You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slahqr.c 36 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using th
  488. e double-shift/single-shift QR algorithm. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SLAHQR + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slahqr.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slahqr.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slahqr.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, */
  507. /* ILOZ, IHIZ, Z, LDZ, INFO ) */
  508. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N */
  509. /* LOGICAL WANTT, WANTZ */
  510. /* REAL H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > SLAHQR is an auxiliary routine called by SHSEQR to update the */
  517. /* > eigenvalues and Schur decomposition already computed by SHSEQR, by */
  518. /* > dealing with the Hessenberg submatrix in rows and columns ILO to */
  519. /* > IHI. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] WANTT */
  524. /* > \verbatim */
  525. /* > WANTT is LOGICAL */
  526. /* > = .TRUE. : the full Schur form T is required; */
  527. /* > = .FALSE.: only eigenvalues are required. */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] WANTZ */
  531. /* > \verbatim */
  532. /* > WANTZ is LOGICAL */
  533. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  534. /* > = .FALSE.: Schur vectors are not required. */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] N */
  538. /* > \verbatim */
  539. /* > N is INTEGER */
  540. /* > The order of the matrix H. N >= 0. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] ILO */
  544. /* > \verbatim */
  545. /* > ILO is INTEGER */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in] IHI */
  549. /* > \verbatim */
  550. /* > IHI is INTEGER */
  551. /* > It is assumed that H is already upper quasi-triangular in */
  552. /* > rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless */
  553. /* > ILO = 1). SLAHQR works primarily with the Hessenberg */
  554. /* > submatrix in rows and columns ILO to IHI, but applies */
  555. /* > transformations to all of H if WANTT is .TRUE.. */
  556. /* > 1 <= ILO <= f2cmax(1,IHI); IHI <= N. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in,out] H */
  560. /* > \verbatim */
  561. /* > H is REAL array, dimension (LDH,N) */
  562. /* > On entry, the upper Hessenberg matrix H. */
  563. /* > On exit, if INFO is zero and if WANTT is .TRUE., H is upper */
  564. /* > quasi-triangular in rows and columns ILO:IHI, with any */
  565. /* > 2-by-2 diagonal blocks in standard form. If INFO is zero */
  566. /* > and WANTT is .FALSE., the contents of H are unspecified on */
  567. /* > exit. The output state of H if INFO is nonzero is given */
  568. /* > below under the description of INFO. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] LDH */
  572. /* > \verbatim */
  573. /* > LDH is INTEGER */
  574. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] WR */
  578. /* > \verbatim */
  579. /* > WR is REAL array, dimension (N) */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[out] WI */
  583. /* > \verbatim */
  584. /* > WI is REAL array, dimension (N) */
  585. /* > The real and imaginary parts, respectively, of the computed */
  586. /* > eigenvalues ILO to IHI are stored in the corresponding */
  587. /* > elements of WR and WI. If two eigenvalues are computed as a */
  588. /* > complex conjugate pair, they are stored in consecutive */
  589. /* > elements of WR and WI, say the i-th and (i+1)th, with */
  590. /* > WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the */
