You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrd_sy2sb.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__4 = 4;
  487. static integer c_n1 = -1;
  488. static integer c__1 = 1;
  489. static real c_b17 = 0.f;
  490. static real c_b23 = 1.f;
  491. static real c_b39 = -.5f;
  492. static real c_b42 = -1.f;
  493. /* > \brief \b SSYTRD_SY2SB */
  494. /* @generated from zhetrd_he2hb.f, fortran z -> s, Wed Dec 7 08:22:40 2016 */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download SSYTRD_SY2SB + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrd.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrd.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrd.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE SSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, */
  513. /* WORK, LWORK, INFO ) */
  514. /* IMPLICIT NONE */
  515. /* CHARACTER UPLO */
  516. /* INTEGER INFO, LDA, LDAB, LWORK, N, KD */
  517. /* REAL A( LDA, * ), AB( LDAB, * ), */
  518. /* TAU( * ), WORK( * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > SSYTRD_SY2SB reduces a real symmetric matrix A to real symmetric */
  525. /* > band-diagonal form AB by a orthogonal similarity transformation: */
  526. /* > Q**T * A * Q = AB. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] UPLO */
  531. /* > \verbatim */
  532. /* > UPLO is CHARACTER*1 */
  533. /* > = 'U': Upper triangle of A is stored; */
  534. /* > = 'L': Lower triangle of A is stored. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix A. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] KD */
  544. /* > \verbatim */
  545. /* > KD is INTEGER */
  546. /* > The number of superdiagonals of the reduced matrix if UPLO = 'U', */
  547. /* > or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
  548. /* > The reduced matrix is stored in the array AB. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in,out] A */
  552. /* > \verbatim */
  553. /* > A is REAL array, dimension (LDA,N) */
  554. /* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
  555. /* > N-by-N upper triangular part of A contains the upper */
  556. /* > triangular part of the matrix A, and the strictly lower */
  557. /* > triangular part of A is not referenced. If UPLO = 'L', the */
  558. /* > leading N-by-N lower triangular part of A contains the lower */
  559. /* > triangular part of the matrix A, and the strictly upper */
  560. /* > triangular part of A is not referenced. */
  561. /* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
  562. /* > of A are overwritten by the corresponding elements of the */
  563. /* > tridiagonal matrix T, and the elements above the first */
  564. /* > superdiagonal, with the array TAU, represent the orthogonal */
  565. /* > matrix Q as a product of elementary reflectors; if UPLO */
  566. /* > = 'L', the diagonal and first subdiagonal of A are over- */
  567. /* > written by the corresponding elements of the tridiagonal */
  568. /* > matrix T, and the elements below the first subdiagonal, with */
  569. /* > the array TAU, represent the orthogonal matrix Q as a product */
  570. /* > of elementary reflectors. See Further Details. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] LDA */
  574. /* > \verbatim */
  575. /* > LDA is INTEGER */
  576. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] AB */
  580. /* > \verbatim */
  581. /* > AB is REAL array, dimension (LDAB,N) */
  582. /* > On exit, the upper or lower triangle of the symmetric band */
  583. /* > matrix A, stored in the first KD+1 rows of the array. The */
  584. /* > j-th column of A is stored in the j-th column of the array AB */
  585. /* > as follows: */
  586. /* > if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
