You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgesdd.c 104 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c_n1 = -1;
  489. static integer c__0 = 0;
  490. static integer c__1 = 1;
  491. /* > \brief \b ZGESDD */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZGESDD + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesdd.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesdd.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesdd.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, */
  510. /* WORK, LWORK, RWORK, IWORK, INFO ) */
  511. /* CHARACTER JOBZ */
  512. /* INTEGER INFO, LDA, LDU, LDVT, LWORK, M, N */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION RWORK( * ), S( * ) */
  515. /* COMPLEX*16 A( LDA, * ), U( LDU, * ), VT( LDVT, * ), */
  516. /* $ WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > ZGESDD computes the singular value decomposition (SVD) of a complex */
  523. /* > M-by-N matrix A, optionally computing the left and/or right singular */
  524. /* > vectors, by using divide-and-conquer method. The SVD is written */
  525. /* > */
  526. /* > A = U * SIGMA * conjugate-transpose(V) */
  527. /* > */
  528. /* > where SIGMA is an M-by-N matrix which is zero except for its */
  529. /* > f2cmin(m,n) diagonal elements, U is an M-by-M unitary matrix, and */
  530. /* > V is an N-by-N unitary matrix. The diagonal elements of SIGMA */
  531. /* > are the singular values of A; they are real and non-negative, and */
  532. /* > are returned in descending order. The first f2cmin(m,n) columns of */
  533. /* > U and V are the left and right singular vectors of A. */
  534. /* > */
  535. /* > Note that the routine returns VT = V**H, not V. */
  536. /* > */
  537. /* > The divide and conquer algorithm makes very mild assumptions about */
  538. /* > floating point arithmetic. It will work on machines with a guard */
  539. /* > digit in add/subtract, or on those binary machines without guard */
  540. /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
  541. /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
  542. /* > without guard digits, but we know of none. */
  543. /* > \endverbatim */
  544. /* Arguments: */
  545. /* ========== */
  546. /* > \param[in] JOBZ */
  547. /* > \verbatim */
  548. /* > JOBZ is CHARACTER*1 */
  549. /* > Specifies options for computing all or part of the matrix U: */
  550. /* > = 'A': all M columns of U and all N rows of V**H are */
  551. /* > returned in the arrays U and VT; */
  552. /* > = 'S': the first f2cmin(M,N) columns of U and the first */
  553. /* > f2cmin(M,N) rows of V**H are returned in the arrays U */
  554. /* > and VT; */
  555. /* > = 'O': If M >= N, the first N columns of U are overwritten */
  556. /* > in the array A and all rows of V**H are returned in */
  557. /* > the array VT; */
  558. /* > otherwise, all columns of U are returned in the */
  559. /* > array U and the first M rows of V**H are overwritten */
  560. /* > in the array A; */
  561. /* > = 'N': no columns of U or rows of V**H are computed. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] A */
  577. /* > \verbatim */
  578. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  579. /* > On entry, the M-by-N matrix A. */
  580. /* > On exit, */
  581. /* > if JOBZ = 'O', A is overwritten with the first N columns */
  582. /* > of U (the left singular vectors, stored */
  583. /* > columnwise) if M >= N; */
  584. /* > A is overwritten with the first M rows */
  585. /* > of V**H (the right singular vectors, stored */
  586. /* > rowwise) otherwise. */
  587. /* > if JOBZ .ne. 'O', the contents of A are destroyed. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDA */
  591. /* > \verbatim */
  592. /* > LDA is INTEGER */
  593. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] S */
  597. /* > \verbatim */
  598. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  599. /* > The singular values of A, sorted so that S(i) >= S(i+1). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] U */
  603. /* > \verbatim */
  604. /* > U is COMPLEX*16 array, dimension (LDU,UCOL) */
  605. /* > UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
  606. /* > UCOL = f2cmin(M,N) if JOBZ = 'S'. */
  607. /* > If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
  608. /* > unitary matrix U; */
  609. /* > if JOBZ = 'S', U contains the first f2cmin(M,N) columns of U */
  610. /* > (the left singular vectors, stored columnwise); */
  611. /* > if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LDU */
  615. /* > \verbatim */
  616. /* > LDU is INTEGER */
  617. /* > The leading dimension of the array U. LDU >= 1; */
  618. /* > if JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] VT */
  622. /* > \verbatim */
  623. /* > VT is COMPLEX*16 array, dimension (LDVT,N) */
  624. /* > If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
  625. /* > N-by-N unitary matrix V**H; */
  626. /* > if JOBZ = 'S', VT contains the first f2cmin(M,N) rows of */
  627. /* > V**H (the right singular vectors, stored rowwise); */
  628. /* > if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDVT */
  632. /* > \verbatim */
  633. /* > LDVT is INTEGER */
  634. /* > The leading dimension of the array VT. LDVT >= 1; */
  635. /* > if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
  636. /* > if JOBZ = 'S', LDVT >= f2cmin(M,N). */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] WORK */
  640. /* > \verbatim */
  641. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  642. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  643. /* > \endverbatim */
  644. /* > */
  645. /* > \param[in] LWORK */
  646. /* > \verbatim */
  647. /* > LWORK is INTEGER */
  648. /* > The dimension of the array WORK. LWORK >= 1. */
  649. /* > If LWORK = -1, a workspace query is assumed. The optimal */
  650. /* > size for the WORK array is calculated and stored in WORK(1), */
  651. /* > and no other work except argument checking is performed. */
  652. /* > */
  653. /* > Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
  654. /* > If JOBZ = 'N', LWORK >= 2*mn + mx. */
  655. /* > If JOBZ = 'O', LWORK >= 2*mn*mn + 2*mn + mx. */
  656. /* > If JOBZ = 'S', LWORK >= mn*mn + 3*mn. */
  657. /* > If JOBZ = 'A', LWORK >= mn*mn + 2*mn + mx. */
  658. /* > These are not tight minimums in all cases; see comments inside code. */
  659. /* > For good performance, LWORK should generally be larger; */
  660. /* > a query is recommended. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] RWORK */
  664. /* > \verbatim */
  665. /* > RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) */
  666. /* > Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
  667. /* > If JOBZ = 'N', LRWORK >= 5*mn (LAPACK <= 3.6 needs 7*mn); */
  668. /* > else if mx >> mn, LRWORK >= 5*mn*mn + 5*mn; */
  669. /* > else LRWORK >= f2cmax( 5*mn*mn + 5*mn, */
  670. /* > 2*mx*mn + 2*mn*mn + mn ). */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[out] IWORK */
  674. /* > \verbatim */
  675. /* > IWORK is INTEGER array, dimension (8*f2cmin(M,N)) */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] INFO */
  679. /* > \verbatim */
  680. /* > INFO is INTEGER */
  681. /* > = 0: successful exit. */
  682. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  683. /* > > 0: The updating process of DBDSDC did not converge. */
  684. /* > \endverbatim */
  685. /* Authors: */
  686. /* ======== */
  687. /* > \author Univ. of Tennessee */
  688. /* > \author Univ. of California Berkeley */
  689. /* > \author Univ. of Colorado Denver */
  690. /* > \author NAG Ltd. */
  691. /* > \date June 2016 */
  692. /* > \ingroup complex16GEsing */
  693. /* > \par Contributors: */
  694. /* ================== */
  695. /* > */
  696. /* > Ming Gu and Huan Ren, Computer Science Division, University of */
  697. /* > California at Berkeley, USA */
  698. /* > */
  699. /* ===================================================================== */
  700. /* Subroutine */ void zgesdd_(char *jobz, integer *m, integer *n,
  701. doublecomplex *a, integer *lda, doublereal *s, doublecomplex *u,
  702. integer *ldu, doublecomplex *vt, integer *ldvt, doublecomplex *work,
  703. integer *lwork, doublereal *rwork, integer *iwork, integer *info)
  704. {
  705. /* System generated locals */
  706. integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  707. i__2, i__3;
  708. /* Local variables */
  709. integer lwork_zgebrd_mm__, lwork_zgebrd_mn__, lwork_zgebrd_nn__,
  710. lwork_zgelqf_mn__, lwork_zgeqrf_mn__;
  711. doublecomplex cdum[1];
  712. integer iscl;
  713. doublereal anrm;
  714. integer idum[1], ierr, itau, lwork_zunglq_mn__, lwork_zunglq_nn__,
  715. lwork_zungqr_mm__, lwork_zungqr_mn__, irvt, lwork_zunmbr_prc_mm__,
  716. lwork_zunmbr_prc_mn__, lwork_zunmbr_prc_nn__,
  717. lwork_zunmbr_qln_mm__, lwork_zunmbr_qln_mn__,
  718. lwork_zunmbr_qln_nn__, i__;
  719. extern logical lsame_(char *, char *);
  720. integer chunk, minmn;
  721. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  722. integer *, doublecomplex *, doublecomplex *, integer *,
  723. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  724. integer *);
  725. integer wrkbl, itaup, itauq;
  726. logical wntqa;
  727. integer nwork;
  728. logical wntqn, wntqo, wntqs;
  729. extern /* Subroutine */ void zlacp2_(char *, integer *, integer *,
  730. doublereal *, integer *, doublecomplex *, integer *);
  731. integer mnthr1, mnthr2, ie;
  732. extern /* Subroutine */ void dbdsdc_(char *, char *, integer *, doublereal
  733. *, doublereal *, doublereal *, integer *, doublereal *, integer *,
  734. doublereal *, integer *, doublereal *, integer *, integer *);
  735. integer il;
  736. extern doublereal dlamch_(char *);
  737. integer ir, iu;
  738. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  739. doublereal *, doublereal *, integer *, integer *, doublereal *,
  740. integer *, integer *);
  741. integer lwork_zungbr_p_mn__, lwork_zungbr_p_nn__, lwork_zungbr_q_mn__,
  742. lwork_zungbr_q_mm__;
  743. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  744. doublereal bignum;
  745. extern /* Subroutine */ void zgebrd_(integer *, integer *, doublecomplex *,
  746. integer *, doublereal *, doublereal *, doublecomplex *,
  747. doublecomplex *, doublecomplex *, integer *, integer *);
  748. extern logical disnan_(doublereal *);
  749. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  750. integer *, doublereal *);
  751. extern /* Subroutine */ void zgelqf_(integer *, integer *, doublecomplex *,
  752. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  753. ), zlacrm_(integer *, integer *, doublecomplex *, integer *,
  754. doublereal *, integer *, doublecomplex *, integer *, doublereal *)
  755. , zlarcm_(integer *, integer *, doublereal *, integer *,
  756. doublecomplex *, integer *, doublecomplex *, integer *,
  757. doublereal *), zlascl_(char *, integer *, integer *, doublereal *,
  758. doublereal *, integer *, integer *, doublecomplex *, integer *,