  591. /* > eigenvalues are stored in the same order as on the diagonal */
  592. /* > of the Schur form returned in H, with WR(i) = H(i,i), and, if */
  593. /* > H(i:i+1,i:i+1) is a 2-by-2 diagonal block, */
  594. /* > WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] ILOZ */
  598. /* > \verbatim */
  599. /* > ILOZ is INTEGER */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] IHIZ */
  603. /* > \verbatim */
  604. /* > IHIZ is INTEGER */
  605. /* > Specify the rows of Z to which transformations must be */
  606. /* > applied if WANTZ is .TRUE.. */
  607. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in,out] Z */
  611. /* > \verbatim */
  612. /* > Z is REAL array, dimension (LDZ,N) */
  613. /* > If WANTZ is .TRUE., on entry Z must contain the current */
  614. /* > matrix Z of transformations accumulated by SHSEQR, and on */
  615. /* > exit Z has been updated; transformations are applied only to */
  616. /* > the submatrix Z(ILOZ:IHIZ,ILO:IHI). */
  617. /* > If WANTZ is .FALSE., Z is not referenced. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LDZ */
  621. /* > \verbatim */
  622. /* > LDZ is INTEGER */
  623. /* > The leading dimension of the array Z. LDZ >= f2cmax(1,N). */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[out] INFO */
  627. /* > \verbatim */
  628. /* > INFO is INTEGER */
  629. /* > = 0: successful exit */
  630. /* > > 0: If INFO = i, SLAHQR failed to compute all the */
  631. /* > eigenvalues ILO to IHI in a total of 30 iterations */
  632. /* > per eigenvalue; elements i+1:ihi of WR and WI */
  633. /* > contain those eigenvalues which have been */
  634. /* > successfully computed. */
  635. /* > */
  636. /* > If INFO > 0 and WANTT is .FALSE., then on exit, */
  637. /* > the remaining unconverged eigenvalues are the */
  638. /* > eigenvalues of the upper Hessenberg matrix rows */
  639. /* > and columns ILO through INFO of the final, output */
  640. /* > value of H. */
  641. /* > */
  642. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  643. /* > (*) (initial value of H)*U = U*(final value of H) */
  644. /* > where U is an orthogonal matrix. The final */
  645. /* > value of H is upper Hessenberg and triangular in */
  646. /* > rows and columns INFO+1 through IHI. */
  647. /* > */
  648. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  649. /* > (final value of Z) = (initial value of Z)*U */
  650. /* > where U is the orthogonal matrix in (*) */
  651. /* > (regardless of the value of WANTT.) */
  652. /* > \endverbatim */
  653. /* Authors: */
  654. /* ======== */
  655. /* > \author Univ. of Tennessee */
  656. /* > \author Univ. of California Berkeley */
  657. /* > \author Univ. of Colorado Denver */
  658. /* > \author NAG Ltd. */
  659. /* > \date December 2016 */
  660. /* > \ingroup realOTHERauxiliary */
  661. /* > \par Further Details: */
  662. /* ===================== */
  663. /* > */
  664. /* > \verbatim */
  665. /* > */
  666. /* > 02-96 Based on modifications by */
  667. /* > David Day, Sandia National Laboratory, USA */
  668. /* > */
  669. /* > 12-04 Further modifications by */
  670. /* > Ralph Byers, University of Kansas, USA */
  671. /* > This is a modified version of SLAHQR from LAPACK version 3.0. */
  672. /* > It is (1) more robust against overflow and underflow and */
  673. /* > (2) adopts the more conservative Ahues & Tisseur stopping */
  674. /* > criterion (LAWN 122, 1997). */
  675. /* > \endverbatim */
  676. /* > */
  677. /* ===================================================================== */
  678. /* Subroutine */ void slahqr_(logical *wantt, logical *wantz, integer *n,