  587. /* > if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=f2cmin(n,j+kd). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] LDAB */
  591. /* > \verbatim */
  592. /* > LDAB is INTEGER */
  593. /* > The leading dimension of the array AB. LDAB >= KD+1. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[out] TAU */
  597. /* > \verbatim */
  598. /* > TAU is REAL array, dimension (N-KD) */
  599. /* > The scalar factors of the elementary reflectors (see Further */
  600. /* > Details). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is REAL array, dimension (LWORK) */
  606. /* > On exit, if INFO = 0, or if LWORK=-1, */
  607. /* > WORK(1) returns the size of LWORK. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in] LWORK */
  611. /* > \verbatim */
  612. /* > LWORK is INTEGER */
  613. /* > The dimension of the array WORK which should be calculated */
  614. /* > by a workspace query. LWORK = MAX(1, LWORK_QUERY) */
  615. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  616. /* > only calculates the optimal size of the WORK array, returns */
  617. /* > this value as the first entry of the WORK array, and no error */
  618. /* > message related to LWORK is issued by XERBLA. */
  619. /* > LWORK_QUERY = N*KD + N*f2cmax(KD,FACTOPTNB) + 2*KD*KD */
  620. /* > where FACTOPTNB is the blocking used by the QR or LQ */
  621. /* > algorithm, usually FACTOPTNB=128 is a good choice otherwise */
  622. /* > putting LWORK=-1 will provide the size of WORK. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date November 2017 */
  638. /* > \ingroup realSYcomputational */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > Implemented by Azzam Haidar. */
  645. /* > */
  646. /* > All details are available on technical report, SC11, SC13 papers. */
  647. /* > */
  648. /* > Azzam Haidar, Hatem Ltaief, and Jack Dongarra. */
  649. /* > Parallel reduction to condensed forms for symmetric eigenvalue problems */
  650. /* > using aggregated fine-grained and memory-aware kernels. In Proceedings */
  651. /* > of 2011 International Conference for High Performance Computing, */
  652. /* > Networking, Storage and Analysis (SC '11), New York, NY, USA, */
  653. /* > Article 8 , 11 pages. */
  654. /* > http://doi.acm.org/10.1145/2063384.2063394 */
  655. /* > */
  656. /* > A. Haidar, J. Kurzak, P. Luszczek, 2013. */
  657. /* > An improved parallel singular value algorithm and its implementation */
  658. /* > for multicore hardware, In Proceedings of 2013 International Conference */
  659. /* > for High Performance Computing, Networking, Storage and Analysis (SC '13). */
  660. /* > Denver, Colorado, USA, 2013. */
  661. /* > Article 90, 12 pages. */
  662. /* > http://doi.acm.org/10.1145/2503210.2503292 */
  663. /* > */
  664. /* > A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. */
  665. /* > A novel hybrid CPU-GPU generalized eigensolver for electronic structure */
  666. /* > calculations based on fine-grained memory aware tasks. */
  667. /* > International Journal of High Performance Computing Applications. */
  668. /* > Volume 28 Issue 2, Pages 196-209, May 2014. */
  669. /* > http://hpc.sagepub.com/content/28/2/196 */
  670. /* > */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \verbatim */
  674. /* > */
  675. /* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
  676. /* > reflectors */
  677. /* > */
  678. /* > Q = H(k)**T . . . H(2)**T H(1)**T, where k = n-kd. */
  679. /* > */
  680. /* > Each H(i) has the form */
  681. /* > */
  682. /* > H(i) = I - tau * v * v**T */
  683. /* > */
  684. /* > where tau is a real scalar, and v is a real vector with */
  685. /* > v(1:i+kd-1) = 0 and v(i+kd) = 1; conjg(v(i+kd+1:n)) is stored on exit in */