  759. integer *), zgeqrf_(integer *, integer *, doublecomplex *,
  760. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  761. );
  762. integer ldwrkl;
  763. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  764. doublecomplex *, integer *, doublecomplex *, integer *),
  765. zlaset_(char *, integer *, integer *, doublecomplex *,
  766. doublecomplex *, doublecomplex *, integer *);
  767. integer ldwrkr, minwrk, ldwrku, maxwrk;
  768. extern /* Subroutine */ void zungbr_(char *, integer *, integer *, integer
  769. *, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  770. integer *, integer *);
  771. integer ldwkvt;
  772. doublereal smlnum;
  773. logical wntqas;
  774. extern /* Subroutine */ void zunmbr_(char *, char *, char *, integer *,
  775. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  776. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  777. ), zunglq_(integer *, integer *, integer *
  778. , doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  779. integer *, integer *);
  780. logical lquery;
  781. integer nrwork;
  782. extern /* Subroutine */ void zungqr_(integer *, integer *, integer *,
  783. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  784. integer *, integer *);
  785. integer blk;
  786. doublereal dum[1], eps;
  787. integer iru, ivt;
  788. /* -- LAPACK driver routine (version 3.7.0) -- */
  789. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  790. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  791. /* June 2016 */
  792. /* ===================================================================== */
  793. /* Test the input arguments */
  794. /* Parameter adjustments */
  795. a_dim1 = *lda;
  796. a_offset = 1 + a_dim1 * 1;
  797. a -= a_offset;
  798. --s;
  799. u_dim1 = *ldu;
  800. u_offset = 1 + u_dim1 * 1;
  801. u -= u_offset;
  802. vt_dim1 = *ldvt;
  803. vt_offset = 1 + vt_dim1 * 1;
  804. vt -= vt_offset;
  805. --work;
  806. --rwork;
  807. --iwork;
  808. /* Function Body */
  809. *info = 0;
  810. minmn = f2cmin(*m,*n);
  811. mnthr1 = (integer) (minmn * 17. / 9.);
  812. mnthr2 = (integer) (minmn * 5. / 3.);
  813. wntqa = lsame_(jobz, "A");
  814. wntqs = lsame_(jobz, "S");
  815. wntqas = wntqa || wntqs;
  816. wntqo = lsame_(jobz, "O");
  817. wntqn = lsame_(jobz, "N");
  818. lquery = *lwork == -1;
  819. minwrk = 1;
  820. maxwrk = 1;
  821. if (! (wntqa || wntqs || wntqo || wntqn)) {
  822. *info = -1;
  823. } else if (*m < 0) {
  824. *info = -2;
  825. } else if (*n < 0) {
  826. *info = -3;
  827. } else if (*lda < f2cmax(1,*m)) {
  828. *info = -5;
  829. } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
  830. m) {
  831. *info = -8;
  832. } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn ||
  833. wntqo && *m >= *n && *ldvt < *n) {
  834. *info = -10;
  835. }
  836. /* Compute workspace */
  837. /* Note: Comments in the code beginning "Workspace:" describe the */
  838. /* minimal amount of workspace allocated at that point in the code, */
  839. /* as well as the preferred amount for good performance. */
  840. /* CWorkspace refers to complex workspace, and RWorkspace to */
  841. /* real workspace. NB refers to the optimal block size for the */
  842. /* immediately following subroutine, as returned by ILAENV.) */
  843. if (*info == 0) {
  844. minwrk = 1;
  845. maxwrk = 1;
  846. if (*m >= *n && minmn > 0) {
  847. /* There is no complex work space needed for bidiagonal SVD */
  848. /* The real work space needed for bidiagonal SVD (dbdsdc) is */
  849. /* BDSPAC = 3*N*N + 4*N for singular values and vectors; */
  850. /* BDSPAC = 4*N for singular values only; */
  851. /* not including e, RU, and RVT matrices. */
  852. /* Compute space preferred for each routine */
  853. zgebrd_(m, n, cdum, m, dum, dum, cdum, cdum, cdum, &c_n1, &ierr);
  854. lwork_zgebrd_mn__ = (integer) cdum[0].r;
  855. zgebrd_(n, n, cdum, n, dum, dum, cdum, cdum, cdum, &c_n1, &ierr);
  856. lwork_zgebrd_nn__ = (integer) cdum[0].r;
  857. zgeqrf_(m, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  858. lwork_zgeqrf_mn__ = (integer) cdum[0].r;
  859. zungbr_("P", n, n, n, cdum, n, cdum, cdum, &c_n1, &ierr);
  860. lwork_zungbr_p_nn__ = (integer) cdum[0].r;
  861. zungbr_("Q", m, m, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  862. lwork_zungbr_q_mm__ = (integer) cdum[0].r;
  863. zungbr_("Q", m, n, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  864. lwork_zungbr_q_mn__ = (integer) cdum[0].r;
  865. zungqr_(m, m, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  866. lwork_zungqr_mm__ = (integer) cdum[0].r;
  867. zungqr_(m, n, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  868. lwork_zungqr_mn__ = (integer) cdum[0].r;
  869. zunmbr_("P", "R", "C", n, n, n, cdum, n, cdum, cdum, n, cdum, &
  870. c_n1, &ierr);
  871. lwork_zunmbr_prc_nn__ = (integer) cdum[0].r;
  872. zunmbr_("Q", "L", "N", m, m, n, cdum, m, cdum, cdum, m, cdum, &
  873. c_n1, &ierr);
  874. lwork_zunmbr_qln_mm__ = (integer) cdum[0].r;
  875. zunmbr_("Q", "L", "N", m, n, n, cdum, m, cdum, cdum, m, cdum, &
  876. c_n1, &ierr);
  877. lwork_zunmbr_qln_mn__ = (integer) cdum[0].r;
  878. zunmbr_("Q", "L", "N", n, n, n, cdum, n, cdum, cdum, n, cdum, &
  879. c_n1, &ierr);
  880. lwork_zunmbr_qln_nn__ = (integer) cdum[0].r;
  881. if (*m >= mnthr1) {
  882. if (wntqn) {
  883. /* Path 1 (M >> N, JOBZ='N') */
  884. maxwrk = *n + lwork_zgeqrf_mn__;
  885. /* Computing MAX */
  886. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zgebrd_nn__;
  887. maxwrk = f2cmax(i__1,i__2);
  888. minwrk = *n * 3;
  889. } else if (wntqo) {
  890. /* Path 2 (M >> N, JOBZ='O') */
  891. wrkbl = *n + lwork_zgeqrf_mn__;
  892. /* Computing MAX */
  893. i__1 = wrkbl, i__2 = *n + lwork_zungqr_mn__;
  894. wrkbl = f2cmax(i__1,i__2);
  895. /* Computing MAX */
  896. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zgebrd_nn__;
  897. wrkbl = f2cmax(i__1,i__2);
  898. /* Computing MAX */
  899. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_qln_nn__;
  900. wrkbl = f2cmax(i__1,i__2);
  901. /* Computing MAX */
  902. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  903. wrkbl = f2cmax(i__1,i__2);
  904. maxwrk = *m * *n + *n * *n + wrkbl;
  905. minwrk = (*n << 1) * *n + *n * 3;
  906. } else if (wntqs) {
  907. /* Path 3 (M >> N, JOBZ='S') */
  908. wrkbl = *n + lwork_zgeqrf_mn__;
  909. /* Computing MAX */
  910. i__1 = wrkbl, i__2 = *n + lwork_zungqr_mn__;
  911. wrkbl = f2cmax(i__1,i__2);
  912. /* Computing MAX */
  913. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zgebrd_nn__;
  914. wrkbl = f2cmax(i__1,i__2);
  915. /* Computing MAX */
  916. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_qln_nn__;
  917. wrkbl = f2cmax(i__1,i__2);
  918. /* Computing MAX */
  919. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  920. wrkbl = f2cmax(i__1,i__2);
  921. maxwrk = *n * *n + wrkbl;
  922. minwrk = *n * *n + *n * 3;
  923. } else if (wntqa) {
  924. /* Path 4 (M >> N, JOBZ='A') */
  925. wrkbl = *n + lwork_zgeqrf_mn__;
  926. /* Computing MAX */
  927. i__1 = wrkbl, i__2 = *n + lwork_zungqr_mm__;
  928. wrkbl = f2cmax(i__1,i__2);
  929. /* Computing MAX */
  930. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zgebrd_nn__;
  931. wrkbl = f2cmax(i__1,i__2);
  932. /* Computing MAX */
  933. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_qln_nn__;
  934. wrkbl = f2cmax(i__1,i__2);
  935. /* Computing MAX */
  936. i__1 = wrkbl, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  937. wrkbl = f2cmax(i__1,i__2);
  938. maxwrk = *n * *n + wrkbl;
  939. /* Computing MAX */
  940. i__1 = *n * 3, i__2 = *n + *m;
  941. minwrk = *n * *n + f2cmax(i__1,i__2);
  942. }
  943. } else if (*m >= mnthr2) {
  944. /* Path 5 (M >> N, but not as much as MNTHR1) */
  945. maxwrk = (*n << 1) + lwork_zgebrd_mn__;
  946. minwrk = (*n << 1) + *m;
  947. if (wntqo) {
  948. /* Path 5o (M >> N, JOBZ='O') */
  949. /* Computing MAX */
  950. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_p_nn__;
  951. maxwrk = f2cmax(i__1,i__2);
  952. /* Computing MAX */
  953. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_q_mn__;
  954. maxwrk = f2cmax(i__1,i__2);
  955. maxwrk += *m * *n;
  956. minwrk += *n * *n;
  957. } else if (wntqs) {
  958. /* Path 5s (M >> N, JOBZ='S') */
  959. /* Computing MAX */
  960. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_p_nn__;
  961. maxwrk = f2cmax(i__1,i__2);
  962. /* Computing MAX */
  963. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_q_mn__;
  964. maxwrk = f2cmax(i__1,i__2);
  965. } else if (wntqa) {
  966. /* Path 5a (M >> N, JOBZ='A') */
  967. /* Computing MAX */
  968. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_p_nn__;
  969. maxwrk = f2cmax(i__1,i__2);
  970. /* Computing MAX */
  971. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr_q_mm__;
  972. maxwrk = f2cmax(i__1,i__2);
  973. }
  974. } else {
  975. /* Path 6 (M >= N, but not much larger) */
  976. maxwrk = (*n << 1) + lwork_zgebrd_mn__;
  977. minwrk = (*n << 1) + *m;
  978. if (wntqo) {
  979. /* Path 6o (M >= N, JOBZ='O') */
  980. /* Computing MAX */
  981. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  982. maxwrk = f2cmax(i__1,i__2);
  983. /* Computing MAX */
  984. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_qln_mn__;
  985. maxwrk = f2cmax(i__1,i__2);
  986. maxwrk += *m * *n;
  987. minwrk += *n * *n;
  988. } else if (wntqs) {
  989. /* Path 6s (M >= N, JOBZ='S') */
  990. /* Computing MAX */
  991. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_qln_mn__;
  992. maxwrk = f2cmax(i__1,i__2);
  993. /* Computing MAX */
  994. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  995. maxwrk = f2cmax(i__1,i__2);
  996. } else if (wntqa) {
  997. /* Path 6a (M >= N, JOBZ='A') */
  998. /* Computing MAX */
  999. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_qln_mm__;
  1000. maxwrk = f2cmax(i__1,i__2);
  1001. /* Computing MAX */
  1002. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr_prc_nn__;
  1003. maxwrk = f2cmax(i__1,i__2);
  1004. }
  1005. }
  1006. } else if (minmn > 0) {
  1007. /* There is no complex work space needed for bidiagonal SVD */
  1008. /* The real work space needed for bidiagonal SVD (dbdsdc) is */
  1009. /* BDSPAC = 3*M*M + 4*M for singular values and vectors; */
  1010. /* BDSPAC = 4*M for singular values only; */
  1011. /* not including e, RU, and RVT matrices. */
  1012. /* Compute space preferred for each routine */
  1013. zgebrd_(m, n, cdum, m, dum, dum, cdum, cdum, cdum, &c_n1, &ierr);
  1014. lwork_zgebrd_mn__ = (integer) cdum[0].r;
  1015. zgebrd_(m, m, cdum, m, dum, dum, cdum, cdum, cdum, &c_n1, &ierr);
  1016. lwork_zgebrd_mm__ = (integer) cdum[0].r;
  1017. zgelqf_(m, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  1018. lwork_zgelqf_mn__ = (integer) cdum[0].r;
  1019. zungbr_("P", m, n, m, cdum, m, cdum, cdum, &c_n1, &ierr);
  1020. lwork_zungbr_p_mn__ = (integer) cdum[0].r;
  1021. zungbr_("P", n, n, m, cdum, n, cdum, cdum, &c_n1, &ierr);
  1022. lwork_zungbr_p_nn__ = (integer) cdum[0].r;