  679. integer *ilo, integer *ihi, real *h__, integer *ldh, real *wr, real *
  680. wi, integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *
  681. info)
  682. {
  683. /* System generated locals */
  684. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  685. real r__1, r__2, r__3, r__4;
  686. /* Local variables */
  687. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  688. integer *, real *, real *);
  689. integer i__, j, k, l, m;
  690. real s, v[3];
  691. integer itmax, i1, i2;
  692. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  693. integer *);
  694. real t1, t2, t3, v2, v3, aa, ab, ba, bb;
  695. extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
  696. , real *, real *, real *, real *, real *);
  697. real h11, h12, h21, h22, cs;
  698. integer nh;
  699. extern /* Subroutine */ void slabad_(real *, real *);
  700. real sn;
  701. integer nr;
  702. real tr;
  703. extern real slamch_(char *);
  704. integer nz;
  705. real safmin;
  706. extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *,
  707. real *);
  708. real safmax, rtdisc, smlnum, det, h21s;
  709. integer its;
  710. real ulp, sum, tst, rt1i, rt2i, rt1r, rt2r;
  711. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  712. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  713. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  714. /* December 2016 */
  715. /* ========================================================= */
  716. /* Parameter adjustments */
  717. h_dim1 = *ldh;
  718. h_offset = 1 + h_dim1 * 1;
  719. h__ -= h_offset;
  720. --wr;
  721. --wi;
  722. z_dim1 = *ldz;
  723. z_offset = 1 + z_dim1 * 1;
  724. z__ -= z_offset;
  725. /* Function Body */
  726. *info = 0;
  727. /* Quick return if possible */
  728. if (*n == 0) {
  729. return;
  730. }
  731. if (*ilo == *ihi) {
  732. wr[*ilo] = h__[*ilo + *ilo * h_dim1];
  733. wi[*ilo] = 0.f;
  734. return;
  735. }
  736. /* ==== clear out the trash ==== */
  737. i__1 = *ihi - 3;
  738. for (j = *ilo; j <= i__1; ++j) {
  739. h__[j + 2 + j * h_dim1] = 0.f;
  740. h__[j + 3 + j * h_dim1] = 0.f;
  741. /* L10: */
  742. }
  743. if (*ilo <= *ihi - 2) {
  744. h__[*ihi + (*ihi - 2) * h_dim1] = 0.f;
  745. }
  746. nh = *ihi - *ilo + 1;
  747. nz = *ihiz - *iloz + 1;
  748. /* Set machine-dependent constants for the stopping criterion. */
  749. safmin = slamch_("SAFE MINIMUM");
  750. safmax = 1.f / safmin;
  751. slabad_(&safmin, &safmax);
  752. ulp = slamch_("PRECISION");
  753. smlnum = safmin * ((real) nh / ulp);
  754. /* I1 and I2 are the indices of the first row and last column of H */
  755. /* to which transformations must be applied. If eigenvalues only are */
  756. /* being computed, I1 and I2 are set inside the main loop. */
  757. if (*wantt) {
  758. i1 = 1;
  759. i2 = *n;
  760. }
  761. /* ITMAX is the total number of QR iterations allowed. */
  762. itmax = f2cmax(10,nh) * 30;
  763. /* The main loop begins here. I is the loop index and decreases from */
  764. /* IHI to ILO in steps of 1 or 2. Each iteration of the loop works */
  765. /* with the active submatrix in rows and columns L to I. */
  766. /* Eigenvalues I+1 to IHI have already converged. Either L = ILO or */
  767. /* H(L,L-1) is negligible so that the matrix splits. */
  768. i__ = *ihi;
  769. L20:
  770. l = *ilo;
  771. if (i__ < *ilo) {
  772. goto L160;
  773. }
  774. /* Perform QR iterations on rows and columns ILO to I until a */
  775. /* submatrix of order 1 or 2 splits off at the bottom because a */
  776. /* subdiagonal element has become negligible. */
