You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgelss.c 45 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__6 = 6;
  489. static integer c_n1 = -1;
  490. static integer c__1 = 1;
  491. static integer c__0 = 0;
  492. static doublereal c_b59 = 0.;
  493. /* > \brief <b> ZGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download ZGELSS + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelss.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelss.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelss.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE ZGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
  512. /* WORK, LWORK, RWORK, INFO ) */
  513. /* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
  514. /* DOUBLE PRECISION RCOND */
  515. /* DOUBLE PRECISION RWORK( * ), S( * ) */
  516. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > ZGELSS computes the minimum norm solution to a complex linear */
  523. /* > least squares problem: */
  524. /* > */
  525. /* > Minimize 2-norm(| b - A*x |). */
  526. /* > */
  527. /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
  528. /* > matrix which may be rank-deficient. */
  529. /* > */
  530. /* > Several right hand side vectors b and solution vectors x can be */
  531. /* > handled in a single call; they are stored as the columns of the */
  532. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
  533. /* > X. */
  534. /* > */
  535. /* > The effective rank of A is determined by treating as zero those */
  536. /* > singular values which are less than RCOND times the largest singular */
  537. /* > value. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] M */
  542. /* > \verbatim */
  543. /* > M is INTEGER */
  544. /* > The number of rows of the matrix A. M >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The number of columns of the matrix A. N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] NRHS */
  554. /* > \verbatim */
  555. /* > NRHS is INTEGER */
  556. /* > The number of right hand sides, i.e., the number of columns */
  557. /* > of the matrices B and X. NRHS >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] A */
  561. /* > \verbatim */
  562. /* > A is COMPLEX*16 array, dimension (LDA,N) */
  563. /* > On entry, the M-by-N matrix A. */
  564. /* > On exit, the first f2cmin(m,n) rows of A are overwritten with */
  565. /* > its right singular vectors, stored rowwise. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] LDA */
  569. /* > \verbatim */
  570. /* > LDA is INTEGER */
  571. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] B */
  575. /* > \verbatim */
  576. /* > B is COMPLEX*16 array, dimension (LDB,NRHS) */
  577. /* > On entry, the M-by-NRHS right hand side matrix B. */
  578. /* > On exit, B is overwritten by the N-by-NRHS solution matrix X. */
  579. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  580. /* > the solution in the i-th column is given by the sum of */
  581. /* > squares of the modulus of elements n+1:m in that column. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] S */
  591. /* > \verbatim */
  592. /* > S is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
  593. /* > The singular values of A in decreasing order. */
  594. /* > The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] RCOND */
  598. /* > \verbatim */
  599. /* > RCOND is DOUBLE PRECISION */
  600. /* > RCOND is used to determine the effective rank of A. */
  601. /* > Singular values S(i) <= RCOND*S(1) are treated as zero. */
  602. /* > If RCOND < 0, machine precision is used instead. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] RANK */
  606. /* > \verbatim */
  607. /* > RANK is INTEGER */
  608. /* > The effective rank of A, i.e., the number of singular values */
  609. /* > which are greater than RCOND*S(1). */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  615. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in] LWORK */
  619. /* > \verbatim */
  620. /* > LWORK is INTEGER */
  621. /* > The dimension of the array WORK. LWORK >= 1, and also: */
  622. /* > LWORK >= 2*f2cmin(M,N) + f2cmax(M,N,NRHS) */
  623. /* > For good performance, LWORK should generally be larger. */
  624. /* > */
  625. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  626. /* > only calculates the optimal size of the WORK array, returns */
  627. /* > this value as the first entry of the WORK array, and no error */