  686. /* > A(i,i+kd+1:n), and tau in TAU(i). */
  687. /* > */
  688. /* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
  689. /* > reflectors */
  690. /* > */
  691. /* > Q = H(1) H(2) . . . H(k), where k = n-kd. */
  692. /* > */
  693. /* > Each H(i) has the form */
  694. /* > */
  695. /* > H(i) = I - tau * v * v**T */
  696. /* > */
  697. /* > where tau is a real scalar, and v is a real vector with */
  698. /* > v(kd+1:i) = 0 and v(i+kd+1) = 1; v(i+kd+2:n) is stored on exit in */
  699. /* > A(i+kd+2:n,i), and tau in TAU(i). */
  700. /* > */
  701. /* > The contents of A on exit are illustrated by the following examples */
  702. /* > with n = 5: */
  703. /* > */
  704. /* > if UPLO = 'U': if UPLO = 'L': */
  705. /* > */
  706. /* > ( ab ab/v1 v1 v1 v1 ) ( ab ) */
  707. /* > ( ab ab/v2 v2 v2 ) ( ab/v1 ab ) */
  708. /* > ( ab ab/v3 v3 ) ( v1 ab/v2 ab ) */
  709. /* > ( ab ab/v4 ) ( v1 v2 ab/v3 ab ) */
  710. /* > ( ab ) ( v1 v2 v3 ab/v4 ab ) */
  711. /* > */
  712. /* > where d and e denote diagonal and off-diagonal elements of T, and vi */
  713. /* > denotes an element of the vector defining H(i). */
  714. /* > \endverbatim */
  715. /* > */
  716. /* ===================================================================== */
  717. /* Subroutine */ void ssytrd_sy2sb_(char *uplo, integer *n, integer *kd, real
  718. *a, integer *lda, real *ab, integer *ldab, real *tau, real *work,
  719. integer *lwork, integer *info)
  720. {
  721. /* System generated locals */
  722. integer a_dim1, a_offset, ab_dim1, ab_offset, i__1, i__2, i__3, i__4,
  723. i__5;
  724. /* Local variables */
  725. extern integer ilaenv2stage_(integer *, char *, char *, integer *,
  726. integer *, integer *, integer *);
  727. integer tpos, wpos, s1pos, s2pos, i__, j;
  728. extern logical lsame_(char *, char *);
  729. integer iinfo;
  730. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  731. integer *, real *, real *, integer *, real *, integer *, real *,
  732. real *, integer *);
  733. integer lwmin;
  734. logical upper;
  735. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  736. integer *), ssymm_(char *, char *, integer *, integer *, real *,
  737. real *, integer *, real *, integer *, real *, real *, integer *);
  738. integer lk, pk;
  739. extern /* Subroutine */ void ssyr2k_(char *, char *, integer *, integer *,
  740. real *, real *, integer *, real *, integer *, real *, real *,
  741. integer *);
  742. integer pn, lt, lw;
  743. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  744. extern void sgelqf_(
  745. integer *, integer *, real *, integer *, real *, real *, integer *
  746. , integer *), sgeqrf_(integer *, integer *, real *, integer *,
  747. real *, real *, integer *, integer *), slarft_(char *, char *,
  748. integer *, integer *, real *, integer *, real *, real *, integer *
  749. ), slaset_(char *, integer *, integer *, real *,
  750. real *, real *, integer *);
  751. integer ls1;
  752. logical lquery;
  753. integer ls2, ldt, ldw, lds1, lds2;
  754. /* -- LAPACK computational routine (version 3.8.0) -- */
  755. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  756. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  757. /* November 2017 */
  758. /* ===================================================================== */
  759. /* Determine the minimal workspace size required */
  760. /* and test the input parameters */
  761. /* Parameter adjustments */
  762. a_dim1 = *lda;
  763. a_offset = 1 + a_dim1 * 1;
  764. a -= a_offset;
  765. ab_dim1 = *ldab;
  766. ab_offset = 1 + ab_dim1 * 1;
  767. ab -= ab_offset;
  768. --tau;
  769. --work;
  770. /* Function Body */
  771. *info = 0;
  772. upper = lsame_(uplo, "U");