  777. i__1 = itmax;
  778. for (its = 0; its <= i__1; ++its) {
  779. /* Look for a single small subdiagonal element. */
  780. i__2 = l + 1;
  781. for (k = i__; k >= i__2; --k) {
  782. if ((r__1 = h__[k + (k - 1) * h_dim1], abs(r__1)) <= smlnum) {
  783. goto L40;
  784. }
  785. tst = (r__1 = h__[k - 1 + (k - 1) * h_dim1], abs(r__1)) + (r__2 =
  786. h__[k + k * h_dim1], abs(r__2));
  787. if (tst == 0.f) {
  788. if (k - 2 >= *ilo) {
  789. tst += (r__1 = h__[k - 1 + (k - 2) * h_dim1], abs(r__1));
  790. }
  791. if (k + 1 <= *ihi) {
  792. tst += (r__1 = h__[k + 1 + k * h_dim1], abs(r__1));
  793. }
  794. }
  795. /* ==== The following is a conservative small subdiagonal */
  796. /* . deflation criterion due to Ahues & Tisseur (LAWN 122, */
  797. /* . 1997). It has better mathematical foundation and */
  798. /* . improves accuracy in some cases. ==== */
  799. if ((r__1 = h__[k + (k - 1) * h_dim1], abs(r__1)) <= ulp * tst) {
  800. /* Computing MAX */
  801. r__3 = (r__1 = h__[k + (k - 1) * h_dim1], abs(r__1)), r__4 = (
  802. r__2 = h__[k - 1 + k * h_dim1], abs(r__2));
  803. ab = f2cmax(r__3,r__4);
  804. /* Computing MIN */
  805. r__3 = (r__1 = h__[k + (k - 1) * h_dim1], abs(r__1)), r__4 = (
  806. r__2 = h__[k - 1 + k * h_dim1], abs(r__2));
  807. ba = f2cmin(r__3,r__4);
  808. /* Computing MAX */
  809. r__3 = (r__1 = h__[k + k * h_dim1], abs(r__1)), r__4 = (r__2 =
  810. h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
  811. abs(r__2));
  812. aa = f2cmax(r__3,r__4);
  813. /* Computing MIN */
  814. r__3 = (r__1 = h__[k + k * h_dim1], abs(r__1)), r__4 = (r__2 =
  815. h__[k - 1 + (k - 1) * h_dim1] - h__[k + k * h_dim1],
  816. abs(r__2));
  817. bb = f2cmin(r__3,r__4);
  818. s = aa + ab;
  819. /* Computing MAX */
  820. r__1 = smlnum, r__2 = ulp * (bb * (aa / s));
  821. if (ba * (ab / s) <= f2cmax(r__1,r__2)) {
  822. goto L40;
  823. }
  824. }
  825. /* L30: */
  826. }
  827. L40:
  828. l = k;
  829. if (l > *ilo) {
  830. /* H(L,L-1) is negligible */
  831. h__[l + (l - 1) * h_dim1] = 0.f;
  832. }
  833. /* Exit from loop if a submatrix of order 1 or 2 has split off. */
  834. if (l >= i__ - 1) {
  835. goto L150;
  836. }
  837. /* Now the active submatrix is in rows and columns L to I. If */
  838. /* eigenvalues only are being computed, only the active submatrix */
  839. /* need be transformed. */
  840. if (! (*wantt)) {
  841. i1 = l;
  842. i2 = i__;
  843. }
  844. if (its == 10) {
  845. /* Exceptional shift. */
  846. s = (r__1 = h__[l + 1 + l * h_dim1], abs(r__1)) + (r__2 = h__[l +
  847. 2 + (l + 1) * h_dim1], abs(r__2));
  848. h11 = s * .75f + h__[l + l * h_dim1];
  849. h12 = s * -.4375f;
  850. h21 = s;
  851. h22 = h11;
  852. } else if (its == 20) {
  853. /* Exceptional shift. */
  854. s = (r__1 = h__[i__ + (i__ - 1) * h_dim1], abs(r__1)) + (r__2 =
  855. h__[i__ - 1 + (i__ - 2) * h_dim1], abs(r__2));
  856. h11 = s * .75f + h__[i__ + i__ * h_dim1];
  857. h12 = s * -.4375f;
  858. h21 = s;
  859. h22 = h11;
  860. } else {
  861. /* Prepare to use Francis' double shift */
  862. /* (i.e. 2nd degree generalized Rayleigh quotient) */
  863. h11 = h__[i__ - 1 + (i__ - 1) * h_dim1];
  864. h21 = h__[i__ + (i__ - 1) * h_dim1];
  865. h12 = h__[i__ - 1 + i__ * h_dim1];
  866. h22 = h__[i__ + i__ * h_dim1];
  867. }
  868. s = abs(h11) + abs(h12) + abs(h21) + abs(h22);
  869. if (s == 0.f) {
  870. rt1r = 0.f;
  871. rt1i = 0.f;
  872. rt2r = 0.f;
  873. rt2i = 0.f;
  874. } else {
  875. h11 /= s;
  876. h21 /= s;
  877. h12 /= s;
  878. h22 /= s;
  879. tr = (h11 + h22) / 2.f;
  880. det = (h11 - tr) * (h22 - tr) - h12 * h21;