  628. /* > message related to LWORK is issued by XERBLA. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] RWORK */
  632. /* > \verbatim */
  633. /* > RWORK is DOUBLE PRECISION array, dimension (5*f2cmin(M,N)) */
  634. /* > \endverbatim */
  635. /* > */
  636. /* > \param[out] INFO */
  637. /* > \verbatim */
  638. /* > INFO is INTEGER */
  639. /* > = 0: successful exit */
  640. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  641. /* > > 0: the algorithm for computing the SVD failed to converge; */
  642. /* > if INFO = i, i off-diagonal elements of an intermediate */
  643. /* > bidiagonal form did not converge to zero. */
  644. /* > \endverbatim */
  645. /* Authors: */
  646. /* ======== */
  647. /* > \author Univ. of Tennessee */
  648. /* > \author Univ. of California Berkeley */
  649. /* > \author Univ. of Colorado Denver */
  650. /* > \author NAG Ltd. */
  651. /* > \date June 2016 */
  652. /* > \ingroup complex16GEsolve */
  653. /* ===================================================================== */
  654. /* Subroutine */ void zgelss_(integer *m, integer *n, integer *nrhs,
  655. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  656. doublereal *s, doublereal *rcond, integer *rank, doublecomplex *work,
  657. integer *lwork, doublereal *rwork, integer *info)
  658. {
  659. /* System generated locals */
  660. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  661. doublereal d__1;
  662. /* Local variables */
  663. doublereal anrm, bnrm;
  664. integer itau, lwork_zgebrd__, lwork_zgelqf__, i__, lwork_zgeqrf__,
  665. lwork_zungbr__, lwork_zunmbr__, iascl, ibscl, lwork_zunmlq__,
  666. chunk, lwork_zunmqr__;
  667. doublereal sfmin;
  668. integer minmn;
  669. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  670. integer *, doublecomplex *, doublecomplex *, integer *,
  671. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  672. integer *);
  673. integer maxmn, itaup, itauq, mnthr;
  674. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  675. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  676. integer *, doublecomplex *, doublecomplex *, integer *);
  677. integer iwork;
  678. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  679. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  680. integer bl, ie, il;
  681. extern doublereal dlamch_(char *);
  682. integer mm;
  683. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  684. doublereal *, doublereal *, integer *, integer *, doublereal *,
  685. integer *, integer *), dlaset_(char *, integer *, integer
  686. *, doublereal *, doublereal *, doublereal *, integer *);
  687. extern int xerbla_(char *, integer *, ftnlen);
  688. extern void zgebrd_(integer *, integer *,
  689. doublecomplex *, integer *, doublereal *, doublereal *,
  690. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  691. integer *);
  692. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  693. integer *, integer *, ftnlen, ftnlen);
  694. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  695. integer *, doublereal *);
  696. doublereal bignum;
  697. extern /* Subroutine */ void zgelqf_(integer *, integer *, doublecomplex *,
  698. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  699. ), zlascl_(char *, integer *, integer *, doublereal *, doublereal
  700. *, integer *, integer *, doublecomplex *, integer *, integer *), zgeqrf_(integer *, integer *, doublecomplex *, integer *,
  701. doublecomplex *, doublecomplex *, integer *, integer *), zdrscl_(
  702. integer *, doublereal *, doublecomplex *, integer *);
  703. integer ldwork;
  704. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  705. doublecomplex *, integer *, doublecomplex *, integer *),
  706. zlaset_(char *, integer *, integer *, doublecomplex *,
  707. doublecomplex *, doublecomplex *, integer *), zbdsqr_(
  708. char *, integer *, integer *, integer *, integer *, doublereal *,
  709. doublereal *, doublecomplex *, integer *, doublecomplex *,
  710. integer *, doublecomplex *, integer *, doublereal *, integer *);
  711. integer minwrk, maxwrk;
  712. extern /* Subroutine */ void zungbr_(char *, integer *, integer *, integer
  713. *, doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  714. integer *, integer *);
  715. doublereal smlnum;
  716. integer irwork;
  717. extern /* Subroutine */ void zunmbr_(char *, char *, char *, integer *,