  1023. zungbr_("Q", m, m, n, cdum, m, cdum, cdum, &c_n1, &ierr);
  1024. lwork_zungbr_q_mm__ = (integer) cdum[0].r;
  1025. zunglq_(m, n, m, cdum, m, cdum, cdum, &c_n1, &ierr);
  1026. lwork_zunglq_mn__ = (integer) cdum[0].r;
  1027. zunglq_(n, n, m, cdum, n, cdum, cdum, &c_n1, &ierr);
  1028. lwork_zunglq_nn__ = (integer) cdum[0].r;
  1029. zunmbr_("P", "R", "C", m, m, m, cdum, m, cdum, cdum, m, cdum, &
  1030. c_n1, &ierr);
  1031. lwork_zunmbr_prc_mm__ = (integer) cdum[0].r;
  1032. zunmbr_("P", "R", "C", m, n, m, cdum, m, cdum, cdum, m, cdum, &
  1033. c_n1, &ierr);
  1034. lwork_zunmbr_prc_mn__ = (integer) cdum[0].r;
  1035. zunmbr_("P", "R", "C", n, n, m, cdum, n, cdum, cdum, n, cdum, &
  1036. c_n1, &ierr);
  1037. lwork_zunmbr_prc_nn__ = (integer) cdum[0].r;
  1038. zunmbr_("Q", "L", "N", m, m, m, cdum, m, cdum, cdum, m, cdum, &
  1039. c_n1, &ierr);
  1040. lwork_zunmbr_qln_mm__ = (integer) cdum[0].r;
  1041. if (*n >= mnthr1) {
  1042. if (wntqn) {
  1043. /* Path 1t (N >> M, JOBZ='N') */
  1044. maxwrk = *m + lwork_zgelqf_mn__;
  1045. /* Computing MAX */
  1046. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zgebrd_mm__;
  1047. maxwrk = f2cmax(i__1,i__2);
  1048. minwrk = *m * 3;
  1049. } else if (wntqo) {
  1050. /* Path 2t (N >> M, JOBZ='O') */
  1051. wrkbl = *m + lwork_zgelqf_mn__;
  1052. /* Computing MAX */
  1053. i__1 = wrkbl, i__2 = *m + lwork_zunglq_mn__;
  1054. wrkbl = f2cmax(i__1,i__2);
  1055. /* Computing MAX */
  1056. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zgebrd_mm__;
  1057. wrkbl = f2cmax(i__1,i__2);
  1058. /* Computing MAX */
  1059. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1060. wrkbl = f2cmax(i__1,i__2);
  1061. /* Computing MAX */
  1062. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_prc_mm__;
  1063. wrkbl = f2cmax(i__1,i__2);
  1064. maxwrk = *m * *n + *m * *m + wrkbl;
  1065. minwrk = (*m << 1) * *m + *m * 3;
  1066. } else if (wntqs) {
  1067. /* Path 3t (N >> M, JOBZ='S') */
  1068. wrkbl = *m + lwork_zgelqf_mn__;
  1069. /* Computing MAX */
  1070. i__1 = wrkbl, i__2 = *m + lwork_zunglq_mn__;
  1071. wrkbl = f2cmax(i__1,i__2);
  1072. /* Computing MAX */
  1073. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zgebrd_mm__;
  1074. wrkbl = f2cmax(i__1,i__2);
  1075. /* Computing MAX */
  1076. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1077. wrkbl = f2cmax(i__1,i__2);
  1078. /* Computing MAX */
  1079. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_prc_mm__;
  1080. wrkbl = f2cmax(i__1,i__2);
  1081. maxwrk = *m * *m + wrkbl;
  1082. minwrk = *m * *m + *m * 3;
  1083. } else if (wntqa) {
  1084. /* Path 4t (N >> M, JOBZ='A') */
  1085. wrkbl = *m + lwork_zgelqf_mn__;
  1086. /* Computing MAX */
  1087. i__1 = wrkbl, i__2 = *m + lwork_zunglq_nn__;
  1088. wrkbl = f2cmax(i__1,i__2);
  1089. /* Computing MAX */
  1090. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zgebrd_mm__;
  1091. wrkbl = f2cmax(i__1,i__2);
  1092. /* Computing MAX */
  1093. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1094. wrkbl = f2cmax(i__1,i__2);
  1095. /* Computing MAX */
  1096. i__1 = wrkbl, i__2 = (*m << 1) + lwork_zunmbr_prc_mm__;
  1097. wrkbl = f2cmax(i__1,i__2);
  1098. maxwrk = *m * *m + wrkbl;
  1099. /* Computing MAX */
  1100. i__1 = *m * 3, i__2 = *m + *n;
  1101. minwrk = *m * *m + f2cmax(i__1,i__2);
  1102. }
  1103. } else if (*n >= mnthr2) {
  1104. /* Path 5t (N >> M, but not as much as MNTHR1) */
  1105. maxwrk = (*m << 1) + lwork_zgebrd_mn__;
  1106. minwrk = (*m << 1) + *n;
  1107. if (wntqo) {
  1108. /* Path 5to (N >> M, JOBZ='O') */
  1109. /* Computing MAX */
  1110. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_q_mm__;
  1111. maxwrk = f2cmax(i__1,i__2);
  1112. /* Computing MAX */
  1113. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_p_mn__;
  1114. maxwrk = f2cmax(i__1,i__2);
  1115. maxwrk += *m * *n;
  1116. minwrk += *m * *m;
  1117. } else if (wntqs) {
  1118. /* Path 5ts (N >> M, JOBZ='S') */
  1119. /* Computing MAX */
  1120. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_q_mm__;
  1121. maxwrk = f2cmax(i__1,i__2);
  1122. /* Computing MAX */
  1123. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_p_mn__;
  1124. maxwrk = f2cmax(i__1,i__2);
  1125. } else if (wntqa) {
  1126. /* Path 5ta (N >> M, JOBZ='A') */
  1127. /* Computing MAX */
  1128. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_q_mm__;
  1129. maxwrk = f2cmax(i__1,i__2);
  1130. /* Computing MAX */
  1131. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr_p_nn__;
  1132. maxwrk = f2cmax(i__1,i__2);
  1133. }
  1134. } else {
  1135. /* Path 6t (N > M, but not much larger) */
  1136. maxwrk = (*m << 1) + lwork_zgebrd_mn__;
  1137. minwrk = (*m << 1) + *n;
  1138. if (wntqo) {
  1139. /* Path 6to (N > M, JOBZ='O') */
  1140. /* Computing MAX */
  1141. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1142. maxwrk = f2cmax(i__1,i__2);
  1143. /* Computing MAX */
  1144. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_prc_mn__;
  1145. maxwrk = f2cmax(i__1,i__2);
  1146. maxwrk += *m * *n;
  1147. minwrk += *m * *m;
  1148. } else if (wntqs) {
  1149. /* Path 6ts (N > M, JOBZ='S') */
  1150. /* Computing MAX */
  1151. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1152. maxwrk = f2cmax(i__1,i__2);
  1153. /* Computing MAX */
  1154. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_prc_mn__;
  1155. maxwrk = f2cmax(i__1,i__2);
  1156. } else if (wntqa) {
  1157. /* Path 6ta (N > M, JOBZ='A') */
  1158. /* Computing MAX */
  1159. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_qln_mm__;
  1160. maxwrk = f2cmax(i__1,i__2);
  1161. /* Computing MAX */
  1162. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr_prc_nn__;
  1163. maxwrk = f2cmax(i__1,i__2);
  1164. }
  1165. }
  1166. }
  1167. maxwrk = f2cmax(maxwrk,minwrk);
  1168. }
  1169. if (*info == 0) {
  1170. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  1171. if (*lwork < minwrk && ! lquery) {
  1172. *info = -12;
  1173. }
  1174. }
  1175. if (*info != 0) {
  1176. i__1 = -(*info);
  1177. xerbla_("ZGESDD", &i__1, (ftnlen)6);
  1178. return;
  1179. } else if (lquery) {
  1180. return;
  1181. }
  1182. /* Quick return if possible */
  1183. if (*m == 0 || *n == 0) {
  1184. return;
  1185. }
  1186. /* Get machine constants */
  1187. eps = dlamch_("P");
  1188. smlnum = sqrt(dlamch_("S")) / eps;
  1189. bignum = 1. / smlnum;
  1190. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1191. anrm = zlange_("M", m, n, &a[a_offset], lda, dum);
  1192. if (disnan_(&anrm)) {
  1193. *info = -4;
  1194. return;
  1195. }
  1196. iscl = 0;
  1197. if (anrm > 0. && anrm < smlnum) {
  1198. iscl = 1;
  1199. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
  1200. ierr);
  1201. } else if (anrm > bignum) {
  1202. iscl = 1;
  1203. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
  1204. ierr);
  1205. }
  1206. if (*m >= *n) {
  1207. /* A has at least as many rows as columns. If A has sufficiently */
  1208. /* more rows than columns, first reduce using the QR */
  1209. /* decomposition (if sufficient workspace available) */
  1210. if (*m >= mnthr1) {
  1211. if (wntqn) {
  1212. /* Path 1 (M >> N, JOBZ='N') */
  1213. /* No singular vectors to be computed */
  1214. itau = 1;
  1215. nwork = itau + *n;
  1216. /* Compute A=Q*R */
  1217. /* CWorkspace: need N [tau] + N [work] */
  1218. /* CWorkspace: prefer N [tau] + N*NB [work] */
  1219. /* RWorkspace: need 0 */
  1220. i__1 = *lwork - nwork + 1;
  1221. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1222. i__1, &ierr);
  1223. /* Zero out below R */
  1224. i__1 = *n - 1;
  1225. i__2 = *n - 1;
  1226. zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  1227. ie = 1;
  1228. itauq = 1;
  1229. itaup = itauq + *n;
  1230. nwork = itaup + *n;
  1231. /* Bidiagonalize R in A */
  1232. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1233. /* CWorkspace: prefer 2*N [tauq, taup] + 2*N*NB [work] */
  1234. /* RWorkspace: need N [e] */
  1235. i__1 = *lwork - nwork + 1;
  1236. zgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
  1237. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1238. nrwork = ie + *n;
  1239. /* Perform bidiagonal SVD, compute singular values only */
  1240. /* CWorkspace: need 0 */
  1241. /* RWorkspace: need N [e] + BDSPAC */
  1242. dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
  1243. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  1244. } else if (wntqo) {
  1245. /* Path 2 (M >> N, JOBZ='O') */
  1246. /* N left singular vectors to be overwritten on A and */
  1247. /* N right singular vectors to be computed in VT */
  1248. iu = 1;
  1249. /* WORK(IU) is N by N */
  1250. ldwrku = *n;
  1251. ir = iu + ldwrku * *n;
  1252. if (*lwork >= *m * *n + *n * *n + *n * 3) {
  1253. /* WORK(IR) is M by N */
  1254. ldwrkr = *m;
  1255. } else {
  1256. ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
  1257. }
  1258. itau = ir + ldwrkr * *n;
  1259. nwork = itau + *n;
  1260. /* Compute A=Q*R */
  1261. /* CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work] */
  1262. /* CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work] */
  1263. /* RWorkspace: need 0 */
  1264. i__1 = *lwork - nwork + 1;
  1265. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1266. i__1, &ierr);
  1267. /* Copy R to WORK( IR ), zeroing out below it */
  1268. zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1269. i__1 = *n - 1;
  1270. i__2 = *n - 1;
  1271. zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &work[ir + 1], &
  1272. ldwrkr);
  1273. /* Generate Q in A */
  1274. /* CWorkspace: need N*N [U] + N*N [R] + N [tau] + N [work] */
  1275. /* CWorkspace: prefer N*N [U] + N*N [R] + N [tau] + N*NB [work] */
  1276. /* RWorkspace: need 0 */
  1277. i__1 = *lwork - nwork + 1;
  1278. zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1279. &i__1, &ierr);
  1280. ie = 1;
  1281. itauq = itau;
  1282. itaup = itauq + *n;
  1283. nwork = itaup + *n;
  1284. /* Bidiagonalize R in WORK(IR) */
  1285. /* CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work] */
  1286. /* CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + 2*N*NB [work] */
  1287. /* RWorkspace: need N [e] */
  1288. i__1 = *lwork - nwork + 1;
  1289. zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
  1290. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  1291. /* Perform bidiagonal SVD, computing left singular vectors */
  1292. /* of R in WORK(IRU) and computing right singular vectors */
  1293. /* of R in WORK(IRVT) */
  1294. /* CWorkspace: need 0 */
  1295. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1296. iru = ie + *n;
  1297. irvt = iru + *n * *n;
  1298. nrwork = irvt + *n * *n;
  1299. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1300. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1301. info);
  1302. /* Copy real matrix RWORK(IRU) to complex matrix WORK(IU) */
  1303. /* Overwrite WORK(IU) by the left singular vectors of R */