  881. rtdisc = sqrt((abs(det)));
  882. if (det >= 0.f) {
  883. /* ==== complex conjugate shifts ==== */
  884. rt1r = tr * s;
  885. rt2r = rt1r;
  886. rt1i = rtdisc * s;
  887. rt2i = -rt1i;
  888. } else {
  889. /* ==== real shifts (use only one of them) ==== */
  890. rt1r = tr + rtdisc;
  891. rt2r = tr - rtdisc;
  892. if ((r__1 = rt1r - h22, abs(r__1)) <= (r__2 = rt2r - h22, abs(
  893. r__2))) {
  894. rt1r *= s;
  895. rt2r = rt1r;
  896. } else {
  897. rt2r *= s;
  898. rt1r = rt2r;
  899. }
  900. rt1i = 0.f;
  901. rt2i = 0.f;
  902. }
  903. }
  904. /* Look for two consecutive small subdiagonal elements. */
  905. i__2 = l;
  906. for (m = i__ - 2; m >= i__2; --m) {
  907. /* Determine the effect of starting the double-shift QR */
  908. /* iteration at row M, and see if this would make H(M,M-1) */
  909. /* negligible. (The following uses scaling to avoid */
  910. /* overflows and most underflows.) */
  911. h21s = h__[m + 1 + m * h_dim1];
  912. s = (r__1 = h__[m + m * h_dim1] - rt2r, abs(r__1)) + abs(rt2i) +
  913. abs(h21s);
  914. h21s = h__[m + 1 + m * h_dim1] / s;
  915. v[0] = h21s * h__[m + (m + 1) * h_dim1] + (h__[m + m * h_dim1] -
  916. rt1r) * ((h__[m + m * h_dim1] - rt2r) / s) - rt1i * (rt2i
  917. / s);
  918. v[1] = h21s * (h__[m + m * h_dim1] + h__[m + 1 + (m + 1) * h_dim1]
  919. - rt1r - rt2r);
  920. v[2] = h21s * h__[m + 2 + (m + 1) * h_dim1];
  921. s = abs(v[0]) + abs(v[1]) + abs(v[2]);
  922. v[0] /= s;
  923. v[1] /= s;
  924. v[2] /= s;
  925. if (m == l) {
  926. goto L60;
  927. }
  928. if ((r__1 = h__[m + (m - 1) * h_dim1], abs(r__1)) * (abs(v[1]) +
  929. abs(v[2])) <= ulp * abs(v[0]) * ((r__2 = h__[m - 1 + (m -
  930. 1) * h_dim1], abs(r__2)) + (r__3 = h__[m + m * h_dim1],
  931. abs(r__3)) + (r__4 = h__[m + 1 + (m + 1) * h_dim1], abs(
  932. r__4)))) {
  933. goto L60;
  934. }
  935. /* L50: */
  936. }
  937. L60:
  938. /* Double-shift QR step */
  939. i__2 = i__ - 1;
  940. for (k = m; k <= i__2; ++k) {
  941. /* The first iteration of this loop determines a reflection G */
  942. /* from the vector V and applies it from left and right to H, */
  943. /* thus creating a nonzero bulge below the subdiagonal. */
  944. /* Each subsequent iteration determines a reflection G to */
  945. /* restore the Hessenberg form in the (K-1)th column, and thus */
  946. /* chases the bulge one step toward the bottom of the active */
  947. /* submatrix. NR is the order of G. */
  948. /* Computing MIN */
  949. i__3 = 3, i__4 = i__ - k + 1;
  950. nr = f2cmin(i__3,i__4);
  951. if (k > m) {
  952. scopy_(&nr, &h__[k + (k - 1) * h_dim1], &c__1, v, &c__1);
  953. }
  954. slarfg_(&nr, v, &v[1], &c__1, &t1);
  955. if (k > m) {
  956. h__[k + (k - 1) * h_dim1] = v[0];
  957. h__[k + 1 + (k - 1) * h_dim1] = 0.f;
  958. if (k < i__ - 1) {
  959. h__[k + 2 + (k - 1) * h_dim1] = 0.f;
  960. }
  961. } else if (m > l) {
  962. /* ==== Use the following instead of */
  963. /* . H( K, K-1 ) = -H( K, K-1 ) to */
  964. /* . avoid a bug when v(2) and v(3) */
  965. /* . underflow. ==== */
  966. h__[k + (k - 1) * h_dim1] *= 1.f - t1;
  967. }
  968. v2 = v[1];
  969. t2 = t1 * v2;
  970. if (nr == 3) {
  971. v3 = v[2];
  972. t3 = t1 * v3;
  973. /* Apply G from the left to transform the rows of the matrix */
  974. /* in columns K to I2. */
  975. i__3 = i2;
  976. for (j = k; j <= i__3; ++j) {
  977. sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1]
  978. + v3 * h__[k + 2 + j * h_dim1];
  979. h__[k + j * h_dim1] -= sum * t1;
  980. h__[k + 1 + j * h_dim1] -= sum * t2;
  981. h__[k + 2 + j * h_dim1] -= sum * t3;
  982. /* L70: */