  718. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  719. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  720. );
  721. logical lquery;
  722. extern /* Subroutine */ void zunmlq_(char *, char *, integer *, integer *,
  723. integer *, doublecomplex *, integer *, doublecomplex *,
  724. doublecomplex *, integer *, doublecomplex *, integer *, integer *), zunmqr_(char *, char *, integer *, integer *,
  725. integer *, doublecomplex *, integer *, doublecomplex *,
  726. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  727. doublecomplex dum[1];
  728. doublereal eps, thr;
  729. /* -- LAPACK driver routine (version 3.7.0) -- */
  730. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  731. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  732. /* June 2016 */
  733. /* ===================================================================== */
  734. /* Test the input arguments */
  735. /* Parameter adjustments */
  736. a_dim1 = *lda;
  737. a_offset = 1 + a_dim1 * 1;
  738. a -= a_offset;
  739. b_dim1 = *ldb;
  740. b_offset = 1 + b_dim1 * 1;
  741. b -= b_offset;
  742. --s;
  743. --work;
  744. --rwork;
  745. /* Function Body */
  746. *info = 0;
  747. minmn = f2cmin(*m,*n);
  748. maxmn = f2cmax(*m,*n);
  749. lquery = *lwork == -1;
  750. if (*m < 0) {
  751. *info = -1;
  752. } else if (*n < 0) {
  753. *info = -2;
  754. } else if (*nrhs < 0) {
  755. *info = -3;
  756. } else if (*lda < f2cmax(1,*m)) {
  757. *info = -5;
  758. } else if (*ldb < f2cmax(1,maxmn)) {
  759. *info = -7;
  760. }
  761. /* Compute workspace */
  762. /* (Note: Comments in the code beginning "Workspace:" describe the */
  763. /* minimal amount of workspace needed at that point in the code, */
  764. /* as well as the preferred amount for good performance. */
  765. /* CWorkspace refers to complex workspace, and RWorkspace refers */
  766. /* to real workspace. NB refers to the optimal block size for the */
  767. /* immediately following subroutine, as returned by ILAENV.) */
  768. if (*info == 0) {
  769. minwrk = 1;
  770. maxwrk = 1;
  771. if (minmn > 0) {
  772. mm = *m;
  773. mnthr = ilaenv_(&c__6, "ZGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
  774. 6, (ftnlen)1);
  775. if (*m >= *n && *m >= mnthr) {
  776. /* Path 1a - overdetermined, with many more rows than */
  777. /* columns */
  778. /* Compute space needed for ZGEQRF */
  779. zgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  780. lwork_zgeqrf__ = (integer) dum[0].r;
  781. /* Compute space needed for ZUNMQR */
  782. zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[
  783. b_offset], ldb, dum, &c_n1, info);
  784. lwork_zunmqr__ = (integer) dum[0].r;
  785. mm = *n;
  786. /* Computing MAX */
  787. i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "ZGEQRF",
  788. " ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
  789. maxwrk = f2cmax(i__1,i__2);
  790. /* Computing MAX */
  791. i__1 = maxwrk, i__2 = *n + *nrhs * ilaenv_(&c__1, "ZUNMQR",
  792. "LC", m, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
  793. maxwrk = f2cmax(i__1,i__2);
  794. }
  795. if (*m >= *n) {
  796. /* Path 1 - overdetermined or exactly determined */
  797. /* Compute space needed for ZGEBRD */
  798. zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  799. dum, &c_n1, info);
  800. lwork_zgebrd__ = (integer) dum[0].r;
  801. /* Compute space needed for ZUNMBR */
  802. zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, &
  803. b[b_offset], ldb, dum, &c_n1, info);
  804. lwork_zunmbr__ = (integer) dum[0].r;
  805. /* Compute space needed for ZUNGBR */
  806. zungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1,
  807. info);
  808. lwork_zungbr__ = (integer) dum[0].r;
  809. /* Compute total workspace needed */
  810. /* Computing MAX */
  811. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zgebrd__;
  812. maxwrk = f2cmax(i__1,i__2);
  813. /* Computing MAX */
  814. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zunmbr__;
  815. maxwrk = f2cmax(i__1,i__2);
  816. /* Computing MAX */
  817. i__1 = maxwrk, i__2 = (*n << 1) + lwork_zungbr__;
  818. maxwrk = f2cmax(i__1,i__2);
  819. /* Computing MAX */
  820. i__1 = maxwrk, i__2 = *n * *nrhs;
  821. maxwrk = f2cmax(i__1,i__2);
  822. minwrk = (*n << 1) + f2cmax(*nrhs,*m);
  823. }
  824. if (*n > *m) {
  825. minwrk = (*m << 1) + f2cmax(*nrhs,*n);
  826. if (*n >= mnthr) {
  827. /* Path 2a - underdetermined, with many more columns */
