You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgsvj0.c 48 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static real c_b42 = 1.f;
  489. /* > \brief \b SGSVJ0 pre-processor for the routine sgesvj. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SGSVJ0 + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgsvj0.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgsvj0.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgsvj0.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS, */
  508. /* SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  509. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP */
  510. /* REAL EPS, SFMIN, TOL */
  511. /* CHARACTER*1 JOBV */
  512. /* REAL A( LDA, * ), SVA( N ), D( N ), V( LDV, * ), */
  513. /* $ WORK( LWORK ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SGSVJ0 is called from SGESVJ as a pre-processor and that is its main */
  520. /* > purpose. It applies Jacobi rotations in the same way as SGESVJ does, but */
  521. /* > it does not check convergence (stopping criterion). Few tuning */
  522. /* > parameters (marked by [TP]) are available for the implementer. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] JOBV */
  527. /* > \verbatim */
  528. /* > JOBV is CHARACTER*1 */
  529. /* > Specifies whether the output from this procedure is used */
  530. /* > to compute the matrix V: */
  531. /* > = 'V': the product of the Jacobi rotations is accumulated */
  532. /* > by postmulyiplying the N-by-N array V. */
  533. /* > (See the description of V.) */
  534. /* > = 'A': the product of the Jacobi rotations is accumulated */
  535. /* > by postmulyiplying the MV-by-N array V. */
  536. /* > (See the descriptions of MV and V.) */
  537. /* > = 'N': the Jacobi rotations are not accumulated. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the input matrix A. M >= 0. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] N */
  547. /* > \verbatim */
  548. /* > N is INTEGER */
  549. /* > The number of columns of the input matrix A. */
  550. /* > M >= N >= 0. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in,out] A */
  554. /* > \verbatim */
  555. /* > A is REAL array, dimension (LDA,N) */
  556. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  557. /* > the input matrix. */
  558. /* > On exit, */
  559. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  560. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  561. /* > rotation threshold and the total number of sweeps are given in */
  562. /* > TOL and NSWEEP, respectively. */
  563. /* > (See the descriptions of D, TOL and NSWEEP.) */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] LDA */
  567. /* > \verbatim */
  568. /* > LDA is INTEGER */
  569. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] D */
  573. /* > \verbatim */
  574. /* > D is REAL array, dimension (N) */
  575. /* > The array D accumulates the scaling factors from the fast scaled */
  576. /* > Jacobi rotations. */
  577. /* > On entry, A*diag(D) represents the input matrix. */
  578. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  579. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  580. /* > rotation threshold and the total number of sweeps are given in */
  581. /* > TOL and NSWEEP, respectively. */
  582. /* > (See the descriptions of A, TOL and NSWEEP.) */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] SVA */
  586. /* > \verbatim */
  587. /* > SVA is REAL array, dimension (N) */
  588. /* > On entry, SVA contains the Euclidean norms of the columns of */
  589. /* > the matrix A*diag(D). */
  590. /* > On exit, SVA contains the Euclidean norms of the columns of */
  591. /* > the matrix onexit*diag(D_onexit). */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] MV */
  595. /* > \verbatim */
  596. /* > MV is INTEGER */
  597. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  598. /* > sequence of Jacobi rotations. */
  599. /* > If JOBV = 'N', then MV is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] V */
  603. /* > \verbatim */
  604. /* > V is REAL array, dimension (LDV,N) */
  605. /* > If JOBV = 'V' then N rows of V are post-multipled by a */
  606. /* > sequence of Jacobi rotations. */
  607. /* > If JOBV = 'A' then MV rows of V are post-multipled by a */
  608. /* > sequence of Jacobi rotations. */
  609. /* > If JOBV = 'N', then V is not referenced. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in] LDV */
  613. /* > \verbatim */
  614. /* > LDV is INTEGER */
  615. /* > The leading dimension of the array V, LDV >= 1. */
  616. /* > If JOBV = 'V', LDV >= N. */
  617. /* > If JOBV = 'A', LDV >= MV. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] EPS */
  621. /* > \verbatim */
  622. /* > EPS is REAL */
  623. /* > EPS = SLAMCH('Epsilon') */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] SFMIN */
  627. /* > \verbatim */
  628. /* > SFMIN is REAL */
  629. /* > SFMIN = SLAMCH('Safe Minimum') */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[in] TOL */
  633. /* > \verbatim */
  634. /* > TOL is REAL */
  635. /* > TOL is the threshold for Jacobi rotations. For a pair */
