;
  807. q_offset = 1 + q_dim1 * 1;
  808. q -= q_offset;
  809. --iwork;
  810. --rwork;
  811. --tau;
  812. --work;
  813. /* Function Body */
  814. wantu = lsame_(jobu, "U");
  815. wantv = lsame_(jobv, "V");
  816. wantq = lsame_(jobq, "Q");
  817. forwrd = TRUE_;
  818. lquery = *lwork == -1;
  819. lwkopt = 1;
  820. /* Test the input arguments */
  821. *info = 0;
  822. if (! (wantu || lsame_(jobu, "N"))) {
  823. *info = -1;
  824. } else if (! (wantv || lsame_(jobv, "N"))) {
  825. *info = -2;
  826. } else if (! (wantq || lsame_(jobq, "N"))) {
  827. *info = -3;
  828. } else if (*m < 0) {
  829. *info = -4;
  830. } else if (*p < 0) {
  831. *info = -5;
  832. } else if (*n < 0) {
  833. *info = -6;
  834. } else if (*lda < f2cmax(1,*m)) {
  835. *info = -8;
  836. } else if (*ldb < f2cmax(1,*p)) {
  837. *info = -10;
  838. } else if (*ldu < 1 || wantu && *ldu < *m) {
  839. *info = -16;
  840. } else if (*ldv < 1 || wantv && *ldv < *p) {
  841. *info = -18;
  842. } else if (*ldq < 1 || wantq && *ldq < *n) {
  843. *info = -20;
  844. } else if (*lwork < 1 && ! lquery) {
  845. *info = -24;
  846. }
  847. /* Compute workspace */
  848. if (*info == 0) {
  849. zgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], &c_n1,
  850. &rwork[1], info);
  851. lwkopt = (integer) work[1].r;
  852. if (wantv) {
  853. lwkopt = f2cmax(lwkopt,*p);
  854. }
  855. /* Computing MAX */
  856. i__1 = lwkopt, i__2 = f2cmin(*n,*p);
  857. lwkopt = f2cmax(i__1,i__2);
  858. lwkopt = f2cmax(lwkopt,*m);
  859. if (wantq) {
  860. lwkopt = f2cmax(lwkopt,*n);
  861. }
  862. zgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], &c_n1,
  863. &rwork[1], info);
  864. /* Computing MAX */
  865. i__1 = lwkopt, i__2 = (integer) work[1].r;
  866. lwkopt = f2cmax(i__1,i__2);
  867. lwkopt = f2cmax(1,lwkopt);
  868. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  869. work[1].r = z__1.r, work[1].i = z__1.i;
  870. }
  871. if (*info != 0) {
  872. i__1 = -(*info);
  873. xerbla_("ZGGSVP3", &i__1, (ftnlen)7);
  874. return;
  875. }
  876. if (lquery) {
  877. return;
  878. }
  879. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  880. /* ( 0 0 ) */
  881. i__1 = *n;
  882. for (i__ = 1; i__ <= i__1; ++i__) {
  883. iwork[i__] = 0;
  884. /* L10: */
  885. }
  886. zgeqp3_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], lwork, &
  887. rwork[1], info);
  888. /* Update A := A*P */
  889. zlapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  890. /* Determine the effective rank of matrix B. */
  891. *l = 0;
  892. i__1 = f2cmin(*p,*n);
  893. for (i__ = 1; i__ <= i__1; ++i__) {
  894. if (z_abs(&b[i__ + i__ * b_dim1]) > *tolb) {
  895. ++(*l);
  896. }
  897. /* L20: */
  898. }
  899. if (wantv) {
  900. /* Copy the details of V, and form V. */
  901. zlaset_("Full", p, p, &c_b1, &c_b1, &v[v_offset], ldv);
  902. if (*p > 1) {
  903. i__1 = *p - 1;
  904. zlacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  905. ldv);
  906. }
  907. i__1 = f2cmin(*p,*n);
  908. zung2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  909. }
  910. /* Clean up B */
  911. i__1 = *l - 1;
  912. for (j = 1; j <= i__1; ++j) {
  913. i__2 = *l;
  914. for (i__ = j + 1; i__ <= i__2; ++i__) {
  915. i__3 = i__ + j * b_dim1;
  916. b[i__3].r = 0., b[i__3].i = 0.;
  917. /* L30: */
  918. }
  919. /* L40: */
  920. }
  921. if (*p > *l) {
  922. i__1 = *p - *l;
  923. zlaset_("Full", &i__1, n, &c_b1, &c_b1, &b[*l + 1 + b_dim1], ldb);
  924. }
  925. if (wantq) {
  926. /* Set Q = I and Update Q := Q*P */
  927. zlaset_("Full", n, n, &c_b1, &c_b2, &q[q_offset], ldq);
  928. zlapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  929. }
  930. if (*p >= *l && *n != *l) {
  931. /* RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z */
  932. zgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  933. /* Update A := A*Z**H */
  934. zunmr2_("Right", "Conjugate transpose", m, n, l, &b[b_offset], ldb, &
  935. tau[1], &a[a_offset], lda, &work[1], info);
  936. if (wantq) {
  937. /* Update Q := Q*Z**H */
  938. zunmr2_("Right", "Conjugate transpose", n, n, l, &b[b_offset],
  939. ldb, &tau[1], &q[q_offset], ldq, &work[1], info);
  940. }
  941. /* Clean up B */
  942. i__1 = *n - *l;
  943. zlaset_("Full", l, &i__1, &c_b1, &c_b1, &b[b_offset], ldb);
  944. i__1 = *n;