  828. /* than rows */
  829. /* Compute space needed for ZGELQF */
  830. zgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
  831. lwork_zgelqf__ = (integer) dum[0].r;
  832. /* Compute space needed for ZGEBRD */
  833. zgebrd_(m, m, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  834. dum, &c_n1, info);
  835. lwork_zgebrd__ = (integer) dum[0].r;
  836. /* Compute space needed for ZUNMBR */
  837. zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum,
  838. &b[b_offset], ldb, dum, &c_n1, info);
  839. lwork_zunmbr__ = (integer) dum[0].r;
  840. /* Compute space needed for ZUNGBR */
  841. zungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1,
  842. info);
  843. lwork_zungbr__ = (integer) dum[0].r;
  844. /* Compute space needed for ZUNMLQ */
  845. zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[
  846. b_offset], ldb, dum, &c_n1, info);
  847. lwork_zunmlq__ = (integer) dum[0].r;
  848. /* Compute total workspace needed */
  849. maxwrk = *m + lwork_zgelqf__;
  850. /* Computing MAX */
  851. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_zgebrd__;
  852. maxwrk = f2cmax(i__1,i__2);
  853. /* Computing MAX */
  854. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_zunmbr__;
  855. maxwrk = f2cmax(i__1,i__2);
  856. /* Computing MAX */
  857. i__1 = maxwrk, i__2 = *m * 3 + *m * *m + lwork_zungbr__;
  858. maxwrk = f2cmax(i__1,i__2);
  859. if (*nrhs > 1) {
  860. /* Computing MAX */
  861. i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
  862. maxwrk = f2cmax(i__1,i__2);
  863. } else {
  864. /* Computing MAX */
  865. i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
  866. maxwrk = f2cmax(i__1,i__2);
  867. }
  868. /* Computing MAX */
  869. i__1 = maxwrk, i__2 = *m + lwork_zunmlq__;
  870. maxwrk = f2cmax(i__1,i__2);
  871. } else {
  872. /* Path 2 - underdetermined */
  873. /* Compute space needed for ZGEBRD */
  874. zgebrd_(m, n, &a[a_offset], lda, &s[1], &s[1], dum, dum,
  875. dum, &c_n1, info);
  876. lwork_zgebrd__ = (integer) dum[0].r;
  877. /* Compute space needed for ZUNMBR */
  878. zunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum,
  879. &b[b_offset], ldb, dum, &c_n1, info);
  880. lwork_zunmbr__ = (integer) dum[0].r;
  881. /* Compute space needed for ZUNGBR */
  882. zungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1,
  883. info);
  884. lwork_zungbr__ = (integer) dum[0].r;
  885. maxwrk = (*m << 1) + lwork_zgebrd__;
  886. /* Computing MAX */
  887. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zunmbr__;
  888. maxwrk = f2cmax(i__1,i__2);
  889. /* Computing MAX */
  890. i__1 = maxwrk, i__2 = (*m << 1) + lwork_zungbr__;
  891. maxwrk = f2cmax(i__1,i__2);
  892. /* Computing MAX */
  893. i__1 = maxwrk, i__2 = *n * *nrhs;
  894. maxwrk = f2cmax(i__1,i__2);
  895. }
  896. }
  897. maxwrk = f2cmax(minwrk,maxwrk);
  898. }
  899. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  900. if (*lwork < minwrk && ! lquery) {
  901. *info = -12;
  902. }
  903. }
  904. if (*info != 0) {
  905. i__1 = -(*info);
  906. xerbla_("ZGELSS", &i__1, (ftnlen)6);
  907. return;
  908. } else if (lquery) {
  909. return;
  910. }
  911. /* Quick return if possible */
  912. if (*m == 0 || *n == 0) {
  913. *rank = 0;
  914. return;
  915. }
  916. /* Get machine parameters */
  917. eps = dlamch_("P");
  918. sfmin = dlamch_("S");
  919. smlnum = sfmin / eps;
  920. bignum = 1. / smlnum;
  921. dlabad_(&smlnum, &bignum);
  922. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  923. anrm = zlange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  924. iascl = 0;
  925. if (anrm > 0. && anrm < smlnum) {
  926. /* Scale matrix norm up to SMLNUM */
  927. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  928. info);
  929. iascl = 1;
  930. } else if (anrm > bignum) {
  931. /* Scale matrix norm down to BIGNUM */
  932. zlascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  933. info);
  934. iascl = 2;
  935. } else if (anrm == 0.) {
  936. /* Matrix all zero. Return zero solution. */
  937. i__1 = f2cmax(*m,*n);
  938. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  939. dlaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn);
  940. *rank = 0;
  941. goto L70;
  942. }
  943. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  944. bnrm = zlange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  945. ibscl = 0;