  1304. /* CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work] */
  1305. /* CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work] */
  1306. /* RWorkspace: need 0 */
  1307. zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
  1308. i__1 = *lwork - nwork + 1;
  1309. zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1310. itauq], &work[iu], &ldwrku, &work[nwork], &i__1, &
  1311. ierr);
  1312. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1313. /* Overwrite VT by the right singular vectors of R */
  1314. /* CWorkspace: need N*N [U] + N*N [R] + 2*N [tauq, taup] + N [work] */
  1315. /* CWorkspace: prefer N*N [U] + N*N [R] + 2*N [tauq, taup] + N*NB [work] */
  1316. /* RWorkspace: need 0 */
  1317. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1318. i__1 = *lwork - nwork + 1;
  1319. zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
  1320. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1321. ierr);
  1322. /* Multiply Q in A by left singular vectors of R in */
  1323. /* WORK(IU), storing result in WORK(IR) and copying to A */
  1324. /* CWorkspace: need N*N [U] + N*N [R] */
  1325. /* CWorkspace: prefer N*N [U] + M*N [R] */
  1326. /* RWorkspace: need 0 */
  1327. i__1 = *m;
  1328. i__2 = ldwrkr;
  1329. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1330. i__2) {
  1331. /* Computing MIN */
  1332. i__3 = *m - i__ + 1;
  1333. chunk = f2cmin(i__3,ldwrkr);
  1334. zgemm_("N", "N", &chunk, n, n, &c_b2, &a[i__ + a_dim1],
  1335. lda, &work[iu], &ldwrku, &c_b1, &work[ir], &
  1336. ldwrkr);
  1337. zlacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ +
  1338. a_dim1], lda);
  1339. /* L10: */
  1340. }
  1341. } else if (wntqs) {
  1342. /* Path 3 (M >> N, JOBZ='S') */
  1343. /* N left singular vectors to be computed in U and */
  1344. /* N right singular vectors to be computed in VT */
  1345. ir = 1;
  1346. /* WORK(IR) is N by N */
  1347. ldwrkr = *n;
  1348. itau = ir + ldwrkr * *n;
  1349. nwork = itau + *n;
  1350. /* Compute A=Q*R */
  1351. /* CWorkspace: need N*N [R] + N [tau] + N [work] */
  1352. /* CWorkspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1353. /* RWorkspace: need 0 */
  1354. i__2 = *lwork - nwork + 1;
  1355. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1356. i__2, &ierr);
  1357. /* Copy R to WORK(IR), zeroing out below it */
  1358. zlacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
  1359. i__2 = *n - 1;
  1360. i__1 = *n - 1;
  1361. zlaset_("L", &i__2, &i__1, &c_b1, &c_b1, &work[ir + 1], &
  1362. ldwrkr);
  1363. /* Generate Q in A */
  1364. /* CWorkspace: need N*N [R] + N [tau] + N [work] */
  1365. /* CWorkspace: prefer N*N [R] + N [tau] + N*NB [work] */
  1366. /* RWorkspace: need 0 */
  1367. i__2 = *lwork - nwork + 1;
  1368. zungqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
  1369. &i__2, &ierr);
  1370. ie = 1;
  1371. itauq = itau;
  1372. itaup = itauq + *n;
  1373. nwork = itaup + *n;
  1374. /* Bidiagonalize R in WORK(IR) */
  1375. /* CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work] */
  1376. /* CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + 2*N*NB [work] */
  1377. /* RWorkspace: need N [e] */
  1378. i__2 = *lwork - nwork + 1;
  1379. zgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &rwork[ie], &work[
  1380. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1381. /* Perform bidiagonal SVD, computing left singular vectors */
  1382. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1383. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1384. /* CWorkspace: need 0 */
  1385. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1386. iru = ie + *n;
  1387. irvt = iru + *n * *n;
  1388. nrwork = irvt + *n * *n;
  1389. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1390. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1391. info);
  1392. /* Copy real matrix RWORK(IRU) to complex matrix U */
  1393. /* Overwrite U by left singular vectors of R */
  1394. /* CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work] */
  1395. /* CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work] */
  1396. /* RWorkspace: need 0 */
  1397. zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
  1398. i__2 = *lwork - nwork + 1;
  1399. zunmbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
  1400. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1401. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1402. /* Overwrite VT by right singular vectors of R */
  1403. /* CWorkspace: need N*N [R] + 2*N [tauq, taup] + N [work] */
  1404. /* CWorkspace: prefer N*N [R] + 2*N [tauq, taup] + N*NB [work] */
  1405. /* RWorkspace: need 0 */
  1406. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1407. i__2 = *lwork - nwork + 1;
  1408. zunmbr_("P", "R", "C", n, n, n, &work[ir], &ldwrkr, &work[
  1409. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1410. ierr);
  1411. /* Multiply Q in A by left singular vectors of R in */
  1412. /* WORK(IR), storing result in U */
  1413. /* CWorkspace: need N*N [R] */
  1414. /* RWorkspace: need 0 */
  1415. zlacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
  1416. zgemm_("N", "N", m, n, n, &c_b2, &a[a_offset], lda, &work[ir],
  1417. &ldwrkr, &c_b1, &u[u_offset], ldu);
  1418. } else if (wntqa) {
  1419. /* Path 4 (M >> N, JOBZ='A') */
  1420. /* M left singular vectors to be computed in U and */
  1421. /* N right singular vectors to be computed in VT */
  1422. iu = 1;
  1423. /* WORK(IU) is N by N */
  1424. ldwrku = *n;
  1425. itau = iu + ldwrku * *n;
  1426. nwork = itau + *n;
  1427. /* Compute A=Q*R, copying result to U */
  1428. /* CWorkspace: need N*N [U] + N [tau] + N [work] */
  1429. /* CWorkspace: prefer N*N [U] + N [tau] + N*NB [work] */
  1430. /* RWorkspace: need 0 */
  1431. i__2 = *lwork - nwork + 1;
  1432. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1433. i__2, &ierr);
  1434. zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1435. /* Generate Q in U */
  1436. /* CWorkspace: need N*N [U] + N [tau] + M [work] */
  1437. /* CWorkspace: prefer N*N [U] + N [tau] + M*NB [work] */
  1438. /* RWorkspace: need 0 */
  1439. i__2 = *lwork - nwork + 1;
  1440. zungqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
  1441. &i__2, &ierr);
  1442. /* Produce R in A, zeroing out below it */
  1443. i__2 = *n - 1;
  1444. i__1 = *n - 1;
  1445. zlaset_("L", &i__2, &i__1, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  1446. ie = 1;
  1447. itauq = itau;
  1448. itaup = itauq + *n;
  1449. nwork = itaup + *n;
  1450. /* Bidiagonalize R in A */
  1451. /* CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work] */
  1452. /* CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + 2*N*NB [work] */
  1453. /* RWorkspace: need N [e] */
  1454. i__2 = *lwork - nwork + 1;
  1455. zgebrd_(n, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[
  1456. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1457. iru = ie + *n;
  1458. irvt = iru + *n * *n;
  1459. nrwork = irvt + *n * *n;
  1460. /* Perform bidiagonal SVD, computing left singular vectors */
  1461. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1462. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1463. /* CWorkspace: need 0 */
  1464. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1465. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1466. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1467. info);
  1468. /* Copy real matrix RWORK(IRU) to complex matrix WORK(IU) */
  1469. /* Overwrite WORK(IU) by left singular vectors of R */
  1470. /* CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work] */
  1471. /* CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work] */
  1472. /* RWorkspace: need 0 */
  1473. zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
  1474. i__2 = *lwork - nwork + 1;
  1475. zunmbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
  1476. itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
  1477. ierr);
  1478. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1479. /* Overwrite VT by right singular vectors of R */
  1480. /* CWorkspace: need N*N [U] + 2*N [tauq, taup] + N [work] */
  1481. /* CWorkspace: prefer N*N [U] + 2*N [tauq, taup] + N*NB [work] */
  1482. /* RWorkspace: need 0 */
  1483. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1484. i__2 = *lwork - nwork + 1;
  1485. zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
  1486. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1487. ierr);
  1488. /* Multiply Q in U by left singular vectors of R in */
  1489. /* WORK(IU), storing result in A */
  1490. /* CWorkspace: need N*N [U] */
  1491. /* RWorkspace: need 0 */
  1492. zgemm_("N", "N", m, n, n, &c_b2, &u[u_offset], ldu, &work[iu],
  1493. &ldwrku, &c_b1, &a[a_offset], lda);
  1494. /* Copy left singular vectors of A from A to U */
  1495. zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1496. }
  1497. } else if (*m >= mnthr2) {
  1498. /* MNTHR2 <= M < MNTHR1 */
  1499. /* Path 5 (M >> N, but not as much as MNTHR1) */
  1500. /* Reduce to bidiagonal form without QR decomposition, use */
  1501. /* ZUNGBR and matrix multiplication to compute singular vectors */
  1502. ie = 1;
  1503. nrwork = ie + *n;
  1504. itauq = 1;
  1505. itaup = itauq + *n;
  1506. nwork = itaup + *n;
  1507. /* Bidiagonalize A */
  1508. /* CWorkspace: need 2*N [tauq, taup] + M [work] */
  1509. /* CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work] */
  1510. /* RWorkspace: need N [e] */
  1511. i__2 = *lwork - nwork + 1;
  1512. zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1513. &work[itaup], &work[nwork], &i__2, &ierr);
  1514. if (wntqn) {
  1515. /* Path 5n (M >> N, JOBZ='N') */
  1516. /* Compute singular values only */
  1517. /* CWorkspace: need 0 */
  1518. /* RWorkspace: need N [e] + BDSPAC */
  1519. dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
  1520. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  1521. } else if (wntqo) {
  1522. iu = nwork;
  1523. iru = nrwork;
  1524. irvt = iru + *n * *n;
  1525. nrwork = irvt + *n * *n;
  1526. /* Path 5o (M >> N, JOBZ='O') */
  1527. /* Copy A to VT, generate P**H */
  1528. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1529. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1530. /* RWorkspace: need 0 */
  1531. zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1532. i__2 = *lwork - nwork + 1;
  1533. zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
  1534. work[nwork], &i__2, &ierr);
  1535. /* Generate Q in A */
  1536. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1537. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1538. /* RWorkspace: need 0 */
  1539. i__2 = *lwork - nwork + 1;
  1540. zungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &work[
  1541. nwork], &i__2, &ierr);
  1542. if (*lwork >= *m * *n + *n * 3) {
  1543. /* WORK( IU ) is M by N */
  1544. ldwrku = *m;
  1545. } else {
  1546. /* WORK(IU) is LDWRKU by N */
  1547. ldwrku = (*lwork - *n * 3) / *n;
  1548. }