  945. for (j = *n - *l + 1; j <= i__1; ++j) {
  946. i__2 = *l;
  947. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  948. i__3 = i__ + j * b_dim1;
  949. b[i__3].r = 0., b[i__3].i = 0.;
  950. /* L50: */
  951. }
  952. /* L60: */
  953. }
  954. }
  955. /* Let N-L L */
  956. /* A = ( A11 A12 ) M, */
  957. /* then the following does the complete QR decomposition of A11: */
  958. /* A11 = U*( 0 T12 )*P1**H */
  959. /* ( 0 0 ) */
  960. i__1 = *n - *l;
  961. for (i__ = 1; i__ <= i__1; ++i__) {
  962. iwork[i__] = 0;
  963. /* L70: */
  964. }
  965. i__1 = *n - *l;
  966. zgeqp3_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], lwork,
  967. &rwork[1], info);
  968. /* Determine the effective rank of A11 */
  969. *k = 0;
  970. /* Computing MIN */
  971. i__2 = *m, i__3 = *n - *l;
  972. i__1 = f2cmin(i__2,i__3);
  973. for (i__ = 1; i__ <= i__1; ++i__) {
  974. if (z_abs(&a[i__ + i__ * a_dim1]) > *tola) {
  975. ++(*k);
  976. }
  977. /* L80: */
  978. }
  979. /* Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N ) */
  980. /* Computing MIN */
  981. i__2 = *m, i__3 = *n - *l;
  982. i__1 = f2cmin(i__2,i__3);
  983. zunm2r_("Left", "Conjugate transpose", m, l, &i__1, &a[a_offset], lda, &
  984. tau[1], &a[(*n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  985. if (wantu) {
  986. /* Copy the details of U, and form U */
  987. zlaset_("Full", m, m, &c_b1, &c_b1, &u[u_offset], ldu);
  988. if (*m > 1) {
  989. i__1 = *m - 1;
  990. i__2 = *n - *l;
  991. zlacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  992. , ldu);
  993. }
  994. /* Computing MIN */
  995. i__2 = *m, i__3 = *n - *l;
  996. i__1 = f2cmin(i__2,i__3);
  997. zung2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  998. }
  999. if (wantq) {
  1000. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  1001. i__1 = *n - *l;
  1002. zlapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  1003. }
  1004. /* Clean up A: set the strictly lower triangular part of */
  1005. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  1006. i__1 = *k - 1;
  1007. for (j = 1; j <= i__1; ++j) {
  1008. i__2 = *k;
  1009. for (i__ = j + 1; i__ <= i__2; ++i__) {
  1010. i__3 = i__ + j * a_dim1;
  1011. a[i__3].r = 0., a[i__3].i = 0.;
  1012. /* L90: */
  1013. }
  1014. /* L100: */
  1015. }
  1016. if (*m > *k) {
  1017. i__1 = *m - *k;
  1018. i__2 = *n - *l;
  1019. zlaset_("Full", &i__1, &i__2, &c_b1, &c_b1, &a[*k + 1 + a_dim1], lda);
  1020. }
  1021. if (*n - *l > *k) {
  1022. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  1023. i__1 = *n - *l;
  1024. zgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  1025. if (wantq) {
  1026. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H */
  1027. i__1 = *n - *l;
  1028. zunmr2_("Right", "Conjugate transpose", n, &i__1, k, &a[a_offset],
  1029. lda, &tau[1], &q[q_offset], ldq, &work[1], info);
  1030. }
  1031. /* Clean up A */
  1032. i__1 = *n - *l - *k;
  1033. zlaset_("Full", k, &i__1, &c_b1, &c_b1, &a[a_offset], lda);
  1034. i__1 = *n - *l;
  1035. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  1036. i__2 = *k;
  1037. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  1038. i__3 = i__ + j * a_dim1;
  1039. a[i__3].r = 0., a[i__3].i = 0.;
  1040. /* L110: */
  1041. }
  1042. /* L120: */
  1043. }
  1044. }
  1045. if (*m > *k) {
  1046. /* QR factorization of A( K+1:M,N-L+1:N ) */
  1047. i__1 = *m - *k;
  1048. zgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  1049. work[1], info);
  1050. if (wantu) {
  1051. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  1052. i__1 = *m - *k;
  1053. /* Computing MIN */
  1054. i__3 = *m - *k;
  1055. i__2 = f2cmin(i__3,*l);
  1056. zunm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  1057. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  1058. 1], ldu, &work[1], info);
  1059. }
  1060. /* Clean up */
  1061. i__1 = *n;
  1062. for (j = *n - *l + 1; j <= i__1; ++j) {
  1063. i__2 = *m;
  1064. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  1065. i__3 = i__ + j * a_dim1;
  1066. a[i__3].r = 0., a[i__3].i = 0.;
  1067. /* L130: */
  1068. }
  1069. /* L140: */
  1070. }
  1071. }
  1072. z__1.r = (doublereal) lwkopt, z__1.i = 0.;
  1073. work[1].r = z__1.r, work[1].i = z__1.i;
  1074. return;
  1075. /* End of ZGGSVP3 */
  1076. } /* zggsvp3_ */