  773. lquery = *lwork == -1;
  774. lwmin = ilaenv2stage_(&c__4, "SSYTRD_SY2SB", "", n, kd, &c_n1, &c_n1);
  775. if (! upper && ! lsame_(uplo, "L")) {
  776. *info = -1;
  777. } else if (*n < 0) {
  778. *info = -2;
  779. } else if (*kd < 0) {
  780. *info = -3;
  781. } else if (*lda < f2cmax(1,*n)) {
  782. *info = -5;
  783. } else /* if(complicated condition) */ {
  784. /* Computing MAX */
  785. i__1 = 1, i__2 = *kd + 1;
  786. if (*ldab < f2cmax(i__1,i__2)) {
  787. *info = -7;
  788. } else if (*lwork < lwmin && ! lquery) {
  789. *info = -10;
  790. }
  791. }
  792. if (*info != 0) {
  793. i__1 = -(*info);
  794. xerbla_("SSYTRD_SY2SB", &i__1, (ftnlen)12);
  795. return;
  796. } else if (lquery) {
  797. work[1] = (real) lwmin;
  798. return;
  799. }
  800. /* Quick return if possible */
  801. /* Copy the upper/lower portion of A into AB */
  802. if (*n <= *kd + 1) {
  803. if (upper) {
  804. i__1 = *n;
  805. for (i__ = 1; i__ <= i__1; ++i__) {
  806. /* Computing MIN */
  807. i__2 = *kd + 1;
  808. lk = f2cmin(i__2,i__);
  809. scopy_(&lk, &a[i__ - lk + 1 + i__ * a_dim1], &c__1, &ab[*kd +
  810. 1 - lk + 1 + i__ * ab_dim1], &c__1);
  811. /* L100: */
  812. }
  813. } else {
  814. i__1 = *n;
  815. for (i__ = 1; i__ <= i__1; ++i__) {
  816. /* Computing MIN */
  817. i__2 = *kd + 1, i__3 = *n - i__ + 1;
  818. lk = f2cmin(i__2,i__3);
  819. scopy_(&lk, &a[i__ + i__ * a_dim1], &c__1, &ab[i__ * ab_dim1
  820. + 1], &c__1);
  821. /* L110: */
  822. }
  823. }
  824. work[1] = 1.f;
  825. return;
  826. }
  827. /* Determine the pointer position for the workspace */
  828. ldt = *kd;
  829. lds1 = *kd;
  830. lt = ldt * *kd;
  831. lw = *n * *kd;
  832. ls1 = lds1 * *kd;
  833. ls2 = lwmin - lt - lw - ls1;
  834. /* LS2 = N*MAX(KD,FACTOPTNB) */
  835. tpos = 1;
  836. wpos = tpos + lt;
  837. s1pos = wpos + lw;
  838. s2pos = s1pos + ls1;
  839. if (upper) {
  840. ldw = *kd;
  841. lds2 = *kd;
  842. } else {
  843. ldw = *n;
  844. lds2 = *n;
  845. }
  846. /* Set the workspace of the triangular matrix T to zero once such a */
  847. /* way every time T is generated the upper/lower portion will be always zero */
  848. slaset_("A", &ldt, kd, &c_b17, &c_b17, &work[tpos], &ldt);
  849. if (upper) {
  850. i__1 = *n - *kd;
  851. i__2 = *kd;
  852. for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
  853. pn = *n - i__ - *kd + 1;
  854. /* Computing MIN */
  855. i__3 = *n - i__ - *kd + 1;
  856. pk = f2cmin(i__3,*kd);
  857. /* Compute the LQ factorization of the current block */
  858. sgelqf_(kd, &pn, &a[i__ + (i__ + *kd) * a_dim1], lda, &tau[i__], &
  859. work[s2pos], &ls2, &iinfo);
  860. /* Copy the upper portion of A into AB */
  861. i__3 = i__ + pk - 1;
  862. for (j = i__; j <= i__3; ++j) {
  863. /* Computing MIN */
  864. i__4 = *kd, i__5 = *n - j;
  865. lk = f2cmin(i__4,i__5) + 1;
  866. i__4 = *ldab - 1;
  867. scopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j *
  868. ab_dim1], &i__4);
  869. /* L20: */
  870. }
  871. slaset_("Lower", &pk, &pk, &c_b17, &c_b23, &a[i__ + (i__ + *kd) *
  872. a_dim1], lda);
  873. /* Form the matrix T */
  874. slarft_("Forward", "Rowwise", &pn, &pk, &a[i__ + (i__ + *kd) *
  875. a_dim1], lda, &tau[i__], &work[tpos], &ldt);
  876. /* Compute W: */
  877. sgemm_("Conjugate", "No transpose", &pk, &pn, &pk, &c_b23, &work[
  878. tpos], &ldt, &a[i__ + (i__ + *kd) * a_dim1], lda, &c_b17,
  879. &work[s2pos], &lds2);
  880. ssymm_("Right", uplo, &pk, &pn, &c_b23, &a[i__ + *kd + (i__ + *kd)
  881. * a_dim1], lda, &work[s2pos], &lds2, &c_b17, &work[wpos],
  882. &ldw);
  883. sgemm_("No transpose", "Conjugate", &pk, &pk, &pn, &c_b23, &work[
  884. wpos], &ldw, &work[s2pos], &lds2, &c_b17, &work[s1pos], &