  1549. nwork = iu + ldwrku * *n;
  1550. /* Perform bidiagonal SVD, computing left singular vectors */
  1551. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1552. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1553. /* CWorkspace: need 0 */
  1554. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1555. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1556. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1557. info);
  1558. /* Multiply real matrix RWORK(IRVT) by P**H in VT, */
  1559. /* storing the result in WORK(IU), copying to VT */
  1560. /* CWorkspace: need 2*N [tauq, taup] + N*N [U] */
  1561. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork] */
  1562. zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &work[iu]
  1563. , &ldwrku, &rwork[nrwork]);
  1564. zlacpy_("F", n, n, &work[iu], &ldwrku, &vt[vt_offset], ldvt);
  1565. /* Multiply Q in A by real matrix RWORK(IRU), storing the */
  1566. /* result in WORK(IU), copying to A */
  1567. /* CWorkspace: need 2*N [tauq, taup] + N*N [U] */
  1568. /* CWorkspace: prefer 2*N [tauq, taup] + M*N [U] */
  1569. /* RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork] */
  1570. /* RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here */
  1571. nrwork = irvt;
  1572. i__2 = *m;
  1573. i__1 = ldwrku;
  1574. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1575. i__1) {
  1576. /* Computing MIN */
  1577. i__3 = *m - i__ + 1;
  1578. chunk = f2cmin(i__3,ldwrku);
  1579. zlacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru], n,
  1580. &work[iu], &ldwrku, &rwork[nrwork]);
  1581. zlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
  1582. a_dim1], lda);
  1583. /* L20: */
  1584. }
  1585. } else if (wntqs) {
  1586. /* Path 5s (M >> N, JOBZ='S') */
  1587. /* Copy A to VT, generate P**H */
  1588. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1589. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1590. /* RWorkspace: need 0 */
  1591. zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1592. i__1 = *lwork - nwork + 1;
  1593. zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
  1594. work[nwork], &i__1, &ierr);
  1595. /* Copy A to U, generate Q */
  1596. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1597. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1598. /* RWorkspace: need 0 */
  1599. zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1600. i__1 = *lwork - nwork + 1;
  1601. zungbr_("Q", m, n, n, &u[u_offset], ldu, &work[itauq], &work[
  1602. nwork], &i__1, &ierr);
  1603. /* Perform bidiagonal SVD, computing left singular vectors */
  1604. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1605. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1606. /* CWorkspace: need 0 */
  1607. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1608. iru = nrwork;
  1609. irvt = iru + *n * *n;
  1610. nrwork = irvt + *n * *n;
  1611. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1612. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1613. info);
  1614. /* Multiply real matrix RWORK(IRVT) by P**H in VT, */
  1615. /* storing the result in A, copying to VT */
  1616. /* CWorkspace: need 0 */
  1617. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork] */
  1618. zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[
  1619. a_offset], lda, &rwork[nrwork]);
  1620. zlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1621. /* Multiply Q in U by real matrix RWORK(IRU), storing the */
  1622. /* result in A, copying to U */
  1623. /* CWorkspace: need 0 */
  1624. /* RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here */
  1625. nrwork = irvt;
  1626. zlacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset],
  1627. lda, &rwork[nrwork]);
  1628. zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1629. } else {
  1630. /* Path 5a (M >> N, JOBZ='A') */
  1631. /* Copy A to VT, generate P**H */
  1632. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1633. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1634. /* RWorkspace: need 0 */
  1635. zlacpy_("U", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1636. i__1 = *lwork - nwork + 1;
  1637. zungbr_("P", n, n, n, &vt[vt_offset], ldvt, &work[itaup], &
  1638. work[nwork], &i__1, &ierr);
  1639. /* Copy A to U, generate Q */
  1640. /* CWorkspace: need 2*N [tauq, taup] + M [work] */
  1641. /* CWorkspace: prefer 2*N [tauq, taup] + M*NB [work] */
  1642. /* RWorkspace: need 0 */
  1643. zlacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1644. i__1 = *lwork - nwork + 1;
  1645. zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
  1646. nwork], &i__1, &ierr);
  1647. /* Perform bidiagonal SVD, computing left singular vectors */
  1648. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1649. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1650. /* CWorkspace: need 0 */
  1651. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1652. iru = nrwork;
  1653. irvt = iru + *n * *n;
  1654. nrwork = irvt + *n * *n;
  1655. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1656. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1657. info);
  1658. /* Multiply real matrix RWORK(IRVT) by P**H in VT, */
  1659. /* storing the result in A, copying to VT */
  1660. /* CWorkspace: need 0 */
  1661. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + 2*N*N [rwork] */
  1662. zlarcm_(n, n, &rwork[irvt], n, &vt[vt_offset], ldvt, &a[
  1663. a_offset], lda, &rwork[nrwork]);
  1664. zlacpy_("F", n, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  1665. /* Multiply Q in U by real matrix RWORK(IRU), storing the */
  1666. /* result in A, copying to U */
  1667. /* CWorkspace: need 0 */
  1668. /* RWorkspace: need N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here */
  1669. nrwork = irvt;
  1670. zlacrm_(m, n, &u[u_offset], ldu, &rwork[iru], n, &a[a_offset],
  1671. lda, &rwork[nrwork]);
  1672. zlacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
  1673. }
  1674. } else {
  1675. /* M .LT. MNTHR2 */
  1676. /* Path 6 (M >= N, but not much larger) */
  1677. /* Reduce to bidiagonal form without QR decomposition */
  1678. /* Use ZUNMBR to compute singular vectors */
  1679. ie = 1;
  1680. nrwork = ie + *n;
  1681. itauq = 1;
  1682. itaup = itauq + *n;
  1683. nwork = itaup + *n;
  1684. /* Bidiagonalize A */
  1685. /* CWorkspace: need 2*N [tauq, taup] + M [work] */
  1686. /* CWorkspace: prefer 2*N [tauq, taup] + (M+N)*NB [work] */
  1687. /* RWorkspace: need N [e] */
  1688. i__1 = *lwork - nwork + 1;
  1689. zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1690. &work[itaup], &work[nwork], &i__1, &ierr);
  1691. if (wntqn) {
  1692. /* Path 6n (M >= N, JOBZ='N') */
  1693. /* Compute singular values only */
  1694. /* CWorkspace: need 0 */
  1695. /* RWorkspace: need N [e] + BDSPAC */
  1696. dbdsdc_("U", "N", n, &s[1], &rwork[ie], dum, &c__1, dum, &
  1697. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  1698. } else if (wntqo) {
  1699. iu = nwork;
  1700. iru = nrwork;
  1701. irvt = iru + *n * *n;
  1702. nrwork = irvt + *n * *n;
  1703. if (*lwork >= *m * *n + *n * 3) {
  1704. /* WORK( IU ) is M by N */
  1705. ldwrku = *m;
  1706. } else {
  1707. /* WORK( IU ) is LDWRKU by N */
  1708. ldwrku = (*lwork - *n * 3) / *n;
  1709. }
  1710. nwork = iu + ldwrku * *n;
  1711. /* Path 6o (M >= N, JOBZ='O') */
  1712. /* Perform bidiagonal SVD, computing left singular vectors */
  1713. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1714. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1715. /* CWorkspace: need 0 */
  1716. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1717. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1718. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1719. info);
  1720. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1721. /* Overwrite VT by right singular vectors of A */
  1722. /* CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work] */
  1723. /* CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work] */
  1724. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] */
  1725. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1726. i__1 = *lwork - nwork + 1;
  1727. zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
  1728. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  1729. ierr);
  1730. if (*lwork >= *m * *n + *n * 3) {
  1731. /* Path 6o-fast */
  1732. /* Copy real matrix RWORK(IRU) to complex matrix WORK(IU) */
  1733. /* Overwrite WORK(IU) by left singular vectors of A, copying */
  1734. /* to A */
  1735. /* CWorkspace: need 2*N [tauq, taup] + M*N [U] + N [work] */
  1736. /* CWorkspace: prefer 2*N [tauq, taup] + M*N [U] + N*NB [work] */
  1737. /* RWorkspace: need N [e] + N*N [RU] */
  1738. zlaset_("F", m, n, &c_b1, &c_b1, &work[iu], &ldwrku);
  1739. zlacp2_("F", n, n, &rwork[iru], n, &work[iu], &ldwrku);
  1740. i__1 = *lwork - nwork + 1;
  1741. zunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1742. itauq], &work[iu], &ldwrku, &work[nwork], &i__1, &
  1743. ierr);
  1744. zlacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
  1745. } else {
  1746. /* Path 6o-slow */
  1747. /* Generate Q in A */
  1748. /* CWorkspace: need 2*N [tauq, taup] + N*N [U] + N [work] */
  1749. /* CWorkspace: prefer 2*N [tauq, taup] + N*N [U] + N*NB [work] */
  1750. /* RWorkspace: need 0 */
  1751. i__1 = *lwork - nwork + 1;
  1752. zungbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
  1753. work[nwork], &i__1, &ierr);
  1754. /* Multiply Q in A by real matrix RWORK(IRU), storing the */
  1755. /* result in WORK(IU), copying to A */
  1756. /* CWorkspace: need 2*N [tauq, taup] + N*N [U] */
  1757. /* CWorkspace: prefer 2*N [tauq, taup] + M*N [U] */
  1758. /* RWorkspace: need N [e] + N*N [RU] + 2*N*N [rwork] */
  1759. /* RWorkspace: prefer N [e] + N*N [RU] + 2*M*N [rwork] < N + 5*N*N since M < 2*N here */
  1760. nrwork = irvt;
  1761. i__1 = *m;
  1762. i__2 = ldwrku;
  1763. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1764. i__2) {
  1765. /* Computing MIN */
  1766. i__3 = *m - i__ + 1;
  1767. chunk = f2cmin(i__3,ldwrku);
  1768. zlacrm_(&chunk, n, &a[i__ + a_dim1], lda, &rwork[iru],
  1769. n, &work[iu], &ldwrku, &rwork[nrwork]);
  1770. zlacpy_("F", &chunk, n, &work[iu], &ldwrku, &a[i__ +
  1771. a_dim1], lda);
  1772. /* L30: */
  1773. }
  1774. }
  1775. } else if (wntqs) {
  1776. /* Path 6s (M >= N, JOBZ='S') */
  1777. /* Perform bidiagonal SVD, computing left singular vectors */
  1778. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1779. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1780. /* CWorkspace: need 0 */
  1781. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1782. iru = nrwork;
  1783. irvt = iru + *n * *n;
  1784. nrwork = irvt + *n * *n;
  1785. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1786. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1787. info);
  1788. /* Copy real matrix RWORK(IRU) to complex matrix U */
  1789. /* Overwrite U by left singular vectors of A */