  983. }
  984. /* Apply G from the right to transform the columns of the */
  985. /* matrix in rows I1 to f2cmin(K+3,I). */
  986. /* Computing MIN */
  987. i__4 = k + 3;
  988. i__3 = f2cmin(i__4,i__);
  989. for (j = i1; j <= i__3; ++j) {
  990. sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
  991. + v3 * h__[j + (k + 2) * h_dim1];
  992. h__[j + k * h_dim1] -= sum * t1;
  993. h__[j + (k + 1) * h_dim1] -= sum * t2;
  994. h__[j + (k + 2) * h_dim1] -= sum * t3;
  995. /* L80: */
  996. }
  997. if (*wantz) {
  998. /* Accumulate transformations in the matrix Z */
  999. i__3 = *ihiz;
  1000. for (j = *iloz; j <= i__3; ++j) {
  1001. sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
  1002. z_dim1] + v3 * z__[j + (k + 2) * z_dim1];
  1003. z__[j + k * z_dim1] -= sum * t1;
  1004. z__[j + (k + 1) * z_dim1] -= sum * t2;
  1005. z__[j + (k + 2) * z_dim1] -= sum * t3;
  1006. /* L90: */
  1007. }
  1008. }
  1009. } else if (nr == 2) {
  1010. /* Apply G from the left to transform the rows of the matrix */
  1011. /* in columns K to I2. */
  1012. i__3 = i2;
  1013. for (j = k; j <= i__3; ++j) {
  1014. sum = h__[k + j * h_dim1] + v2 * h__[k + 1 + j * h_dim1];
  1015. h__[k + j * h_dim1] -= sum * t1;
  1016. h__[k + 1 + j * h_dim1] -= sum * t2;
  1017. /* L100: */
  1018. }
  1019. /* Apply G from the right to transform the columns of the */
  1020. /* matrix in rows I1 to f2cmin(K+3,I). */
  1021. i__3 = i__;
  1022. for (j = i1; j <= i__3; ++j) {
  1023. sum = h__[j + k * h_dim1] + v2 * h__[j + (k + 1) * h_dim1]
  1024. ;
  1025. h__[j + k * h_dim1] -= sum * t1;
  1026. h__[j + (k + 1) * h_dim1] -= sum * t2;
  1027. /* L110: */
  1028. }
  1029. if (*wantz) {
  1030. /* Accumulate transformations in the matrix Z */
  1031. i__3 = *ihiz;
  1032. for (j = *iloz; j <= i__3; ++j) {
  1033. sum = z__[j + k * z_dim1] + v2 * z__[j + (k + 1) *
  1034. z_dim1];
  1035. z__[j + k * z_dim1] -= sum * t1;
  1036. z__[j + (k + 1) * z_dim1] -= sum * t2;
  1037. /* L120: */
  1038. }
  1039. }
  1040. }
  1041. /* L130: */
  1042. }
  1043. /* L140: */
  1044. }
  1045. /* Failure to converge in remaining number of iterations */
  1046. *info = i__;
  1047. return;
  1048. L150:
  1049. if (l == i__) {
  1050. /* H(I,I-1) is negligible: one eigenvalue has converged. */
  1051. wr[i__] = h__[i__ + i__ * h_dim1];
  1052. wi[i__] = 0.f;
  1053. } else if (l == i__ - 1) {
  1054. /* H(I-1,I-2) is negligible: a pair of eigenvalues have converged. */
  1055. /* Transform the 2-by-2 submatrix to standard Schur form, */
  1056. /* and compute and store the eigenvalues. */
  1057. slanv2_(&h__[i__ - 1 + (i__ - 1) * h_dim1], &h__[i__ - 1 + i__ *
  1058. h_dim1], &h__[i__ + (i__ - 1) * h_dim1], &h__[i__ + i__ *
  1059. h_dim1], &wr[i__ - 1], &wi[i__ - 1], &wr[i__], &wi[i__], &cs,
  1060. &sn);
  1061. if (*wantt) {
  1062. /* Apply the transformation to the rest of H. */
  1063. if (i2 > i__) {
  1064. i__1 = i2 - i__;
  1065. srot_(&i__1, &h__[i__ - 1 + (i__ + 1) * h_dim1], ldh, &h__[
  1066. i__ + (i__ + 1) * h_dim1], ldh, &cs, &sn);
  1067. }
  1068. i__1 = i__ - i1 - 1;
  1069. srot_(&i__1, &h__[i1 + (i__ - 1) * h_dim1], &c__1, &h__[i1 + i__ *
  1070. h_dim1], &c__1, &cs, &sn);
  1071. }
  1072. if (*wantz) {
  1073. /* Apply the transformation to Z. */
  1074. srot_(&nz, &z__[*iloz + (i__ - 1) * z_dim1], &c__1, &z__[*iloz +
  1075. i__ * z_dim1], &c__1, &cs, &sn);
  1076. }
  1077. }
  1078. /* return to start of the main loop with new value of I. */
  1079. i__ = l - 1;
  1080. goto L20;
  1081. L160:
  1082. return;
  1083. /* End of SLAHQR */
  1084. } /* slahqr_ */