  946. if (bnrm > 0. && bnrm < smlnum) {
  947. /* Scale matrix norm up to SMLNUM */
  948. zlascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  949. info);
  950. ibscl = 1;
  951. } else if (bnrm > bignum) {
  952. /* Scale matrix norm down to BIGNUM */
  953. zlascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  954. info);
  955. ibscl = 2;
  956. }
  957. /* Overdetermined case */
  958. if (*m >= *n) {
  959. /* Path 1 - overdetermined or exactly determined */
  960. mm = *m;
  961. if (*m >= mnthr) {
  962. /* Path 1a - overdetermined, with many more rows than columns */
  963. mm = *n;
  964. itau = 1;
  965. iwork = itau + *n;
  966. /* Compute A=Q*R */
  967. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  968. /* (RWorkspace: none) */
  969. i__1 = *lwork - iwork + 1;
  970. zgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
  971. info);
  972. /* Multiply B by transpose(Q) */
  973. /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
  974. /* (RWorkspace: none) */
  975. i__1 = *lwork - iwork + 1;
  976. zunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
  977. b_offset], ldb, &work[iwork], &i__1, info);
  978. /* Zero out below R */
  979. if (*n > 1) {
  980. i__1 = *n - 1;
  981. i__2 = *n - 1;
  982. zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
  983. }
  984. }
  985. ie = 1;
  986. itauq = 1;
  987. itaup = itauq + *n;
  988. iwork = itaup + *n;
  989. /* Bidiagonalize R in A */
  990. /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
  991. /* (RWorkspace: need N) */
  992. i__1 = *lwork - iwork + 1;
  993. zgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
  994. work[itaup], &work[iwork], &i__1, info);
  995. /* Multiply B by transpose of left bidiagonalizing vectors of R */
  996. /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
  997. /* (RWorkspace: none) */
  998. i__1 = *lwork - iwork + 1;
  999. zunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq],
  1000. &b[b_offset], ldb, &work[iwork], &i__1, info);
  1001. /* Generate right bidiagonalizing vectors of R in A */
  1002. /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  1003. /* (RWorkspace: none) */
  1004. i__1 = *lwork - iwork + 1;
  1005. zungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
  1006. i__1, info);
  1007. irwork = ie + *n;
  1008. /* Perform bidiagonal QR iteration */
  1009. /* multiply B by transpose of left singular vectors */
  1010. /* compute right singular vectors in A */
  1011. /* (CWorkspace: none) */
  1012. /* (RWorkspace: need BDSPAC) */
  1013. zbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda,
  1014. dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1015. if (*info != 0) {
  1016. goto L70;
  1017. }
  1018. /* Multiply B by reciprocals of singular values */
  1019. /* Computing MAX */
  1020. d__1 = *rcond * s[1];
  1021. thr = f2cmax(d__1,sfmin);
  1022. if (*rcond < 0.) {
  1023. /* Computing MAX */
  1024. d__1 = eps * s[1];
  1025. thr = f2cmax(d__1,sfmin);
  1026. }
  1027. *rank = 0;
  1028. i__1 = *n;
  1029. for (i__ = 1; i__ <= i__1; ++i__) {
  1030. if (s[i__] > thr) {
  1031. zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1032. ++(*rank);
  1033. } else {
  1034. zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
  1035. }
  1036. /* L10: */
  1037. }
  1038. /* Multiply B by right singular vectors */
  1039. /* (CWorkspace: need N, prefer N*NRHS) */
  1040. /* (RWorkspace: none) */
  1041. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1042. zgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[
  1043. b_offset], ldb, &c_b1, &work[1], ldb);
  1044. zlacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
  1045. ;
  1046. } else if (*nrhs > 1) {
  1047. chunk = *lwork / *n;
  1048. i__1 = *nrhs;
  1049. i__2 = chunk;
  1050. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  1051. /* Computing MIN */
  1052. i__3 = *nrhs - i__ + 1;
  1053. bl = f2cmin(i__3,chunk);
  1054. zgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ *
  1055. b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1056. zlacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
  1057. /* L20: */
  1058. }
  1059. } else {
  1060. zgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, &
  1061. c_b1, &work[1], &c__1);
  1062. zcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1063. }
  1064. } else /* if(complicated condition) */ {
  1065. /* Computing MAX */