  1790. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1791. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1792. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] */
  1793. zlaset_("F", m, n, &c_b1, &c_b1, &u[u_offset], ldu)
  1794. ;
  1795. zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
  1796. i__2 = *lwork - nwork + 1;
  1797. zunmbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
  1798. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1799. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1800. /* Overwrite VT by right singular vectors of A */
  1801. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1802. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1803. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] */
  1804. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1805. i__2 = *lwork - nwork + 1;
  1806. zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
  1807. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1808. ierr);
  1809. } else {
  1810. /* Path 6a (M >= N, JOBZ='A') */
  1811. /* Perform bidiagonal SVD, computing left singular vectors */
  1812. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1813. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1814. /* CWorkspace: need 0 */
  1815. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] + BDSPAC */
  1816. iru = nrwork;
  1817. irvt = iru + *n * *n;
  1818. nrwork = irvt + *n * *n;
  1819. dbdsdc_("U", "I", n, &s[1], &rwork[ie], &rwork[iru], n, &
  1820. rwork[irvt], n, dum, idum, &rwork[nrwork], &iwork[1],
  1821. info);
  1822. /* Set the right corner of U to identity matrix */
  1823. zlaset_("F", m, m, &c_b1, &c_b1, &u[u_offset], ldu)
  1824. ;
  1825. if (*m > *n) {
  1826. i__2 = *m - *n;
  1827. i__1 = *m - *n;
  1828. zlaset_("F", &i__2, &i__1, &c_b1, &c_b2, &u[*n + 1 + (*n
  1829. + 1) * u_dim1], ldu);
  1830. }
  1831. /* Copy real matrix RWORK(IRU) to complex matrix U */
  1832. /* Overwrite U by left singular vectors of A */
  1833. /* CWorkspace: need 2*N [tauq, taup] + M [work] */
  1834. /* CWorkspace: prefer 2*N [tauq, taup] + M*NB [work] */
  1835. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] */
  1836. zlacp2_("F", n, n, &rwork[iru], n, &u[u_offset], ldu);
  1837. i__2 = *lwork - nwork + 1;
  1838. zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  1839. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1840. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  1841. /* Overwrite VT by right singular vectors of A */
  1842. /* CWorkspace: need 2*N [tauq, taup] + N [work] */
  1843. /* CWorkspace: prefer 2*N [tauq, taup] + N*NB [work] */
  1844. /* RWorkspace: need N [e] + N*N [RU] + N*N [RVT] */
  1845. zlacp2_("F", n, n, &rwork[irvt], n, &vt[vt_offset], ldvt);
  1846. i__2 = *lwork - nwork + 1;
  1847. zunmbr_("P", "R", "C", n, n, n, &a[a_offset], lda, &work[
  1848. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
  1849. ierr);
  1850. }
  1851. }
  1852. } else {
  1853. /* A has more columns than rows. If A has sufficiently more */
  1854. /* columns than rows, first reduce using the LQ decomposition (if */
  1855. /* sufficient workspace available) */
  1856. if (*n >= mnthr1) {
  1857. if (wntqn) {
  1858. /* Path 1t (N >> M, JOBZ='N') */
  1859. /* No singular vectors to be computed */
  1860. itau = 1;
  1861. nwork = itau + *m;
  1862. /* Compute A=L*Q */
  1863. /* CWorkspace: need M [tau] + M [work] */
  1864. /* CWorkspace: prefer M [tau] + M*NB [work] */
  1865. /* RWorkspace: need 0 */
  1866. i__2 = *lwork - nwork + 1;
  1867. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1868. i__2, &ierr);
  1869. /* Zero out above L */
  1870. i__2 = *m - 1;
  1871. i__1 = *m - 1;
  1872. zlaset_("U", &i__2, &i__1, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1]
  1873. , lda);
  1874. ie = 1;
  1875. itauq = 1;
  1876. itaup = itauq + *m;
  1877. nwork = itaup + *m;
  1878. /* Bidiagonalize L in A */
  1879. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  1880. /* CWorkspace: prefer 2*M [tauq, taup] + 2*M*NB [work] */
  1881. /* RWorkspace: need M [e] */
  1882. i__2 = *lwork - nwork + 1;
  1883. zgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
  1884. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1885. nrwork = ie + *m;
  1886. /* Perform bidiagonal SVD, compute singular values only */
  1887. /* CWorkspace: need 0 */
  1888. /* RWorkspace: need M [e] + BDSPAC */
  1889. dbdsdc_("U", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
  1890. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  1891. } else if (wntqo) {
  1892. /* Path 2t (N >> M, JOBZ='O') */
  1893. /* M right singular vectors to be overwritten on A and */
  1894. /* M left singular vectors to be computed in U */
  1895. ivt = 1;
  1896. ldwkvt = *m;
  1897. /* WORK(IVT) is M by M */
  1898. il = ivt + ldwkvt * *m;
  1899. if (*lwork >= *m * *n + *m * *m + *m * 3) {
  1900. /* WORK(IL) M by N */
  1901. ldwrkl = *m;
  1902. chunk = *n;
  1903. } else {
  1904. /* WORK(IL) is M by CHUNK */
  1905. ldwrkl = *m;
  1906. chunk = (*lwork - *m * *m - *m * 3) / *m;
  1907. }
  1908. itau = il + ldwrkl * chunk;
  1909. nwork = itau + *m;
  1910. /* Compute A=L*Q */
  1911. /* CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1912. /* CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1913. /* RWorkspace: need 0 */
  1914. i__2 = *lwork - nwork + 1;
  1915. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  1916. i__2, &ierr);
  1917. /* Copy L to WORK(IL), zeroing about above it */
  1918. zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  1919. i__2 = *m - 1;
  1920. i__1 = *m - 1;
  1921. zlaset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwrkl], &
  1922. ldwrkl);
  1923. /* Generate Q in A */
  1924. /* CWorkspace: need M*M [VT] + M*M [L] + M [tau] + M [work] */
  1925. /* CWorkspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
  1926. /* RWorkspace: need 0 */
  1927. i__2 = *lwork - nwork + 1;
  1928. zunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  1929. &i__2, &ierr);
  1930. ie = 1;
  1931. itauq = itau;
  1932. itaup = itauq + *m;
  1933. nwork = itaup + *m;
  1934. /* Bidiagonalize L in WORK(IL) */
  1935. /* CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work] */
  1936. /* CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + 2*M*NB [work] */
  1937. /* RWorkspace: need M [e] */
  1938. i__2 = *lwork - nwork + 1;
  1939. zgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[
  1940. itauq], &work[itaup], &work[nwork], &i__2, &ierr);
  1941. /* Perform bidiagonal SVD, computing left singular vectors */
  1942. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  1943. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  1944. /* CWorkspace: need 0 */
  1945. /* RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC */
  1946. iru = ie + *m;
  1947. irvt = iru + *m * *m;
  1948. nrwork = irvt + *m * *m;
  1949. dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  1950. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  1951. info);
  1952. /* Copy real matrix RWORK(IRU) to complex matrix WORK(IU) */
  1953. /* Overwrite WORK(IU) by the left singular vectors of L */
  1954. /* CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work] */
  1955. /* CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work] */
  1956. /* RWorkspace: need 0 */
  1957. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  1958. i__2 = *lwork - nwork + 1;
  1959. zunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  1960. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  1961. /* Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) */
  1962. /* Overwrite WORK(IVT) by the right singular vectors of L */
  1963. /* CWorkspace: need M*M [VT] + M*M [L] + 2*M [tauq, taup] + M [work] */
  1964. /* CWorkspace: prefer M*M [VT] + M*M [L] + 2*M [tauq, taup] + M*NB [work] */
  1965. /* RWorkspace: need 0 */
  1966. zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
  1967. i__2 = *lwork - nwork + 1;
  1968. zunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[
  1969. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
  1970. ierr);
  1971. /* Multiply right singular vectors of L in WORK(IL) by Q */
  1972. /* in A, storing result in WORK(IL) and copying to A */
  1973. /* CWorkspace: need M*M [VT] + M*M [L] */
  1974. /* CWorkspace: prefer M*M [VT] + M*N [L] */
  1975. /* RWorkspace: need 0 */
  1976. i__2 = *n;
  1977. i__1 = chunk;
  1978. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1979. i__1) {
  1980. /* Computing MIN */
  1981. i__3 = *n - i__ + 1;
  1982. blk = f2cmin(i__3,chunk);
  1983. zgemm_("N", "N", m, &blk, m, &c_b2, &work[ivt], m, &a[i__
  1984. * a_dim1 + 1], lda, &c_b1, &work[il], &ldwrkl);
  1985. zlacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1
  1986. + 1], lda);
  1987. /* L40: */
  1988. }
  1989. } else if (wntqs) {
  1990. /* Path 3t (N >> M, JOBZ='S') */
  1991. /* M right singular vectors to be computed in VT and */
  1992. /* M left singular vectors to be computed in U */
  1993. il = 1;
  1994. /* WORK(IL) is M by M */
  1995. ldwrkl = *m;
  1996. itau = il + ldwrkl * *m;
  1997. nwork = itau + *m;
  1998. /* Compute A=L*Q */
  1999. /* CWorkspace: need M*M [L] + M [tau] + M [work] */
  2000. /* CWorkspace: prefer M*M [L] + M [tau] + M*NB [work] */
  2001. /* RWorkspace: need 0 */
  2002. i__1 = *lwork - nwork + 1;
  2003. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  2004. i__1, &ierr);
  2005. /* Copy L to WORK(IL), zeroing out above it */
  2006. zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
  2007. i__1 = *m - 1;
  2008. i__2 = *m - 1;
  2009. zlaset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwrkl], &
  2010. ldwrkl);
  2011. /* Generate Q in A */
  2012. /* CWorkspace: need M*M [L] + M [tau] + M [work] */
  2013. /* CWorkspace: prefer M*M [L] + M [tau] + M*NB [work] */
  2014. /* RWorkspace: need 0 */
  2015. i__1 = *lwork - nwork + 1;
  2016. zunglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
  2017. &i__1, &ierr);
  2018. ie = 1;
  2019. itauq = itau;
  2020. itaup = itauq + *m;
  2021. nwork = itaup + *m;
  2022. /* Bidiagonalize L in WORK(IL) */
  2023. /* CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work] */
  2024. /* CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + 2*M*NB [work] */
  2025. /* RWorkspace: need M [e] */
  2026. i__1 = *lwork - nwork + 1;
  2027. zgebrd_(m, m, &work[il], &ldwrkl, &s[1], &rwork[ie], &work[
  2028. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  2029. /* Perform bidiagonal SVD, computing left singular vectors */
  2030. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2031. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2032. /* CWorkspace: need 0 */
  2033. /* RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC */
  2034. iru = ie + *m;
  2035. irvt = iru + *m * *m;
  2036. nrwork = irvt + *m * *m;
  2037. dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2038. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2039. info);