  885. lds1);
  886. sgemm_("No transpose", "No transpose", &pk, &pn, &pk, &c_b39, &
  887. work[s1pos], &lds1, &a[i__ + (i__ + *kd) * a_dim1], lda, &
  888. c_b23, &work[wpos], &ldw);
  889. /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
  890. /* an update of the form: A := A - V'*W - W'*V */
  891. ssyr2k_(uplo, "Conjugate", &pn, &pk, &c_b42, &a[i__ + (i__ + *kd)
  892. * a_dim1], lda, &work[wpos], &ldw, &c_b23, &a[i__ + *kd +
  893. (i__ + *kd) * a_dim1], lda);
  894. /* L10: */
  895. }
  896. /* Copy the upper band to AB which is the band storage matrix */
  897. i__2 = *n;
  898. for (j = *n - *kd + 1; j <= i__2; ++j) {
  899. /* Computing MIN */
  900. i__1 = *kd, i__3 = *n - j;
  901. lk = f2cmin(i__1,i__3) + 1;
  902. i__1 = *ldab - 1;
  903. scopy_(&lk, &a[j + j * a_dim1], lda, &ab[*kd + 1 + j * ab_dim1], &
  904. i__1);
  905. /* L30: */
  906. }
  907. } else {
  908. /* Reduce the lower triangle of A to lower band matrix */
  909. i__2 = *n - *kd;
  910. i__1 = *kd;
  911. for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
  912. pn = *n - i__ - *kd + 1;
  913. /* Computing MIN */
  914. i__3 = *n - i__ - *kd + 1;
  915. pk = f2cmin(i__3,*kd);
  916. /* Compute the QR factorization of the current block */
  917. sgeqrf_(&pn, kd, &a[i__ + *kd + i__ * a_dim1], lda, &tau[i__], &
  918. work[s2pos], &ls2, &iinfo);
  919. /* Copy the upper portion of A into AB */
  920. i__3 = i__ + pk - 1;
  921. for (j = i__; j <= i__3; ++j) {
  922. /* Computing MIN */
  923. i__4 = *kd, i__5 = *n - j;
  924. lk = f2cmin(i__4,i__5) + 1;
  925. scopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
  926. c__1);
  927. /* L50: */
  928. }
  929. slaset_("Upper", &pk, &pk, &c_b17, &c_b23, &a[i__ + *kd + i__ *
  930. a_dim1], lda);
  931. /* Form the matrix T */
  932. slarft_("Forward", "Columnwise", &pn, &pk, &a[i__ + *kd + i__ *
  933. a_dim1], lda, &tau[i__], &work[tpos], &ldt);
  934. /* Compute W: */
  935. sgemm_("No transpose", "No transpose", &pn, &pk, &pk, &c_b23, &a[
  936. i__ + *kd + i__ * a_dim1], lda, &work[tpos], &ldt, &c_b17,
  937. &work[s2pos], &lds2);
  938. ssymm_("Left", uplo, &pn, &pk, &c_b23, &a[i__ + *kd + (i__ + *kd)
  939. * a_dim1], lda, &work[s2pos], &lds2, &c_b17, &work[wpos],
  940. &ldw);
  941. sgemm_("Conjugate", "No transpose", &pk, &pk, &pn, &c_b23, &work[
  942. s2pos], &lds2, &work[wpos], &ldw, &c_b17, &work[s1pos], &
  943. lds1);
  944. sgemm_("No transpose", "No transpose", &pn, &pk, &pk, &c_b39, &a[
  945. i__ + *kd + i__ * a_dim1], lda, &work[s1pos], &lds1, &
  946. c_b23, &work[wpos], &ldw);
  947. /* Update the unreduced submatrix A(i+kd:n,i+kd:n), using */
  948. /* an update of the form: A := A - V*W' - W*V' */
  949. ssyr2k_(uplo, "No transpose", &pn, &pk, &c_b42, &a[i__ + *kd +
  950. i__ * a_dim1], lda, &work[wpos], &ldw, &c_b23, &a[i__ + *
  951. kd + (i__ + *kd) * a_dim1], lda);
  952. /* ================================================================== */
  953. /* RESTORE A FOR COMPARISON AND CHECKING TO BE REMOVED */
  954. /* DO 45 J = I, I+PK-1 */
  955. /* LK = MIN( KD, N-J ) + 1 */
  956. /* CALL SCOPY( LK, AB( 1, J ), 1, A( J, J ), 1 ) */
  957. /* 45 CONTINUE */
  958. /* ================================================================== */
  959. /* L40: */
  960. }
  961. /* Copy the lower band to AB which is the band storage matrix */
  962. i__1 = *n;
  963. for (j = *n - *kd + 1; j <= i__1; ++j) {
  964. /* Computing MIN */
  965. i__2 = *kd, i__3 = *n - j;
  966. lk = f2cmin(i__2,i__3) + 1;
  967. scopy_(&lk, &a[j + j * a_dim1], &c__1, &ab[j * ab_dim1 + 1], &
  968. c__1);
  969. /* L60: */
  970. }
  971. }
  972. work[1] = (real) lwmin;
  973. return;
  974. /* End of SSYTRD_SY2SB */
  975. } /* ssytrd_sy2sb__ */