  1066. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1067. if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + f2cmax(i__2,i__1)) {
  1068. /* Underdetermined case, M much less than N */
  1069. /* Path 2a - underdetermined, with many more columns than rows */
  1070. /* and sufficient workspace for an efficient algorithm */
  1071. ldwork = *m;
  1072. /* Computing MAX */
  1073. i__2 = f2cmax(*m,*nrhs), i__1 = *n - (*m << 1);
  1074. if (*lwork >= *m * 3 + *m * *lda + f2cmax(i__2,i__1)) {
  1075. ldwork = *lda;
  1076. }
  1077. itau = 1;
  1078. iwork = *m + 1;
  1079. /* Compute A=L*Q */
  1080. /* (CWorkspace: need 2*M, prefer M+M*NB) */
  1081. /* (RWorkspace: none) */
  1082. i__2 = *lwork - iwork + 1;
  1083. zgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
  1084. info);
  1085. il = iwork;
  1086. /* Copy L to WORK(IL), zeroing out above it */
  1087. zlacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
  1088. i__2 = *m - 1;
  1089. i__1 = *m - 1;
  1090. zlaset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], &
  1091. ldwork);
  1092. ie = 1;
  1093. itauq = il + ldwork * *m;
  1094. itaup = itauq + *m;
  1095. iwork = itaup + *m;
  1096. /* Bidiagonalize L in WORK(IL) */
  1097. /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
  1098. /* (RWorkspace: need M) */
  1099. i__2 = *lwork - iwork + 1;
  1100. zgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
  1101. &work[itaup], &work[iwork], &i__2, info);
  1102. /* Multiply B by transpose of left bidiagonalizing vectors of L */
  1103. /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
  1104. /* (RWorkspace: none) */
  1105. i__2 = *lwork - iwork + 1;
  1106. zunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
  1107. itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
  1108. /* Generate right bidiagonalizing vectors of R in WORK(IL) */
  1109. /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
  1110. /* (RWorkspace: none) */
  1111. i__2 = *lwork - iwork + 1;
  1112. zungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
  1113. iwork], &i__2, info);
  1114. irwork = ie + *m;
  1115. /* Perform bidiagonal QR iteration, computing right singular */
  1116. /* vectors of L in WORK(IL) and multiplying B by transpose of */
  1117. /* left singular vectors */
  1118. /* (CWorkspace: need M*M) */
  1119. /* (RWorkspace: need BDSPAC) */
  1120. zbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], &
  1121. ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[
  1122. irwork], info);
  1123. if (*info != 0) {
  1124. goto L70;
  1125. }
  1126. /* Multiply B by reciprocals of singular values */
  1127. /* Computing MAX */
  1128. d__1 = *rcond * s[1];
  1129. thr = f2cmax(d__1,sfmin);
  1130. if (*rcond < 0.) {
  1131. /* Computing MAX */
  1132. d__1 = eps * s[1];
  1133. thr = f2cmax(d__1,sfmin);
  1134. }
  1135. *rank = 0;
  1136. i__2 = *m;
  1137. for (i__ = 1; i__ <= i__2; ++i__) {
  1138. if (s[i__] > thr) {
  1139. zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1140. ++(*rank);
  1141. } else {
  1142. zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1143. ldb);
  1144. }
  1145. /* L30: */
  1146. }
  1147. iwork = il + *m * ldwork;
  1148. /* Multiply B by right singular vectors of L in WORK(IL) */
  1149. /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
  1150. /* (RWorkspace: none) */
  1151. if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
  1152. zgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[
  1153. b_offset], ldb, &c_b1, &work[iwork], ldb);
  1154. zlacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
  1155. } else if (*nrhs > 1) {
  1156. chunk = (*lwork - iwork + 1) / *m;
  1157. i__2 = *nrhs;
  1158. i__1 = chunk;
  1159. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
  1160. i__1) {
  1161. /* Computing MIN */
  1162. i__3 = *nrhs - i__ + 1;
  1163. bl = f2cmin(i__3,chunk);
  1164. zgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[
  1165. i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
  1166. zlacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
  1167. , ldb);
  1168. /* L40: */
  1169. }
  1170. } else {
  1171. zgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], &
  1172. c__1, &c_b1, &work[iwork], &c__1);
  1173. zcopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
  1174. }
  1175. /* Zero out below first M rows of B */