  2040. /* Copy real matrix RWORK(IRU) to complex matrix U */
  2041. /* Overwrite U by left singular vectors of L */
  2042. /* CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work] */
  2043. /* CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work] */
  2044. /* RWorkspace: need 0 */
  2045. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  2046. i__1 = *lwork - nwork + 1;
  2047. zunmbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
  2048. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  2049. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  2050. /* Overwrite VT by left singular vectors of L */
  2051. /* CWorkspace: need M*M [L] + 2*M [tauq, taup] + M [work] */
  2052. /* CWorkspace: prefer M*M [L] + 2*M [tauq, taup] + M*NB [work] */
  2053. /* RWorkspace: need 0 */
  2054. zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
  2055. i__1 = *lwork - nwork + 1;
  2056. zunmbr_("P", "R", "C", m, m, m, &work[il], &ldwrkl, &work[
  2057. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  2058. ierr);
  2059. /* Copy VT to WORK(IL), multiply right singular vectors of L */
  2060. /* in WORK(IL) by Q in A, storing result in VT */
  2061. /* CWorkspace: need M*M [L] */
  2062. /* RWorkspace: need 0 */
  2063. zlacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
  2064. zgemm_("N", "N", m, n, m, &c_b2, &work[il], &ldwrkl, &a[
  2065. a_offset], lda, &c_b1, &vt[vt_offset], ldvt);
  2066. } else if (wntqa) {
  2067. /* Path 4t (N >> M, JOBZ='A') */
  2068. /* N right singular vectors to be computed in VT and */
  2069. /* M left singular vectors to be computed in U */
  2070. ivt = 1;
  2071. /* WORK(IVT) is M by M */
  2072. ldwkvt = *m;
  2073. itau = ivt + ldwkvt * *m;
  2074. nwork = itau + *m;
  2075. /* Compute A=L*Q, copying result to VT */
  2076. /* CWorkspace: need M*M [VT] + M [tau] + M [work] */
  2077. /* CWorkspace: prefer M*M [VT] + M [tau] + M*NB [work] */
  2078. /* RWorkspace: need 0 */
  2079. i__1 = *lwork - nwork + 1;
  2080. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
  2081. i__1, &ierr);
  2082. zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2083. /* Generate Q in VT */
  2084. /* CWorkspace: need M*M [VT] + M [tau] + N [work] */
  2085. /* CWorkspace: prefer M*M [VT] + M [tau] + N*NB [work] */
  2086. /* RWorkspace: need 0 */
  2087. i__1 = *lwork - nwork + 1;
  2088. zunglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
  2089. nwork], &i__1, &ierr);
  2090. /* Produce L in A, zeroing out above it */
  2091. i__1 = *m - 1;
  2092. i__2 = *m - 1;
  2093. zlaset_("U", &i__1, &i__2, &c_b1, &c_b1, &a[(a_dim1 << 1) + 1]
  2094. , lda);
  2095. ie = 1;
  2096. itauq = itau;
  2097. itaup = itauq + *m;
  2098. nwork = itaup + *m;
  2099. /* Bidiagonalize L in A */
  2100. /* CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work] */
  2101. /* CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + 2*M*NB [work] */
  2102. /* RWorkspace: need M [e] */
  2103. i__1 = *lwork - nwork + 1;
  2104. zgebrd_(m, m, &a[a_offset], lda, &s[1], &rwork[ie], &work[
  2105. itauq], &work[itaup], &work[nwork], &i__1, &ierr);
  2106. /* Perform bidiagonal SVD, computing left singular vectors */
  2107. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2108. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2109. /* CWorkspace: need 0 */
  2110. /* RWorkspace: need M [e] + M*M [RU] + M*M [RVT] + BDSPAC */
  2111. iru = ie + *m;
  2112. irvt = iru + *m * *m;
  2113. nrwork = irvt + *m * *m;
  2114. dbdsdc_("U", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2115. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2116. info);
  2117. /* Copy real matrix RWORK(IRU) to complex matrix U */
  2118. /* Overwrite U by left singular vectors of L */
  2119. /* CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work] */
  2120. /* CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work] */
  2121. /* RWorkspace: need 0 */
  2122. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  2123. i__1 = *lwork - nwork + 1;
  2124. zunmbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
  2125. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  2126. /* Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) */
  2127. /* Overwrite WORK(IVT) by right singular vectors of L */
  2128. /* CWorkspace: need M*M [VT] + 2*M [tauq, taup] + M [work] */
  2129. /* CWorkspace: prefer M*M [VT] + 2*M [tauq, taup] + M*NB [work] */
  2130. /* RWorkspace: need 0 */
  2131. zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
  2132. i__1 = *lwork - nwork + 1;
  2133. zunmbr_("P", "R", "C", m, m, m, &a[a_offset], lda, &work[
  2134. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__1, &
  2135. ierr);
  2136. /* Multiply right singular vectors of L in WORK(IVT) by */
  2137. /* Q in VT, storing result in A */
  2138. /* CWorkspace: need M*M [VT] */
  2139. /* RWorkspace: need 0 */
  2140. zgemm_("N", "N", m, n, m, &c_b2, &work[ivt], &ldwkvt, &vt[
  2141. vt_offset], ldvt, &c_b1, &a[a_offset], lda);
  2142. /* Copy right singular vectors of A from A to VT */
  2143. zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2144. }
  2145. } else if (*n >= mnthr2) {
  2146. /* MNTHR2 <= N < MNTHR1 */
  2147. /* Path 5t (N >> M, but not as much as MNTHR1) */
  2148. /* Reduce to bidiagonal form without QR decomposition, use */
  2149. /* ZUNGBR and matrix multiplication to compute singular vectors */
  2150. ie = 1;
  2151. nrwork = ie + *m;
  2152. itauq = 1;
  2153. itaup = itauq + *m;
  2154. nwork = itaup + *m;
  2155. /* Bidiagonalize A */
  2156. /* CWorkspace: need 2*M [tauq, taup] + N [work] */
  2157. /* CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work] */
  2158. /* RWorkspace: need M [e] */
  2159. i__1 = *lwork - nwork + 1;
  2160. zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  2161. &work[itaup], &work[nwork], &i__1, &ierr);
  2162. if (wntqn) {
  2163. /* Path 5tn (N >> M, JOBZ='N') */
  2164. /* Compute singular values only */
  2165. /* CWorkspace: need 0 */
  2166. /* RWorkspace: need M [e] + BDSPAC */
  2167. dbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
  2168. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  2169. } else if (wntqo) {
  2170. irvt = nrwork;
  2171. iru = irvt + *m * *m;
  2172. nrwork = iru + *m * *m;
  2173. ivt = nwork;
  2174. /* Path 5to (N >> M, JOBZ='O') */
  2175. /* Copy A to U, generate Q */
  2176. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2177. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2178. /* RWorkspace: need 0 */
  2179. zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2180. i__1 = *lwork - nwork + 1;
  2181. zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
  2182. nwork], &i__1, &ierr);
  2183. /* Generate P**H in A */
  2184. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2185. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2186. /* RWorkspace: need 0 */
  2187. i__1 = *lwork - nwork + 1;
  2188. zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  2189. nwork], &i__1, &ierr);
  2190. ldwkvt = *m;
  2191. if (*lwork >= *m * *n + *m * 3) {
  2192. /* WORK( IVT ) is M by N */
  2193. nwork = ivt + ldwkvt * *n;
  2194. chunk = *n;
  2195. } else {
  2196. /* WORK( IVT ) is M by CHUNK */
  2197. chunk = (*lwork - *m * 3) / *m;
  2198. nwork = ivt + ldwkvt * chunk;
  2199. }
  2200. /* Perform bidiagonal SVD, computing left singular vectors */
  2201. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2202. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2203. /* CWorkspace: need 0 */
  2204. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2205. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2206. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2207. info);
  2208. /* Multiply Q in U by real matrix RWORK(IRVT) */
  2209. /* storing the result in WORK(IVT), copying to U */
  2210. /* CWorkspace: need 2*M [tauq, taup] + M*M [VT] */
  2211. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork] */
  2212. zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &work[ivt], &
  2213. ldwkvt, &rwork[nrwork]);
  2214. zlacpy_("F", m, m, &work[ivt], &ldwkvt, &u[u_offset], ldu);
  2215. /* Multiply RWORK(IRVT) by P**H in A, storing the */
  2216. /* result in WORK(IVT), copying to A */
  2217. /* CWorkspace: need 2*M [tauq, taup] + M*M [VT] */
  2218. /* CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] */
  2219. /* RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork] */
  2220. /* RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here */
  2221. nrwork = iru;
  2222. i__1 = *n;
  2223. i__2 = chunk;
  2224. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  2225. i__2) {
  2226. /* Computing MIN */
  2227. i__3 = *n - i__ + 1;
  2228. blk = f2cmin(i__3,chunk);
  2229. zlarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1],
  2230. lda, &work[ivt], &ldwkvt, &rwork[nrwork]);
  2231. zlacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ *
  2232. a_dim1 + 1], lda);
  2233. /* L50: */
  2234. }
  2235. } else if (wntqs) {
  2236. /* Path 5ts (N >> M, JOBZ='S') */
  2237. /* Copy A to U, generate Q */
  2238. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2239. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2240. /* RWorkspace: need 0 */
  2241. zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2242. i__2 = *lwork - nwork + 1;
  2243. zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
  2244. nwork], &i__2, &ierr);
  2245. /* Copy A to VT, generate P**H */
  2246. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2247. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2248. /* RWorkspace: need 0 */
  2249. zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2250. i__2 = *lwork - nwork + 1;
  2251. zungbr_("P", m, n, m, &vt[vt_offset], ldvt, &work[itaup], &
  2252. work[nwork], &i__2, &ierr);
  2253. /* Perform bidiagonal SVD, computing left singular vectors */
  2254. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2255. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2256. /* CWorkspace: need 0 */
  2257. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2258. irvt = nrwork;
  2259. iru = irvt + *m * *m;
  2260. nrwork = iru + *m * *m;
  2261. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2262. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2263. info);
  2264. /* Multiply Q in U by real matrix RWORK(IRU), storing the */
  2265. /* result in A, copying to U */
  2266. /* CWorkspace: need 0 */
  2267. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork] */
  2268. zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset],
  2269. lda, &rwork[nrwork]);
  2270. zlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2271. /* Multiply real matrix RWORK(IRVT) by P**H in VT, */
  2272. /* storing the result in A, copying to VT */
  2273. /* CWorkspace: need 0 */
  2274. /* RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here */
  2275. nrwork = iru;
  2276. zlarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[
  2277. a_offset], lda, &rwork[nrwork]);
  2278. zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2279. } else {
  2280. /* Path 5ta (N >> M, JOBZ='A') */
  2281. /* Copy A to U, generate Q */
  2282. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2283. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2284. /* RWorkspace: need 0 */
  2285. zlacpy_("L", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2286. i__2 = *lwork - nwork + 1;
  2287. zungbr_("Q", m, m, n, &u[u_offset], ldu, &work[itauq], &work[
  2288. nwork], &i__2, &ierr);
  2289. /* Copy A to VT, generate P**H */
  2290. /* CWorkspace: need 2*M [tauq, taup] + N [work] */
  2291. /* CWorkspace: prefer 2*M [tauq, taup] + N*NB [work] */
  2292. /* RWorkspace: need 0 */
  2293. zlacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2294. i__2 = *lwork - nwork + 1;
  2295. zungbr_("P", n, n, m, &vt[vt_offset], ldvt, &work[itaup], &
  2296. work[nwork], &i__2, &ierr);
  2297. /* Perform bidiagonal SVD, computing left singular vectors */
  2298. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2299. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2300. /* CWorkspace: need 0 */
  2301. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2302. irvt = nrwork;
  2303. iru = irvt + *m * *m;
  2304. nrwork = iru + *m * *m;
  2305. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2306. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2307. info);
  2308. /* Multiply Q in U by real matrix RWORK(IRU), storing the */
  2309. /* result in A, copying to U */
  2310. /* CWorkspace: need 0 */
  2311. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + 2*M*M [rwork] */
  2312. zlacrm_(m, m, &u[u_offset], ldu, &rwork[iru], m, &a[a_offset],
  2313. lda, &rwork[nrwork]);
  2314. zlacpy_("F", m, m, &a[a_offset], lda, &u[u_offset], ldu);
  2315. /* Multiply real matrix RWORK(IRVT) by P**H in VT, */
  2316. /* storing the result in A, copying to VT */
  2317. /* CWorkspace: need 0 */
  2318. /* RWorkspace: need M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here */
  2319. nrwork = iru;
  2320. zlarcm_(m, n, &rwork[irvt], m, &vt[vt_offset], ldvt, &a[
  2321. a_offset], lda, &rwork[nrwork]);
  2322. zlacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
  2323. }
  2324. } else {
  2325. /* N .LT. MNTHR2 */
  2326. /* Path 6t (N > M, but not much larger) */
  2327. /* Reduce to bidiagonal form without LQ decomposition */
  2328. /* Use ZUNMBR to compute singular vectors */
  2329. ie = 1;
  2330. nrwork = ie + *m;
  2331. itauq = 1;
  2332. itaup = itauq + *m;
  2333. nwork = itaup + *m;
  2334. /* Bidiagonalize A */
  2335. /* CWorkspace: need 2*M [tauq, taup] + N [work] */
  2336. /* CWorkspace: prefer 2*M [tauq, taup] + (M+N)*NB [work] */
  2337. /* RWorkspace: need M [e] */
  2338. i__2 = *lwork - nwork + 1;
  2339. zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  2340. &work[itaup], &work[nwork], &i__2, &ierr);
  2341. if (wntqn) {
  2342. /* Path 6tn (N > M, JOBZ='N') */
  2343. /* Compute singular values only */
  2344. /* CWorkspace: need 0 */
  2345. /* RWorkspace: need M [e] + BDSPAC */
  2346. dbdsdc_("L", "N", m, &s[1], &rwork[ie], dum, &c__1, dum, &
  2347. c__1, dum, idum, &rwork[nrwork], &iwork[1], info);
  2348. } else if (wntqo) {
  2349. /* Path 6to (N > M, JOBZ='O') */
  2350. ldwkvt = *m;
  2351. ivt = nwork;
  2352. if (*lwork >= *m * *n + *m * 3) {
  2353. /* WORK( IVT ) is M by N */
  2354. zlaset_("F", m, n, &c_b1, &c_b1, &work[ivt], &ldwkvt);
  2355. nwork = ivt + ldwkvt * *n;
  2356. } else {
  2357. /* WORK( IVT ) is M by CHUNK */
  2358. chunk = (*lwork - *m * 3) / *m;
  2359. nwork = ivt + ldwkvt * chunk;
  2360. }
  2361. /* Perform bidiagonal SVD, computing left singular vectors */
  2362. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2363. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2364. /* CWorkspace: need 0 */
  2365. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2366. irvt = nrwork;
  2367. iru = irvt + *m * *m;
  2368. nrwork = iru + *m * *m;
  2369. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2370. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2371. info);
  2372. /* Copy real matrix RWORK(IRU) to complex matrix U */
  2373. /* Overwrite U by left singular vectors of A */
  2374. /* CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work] */
  2375. /* CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work] */
  2376. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] */
  2377. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  2378. i__2 = *lwork - nwork + 1;
  2379. zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  2380. itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
  2381. if (*lwork >= *m * *n + *m * 3) {
  2382. /* Path 6to-fast */
  2383. /* Copy real matrix RWORK(IRVT) to complex matrix WORK(IVT) */
  2384. /* Overwrite WORK(IVT) by right singular vectors of A, */
  2385. /* copying to A */
  2386. /* CWorkspace: need 2*M [tauq, taup] + M*N [VT] + M [work] */
  2387. /* CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] + M*NB [work] */
  2388. /* RWorkspace: need M [e] + M*M [RVT] */
  2389. zlacp2_("F", m, m, &rwork[irvt], m, &work[ivt], &ldwkvt);
  2390. i__2 = *lwork - nwork + 1;
  2391. zunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[
  2392. itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2,
  2393. &ierr);
  2394. zlacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
  2395. } else {
  2396. /* Path 6to-slow */
  2397. /* Generate P**H in A */
  2398. /* CWorkspace: need 2*M [tauq, taup] + M*M [VT] + M [work] */
  2399. /* CWorkspace: prefer 2*M [tauq, taup] + M*M [VT] + M*NB [work] */
  2400. /* RWorkspace: need 0 */
  2401. i__2 = *lwork - nwork + 1;
  2402. zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
  2403. work[nwork], &i__2, &ierr);
  2404. /* Multiply Q in A by real matrix RWORK(IRU), storing the */
  2405. /* result in WORK(IU), copying to A */
  2406. /* CWorkspace: need 2*M [tauq, taup] + M*M [VT] */
  2407. /* CWorkspace: prefer 2*M [tauq, taup] + M*N [VT] */
  2408. /* RWorkspace: need M [e] + M*M [RVT] + 2*M*M [rwork] */
  2409. /* RWorkspace: prefer M [e] + M*M [RVT] + 2*M*N [rwork] < M + 5*M*M since N < 2*M here */
  2410. nrwork = iru;
  2411. i__2 = *n;
  2412. i__1 = chunk;
  2413. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  2414. i__1) {
  2415. /* Computing MIN */
  2416. i__3 = *n - i__ + 1;
  2417. blk = f2cmin(i__3,chunk);
  2418. zlarcm_(m, &blk, &rwork[irvt], m, &a[i__ * a_dim1 + 1]
  2419. , lda, &work[ivt], &ldwkvt, &rwork[nrwork]);
  2420. zlacpy_("F", m, &blk, &work[ivt], &ldwkvt, &a[i__ *
  2421. a_dim1 + 1], lda);
  2422. /* L60: */
  2423. }
  2424. }
  2425. } else if (wntqs) {
  2426. /* Path 6ts (N > M, JOBZ='S') */
  2427. /* Perform bidiagonal SVD, computing left singular vectors */
  2428. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2429. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2430. /* CWorkspace: need 0 */
  2431. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2432. irvt = nrwork;
  2433. iru = irvt + *m * *m;
  2434. nrwork = iru + *m * *m;
  2435. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2436. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2437. info);
  2438. /* Copy real matrix RWORK(IRU) to complex matrix U */
  2439. /* Overwrite U by left singular vectors of A */
  2440. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2441. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2442. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] */
  2443. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  2444. i__1 = *lwork - nwork + 1;
  2445. zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  2446. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  2447. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  2448. /* Overwrite VT by right singular vectors of A */
  2449. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2450. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2451. /* RWorkspace: need M [e] + M*M [RVT] */
  2452. zlaset_("F", m, n, &c_b1, &c_b1, &vt[vt_offset], ldvt);
  2453. zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
  2454. i__1 = *lwork - nwork + 1;
  2455. zunmbr_("P", "R", "C", m, n, m, &a[a_offset], lda, &work[
  2456. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  2457. ierr);
  2458. } else {
  2459. /* Path 6ta (N > M, JOBZ='A') */
  2460. /* Perform bidiagonal SVD, computing left singular vectors */
  2461. /* of bidiagonal matrix in RWORK(IRU) and computing right */
  2462. /* singular vectors of bidiagonal matrix in RWORK(IRVT) */
  2463. /* CWorkspace: need 0 */
  2464. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] + BDSPAC */
  2465. irvt = nrwork;
  2466. iru = irvt + *m * *m;
  2467. nrwork = iru + *m * *m;
  2468. dbdsdc_("L", "I", m, &s[1], &rwork[ie], &rwork[iru], m, &
  2469. rwork[irvt], m, dum, idum, &rwork[nrwork], &iwork[1],
  2470. info);
  2471. /* Copy real matrix RWORK(IRU) to complex matrix U */
  2472. /* Overwrite U by left singular vectors of A */
  2473. /* CWorkspace: need 2*M [tauq, taup] + M [work] */
  2474. /* CWorkspace: prefer 2*M [tauq, taup] + M*NB [work] */
  2475. /* RWorkspace: need M [e] + M*M [RVT] + M*M [RU] */
  2476. zlacp2_("F", m, m, &rwork[iru], m, &u[u_offset], ldu);
  2477. i__1 = *lwork - nwork + 1;
  2478. zunmbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
  2479. itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
  2480. /* Set all of VT to identity matrix */
  2481. zlaset_("F", n, n, &c_b1, &c_b2, &vt[vt_offset], ldvt);
  2482. /* Copy real matrix RWORK(IRVT) to complex matrix VT */
  2483. /* Overwrite VT by right singular vectors of A */
  2484. /* CWorkspace: need 2*M [tauq, taup] + N [work] */
  2485. /* CWorkspace: prefer 2*M [tauq, taup] + N*NB [work] */
  2486. /* RWorkspace: need M [e] + M*M [RVT] */
  2487. zlacp2_("F", m, m, &rwork[irvt], m, &vt[vt_offset], ldvt);
  2488. i__1 = *lwork - nwork + 1;
  2489. zunmbr_("P", "R", "C", n, n, m, &a[a_offset], lda, &work[
  2490. itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
  2491. ierr);
  2492. }
  2493. }
  2494. }
  2495. /* Undo scaling if necessary */
  2496. if (iscl == 1) {
  2497. if (anrm > bignum) {
  2498. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  2499. minmn, &ierr);
  2500. }
  2501. if (*info != 0 && anrm > bignum) {
  2502. i__1 = minmn - 1;
  2503. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &i__1, &c__1, &rwork[
  2504. ie], &minmn, &ierr);
  2505. }
  2506. if (anrm < smlnum) {
  2507. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  2508. minmn, &ierr);
  2509. }
  2510. if (*info != 0 && anrm < smlnum) {
  2511. i__1 = minmn - 1;
  2512. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &i__1, &c__1, &rwork[
  2513. ie], &minmn, &ierr);
  2514. }
  2515. }
  2516. /* Return optimal workspace in WORK(1) */
  2517. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  2518. return;
  2519. /* End of ZGESDD */
  2520. } /* zgesdd_ */