  1176. i__1 = *n - *m;
  1177. zlaset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
  1178. iwork = itau + *m;
  1179. /* Multiply transpose(Q) by B */
  1180. /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
  1181. /* (RWorkspace: none) */
  1182. i__1 = *lwork - iwork + 1;
  1183. zunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
  1184. b_offset], ldb, &work[iwork], &i__1, info);
  1185. } else {
  1186. /* Path 2 - remaining underdetermined cases */
  1187. ie = 1;
  1188. itauq = 1;
  1189. itaup = itauq + *m;
  1190. iwork = itaup + *m;
  1191. /* Bidiagonalize A */
  1192. /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
  1193. /* (RWorkspace: need N) */
  1194. i__1 = *lwork - iwork + 1;
  1195. zgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq],
  1196. &work[itaup], &work[iwork], &i__1, info);
  1197. /* Multiply B by transpose of left bidiagonalizing vectors */
  1198. /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
  1199. /* (RWorkspace: none) */
  1200. i__1 = *lwork - iwork + 1;
  1201. zunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
  1202. , &b[b_offset], ldb, &work[iwork], &i__1, info);
  1203. /* Generate right bidiagonalizing vectors in A */
  1204. /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
  1205. /* (RWorkspace: none) */
  1206. i__1 = *lwork - iwork + 1;
  1207. zungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
  1208. iwork], &i__1, info);
  1209. irwork = ie + *m;
  1210. /* Perform bidiagonal QR iteration, */
  1211. /* computing right singular vectors of A in A and */
  1212. /* multiplying B by transpose of left singular vectors */
  1213. /* (CWorkspace: none) */
  1214. /* (RWorkspace: need BDSPAC) */
  1215. zbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset],
  1216. lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
  1217. if (*info != 0) {
  1218. goto L70;
  1219. }
  1220. /* Multiply B by reciprocals of singular values */
  1221. /* Computing MAX */
  1222. d__1 = *rcond * s[1];
  1223. thr = f2cmax(d__1,sfmin);
  1224. if (*rcond < 0.) {
  1225. /* Computing MAX */
  1226. d__1 = eps * s[1];
  1227. thr = f2cmax(d__1,sfmin);
  1228. }
  1229. *rank = 0;
  1230. i__1 = *m;
  1231. for (i__ = 1; i__ <= i__1; ++i__) {
  1232. if (s[i__] > thr) {
  1233. zdrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
  1234. ++(*rank);
  1235. } else {
  1236. zlaset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1],
  1237. ldb);
  1238. }
  1239. /* L50: */
  1240. }
  1241. /* Multiply B by right singular vectors of A */
  1242. /* (CWorkspace: need N, prefer N*NRHS) */
  1243. /* (RWorkspace: none) */
  1244. if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
  1245. zgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[
  1246. b_offset], ldb, &c_b1, &work[1], ldb);
  1247. zlacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
  1248. } else if (*nrhs > 1) {
  1249. chunk = *lwork / *n;
  1250. i__1 = *nrhs;
  1251. i__2 = chunk;
  1252. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
  1253. i__2) {
  1254. /* Computing MIN */
  1255. i__3 = *nrhs - i__ + 1;
  1256. bl = f2cmin(i__3,chunk);
  1257. zgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[
  1258. i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
  1259. zlacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1],
  1260. ldb);
  1261. /* L60: */
  1262. }
  1263. } else {
  1264. zgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], &
  1265. c__1, &c_b1, &work[1], &c__1);
  1266. zcopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
  1267. }
  1268. }
  1269. }
  1270. /* Undo scaling */
  1271. if (iascl == 1) {
  1272. zlascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  1273. info);
  1274. dlascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
  1275. minmn, info);
  1276. } else if (iascl == 2) {
  1277. zlascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  1278. info);
  1279. dlascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
  1280. minmn, info);
  1281. }
  1282. if (ibscl == 1) {
  1283. zlascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1284. info);
  1285. } else if (ibscl == 2) {
  1286. zlascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  1287. info);
  1288. }
  1289. L70:
  1290. work[1].r = (doublereal) maxwrk, work[1].i = 0.;
  1291. return;
  1292. /* End of ZGELSS */
  1293. } /* zgelss_ */