  636. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  637. /* > applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[in] NSWEEP */
  641. /* > \verbatim */
  642. /* > NSWEEP is INTEGER */
  643. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  644. /* > performed. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] WORK */
  648. /* > \verbatim */
  649. /* > WORK is REAL array, dimension (LWORK) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in] LWORK */
  653. /* > \verbatim */
  654. /* > LWORK is INTEGER */
  655. /* > LWORK is the dimension of WORK. LWORK >= M. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] INFO */
  659. /* > \verbatim */
  660. /* > INFO is INTEGER */
  661. /* > = 0: successful exit. */
  662. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  663. /* > \endverbatim */
  664. /* Authors: */
  665. /* ======== */
  666. /* > \author Univ. of Tennessee */
  667. /* > \author Univ. of California Berkeley */
  668. /* > \author Univ. of Colorado Denver */
  669. /* > \author NAG Ltd. */
  670. /* > \date November 2017 */
  671. /* > \ingroup realOTHERcomputational */
  672. /* > \par Further Details: */
  673. /* ===================== */
  674. /* > */
  675. /* > SGSVJ0 is used just to enable SGESVJ to call a simplified version of */
  676. /* > itself to work on a submatrix of the original matrix. */
  677. /* > */
  678. /* > \par Contributors: */
  679. /* ================== */
  680. /* > */
  681. /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
  682. /* > */
  683. /* > \par Bugs, Examples and Comments: */
  684. /* ================================= */
  685. /* > */
  686. /* > Please report all bugs and send interesting test examples and comments to */
  687. /* > drmac@math.hr. Thank you. */
  688. /* ===================================================================== */
  689. /* Subroutine */ void sgsvj0_(char *jobv, integer *m, integer *n, real *a,
  690. integer *lda, real *d__, real *sva, integer *mv, real *v, integer *
  691. ldv, real *eps, real *sfmin, real *tol, integer *nsweep, real *work,
  692. integer *lwork, integer *info)
  693. {
  694. /* System generated locals */
  695. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  696. i__6;
  697. real r__1, r__2;
  698. /* Local variables */
  699. real aapp, aapq, aaqq;
  700. integer ierr;
  701. real bigtheta;
  702. extern real sdot_(integer *, real *, integer *, real *, integer *);
  703. integer pskipped;
  704. real aapp0, temp1;
  705. extern real snrm2_(integer *, real *, integer *);
  706. integer i__, p, q;
  707. real t, apoaq, aqoap;
  708. extern logical lsame_(char *, char *);
  709. real theta, small, fastr[5];
  710. logical applv, rsvec;
  711. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  712. integer *);
  713. logical rotok;
  714. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  715. integer *), saxpy_(integer *, real *, real *, integer *, real *,
  716. integer *), srotm_(integer *, real *, integer *, real *, integer *
  717. , real *);
  718. real rootsfmin, cs, sn;
  719. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  720. integer ijblsk, swband;
  721. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  722. real *, integer *, integer *, real *, integer *, integer *);
  723. extern integer isamax_(integer *, real *, integer *);
  724. integer blskip;
  725. real mxaapq, thsign;
  726. extern /* Subroutine */ void slassq_(integer *, real *, integer *, real *,
  727. real *);
  728. real mxsinj;
  729. integer ir1, emptsw, notrot, iswrot, jbc;
  730. real big;
  731. integer kbl, lkahead, igl, ibr, jgl, nbl, mvl;
  732. real rootbig, rooteps;
  733. integer rowskip;
  734. real roottol;
  735. /* -- LAPACK computational routine (version 3.8.0) -- */
  736. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  737. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  738. /* November 2017 */
  739. /* ===================================================================== */
  740. /* Test the input parameters. */
  741. /* Parameter adjustments */
  742. --sva;
  743. --d__;
  744. a_dim1 = *lda;
  745. a_offset = 1 + a_dim1 * 1;
  746. a -= a_offset;
  747. v_dim1 = *ldv;
  748. v_offset = 1 + v_dim1 * 1;
  749. v -= v_offset;
  750. --work;
  751. /* Function Body */
  752. applv = lsame_(jobv, "A");
  753. rsvec = lsame_(jobv, "V");
  754. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  755. *info = -1;
  756. } else if (*m < 0) {
  757. *info = -2;
  758. } else if (*n < 0 || *n > *m) {
  759. *info = -3;
  760. } else if (*lda < *m) {
  761. *info = -5;
  762. } else if ((rsvec || applv) && *mv < 0) {
  763. *info = -8;
  764. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  765. *info = -10;
  766. } else if (*tol <= *eps) {
  767. *info = -13;
  768. } else if (*nsweep < 0) {
  769. *info = -14;
  770. } else if (*lwork < *m) {
  771. *info = -16;
  772. } else {
  773. *info = 0;
  774. }
  775. /* #:( */
  776. if (*info != 0) {
  777. i__1 = -(*info);
  778. xerbla_("SGSVJ0", &i__1, (ftnlen)6);
  779. return;
  780. }
  781. if (rsvec) {
  782. mvl = *n;
  783. } else if (applv) {
  784. mvl = *mv;
  785. }
  786. rsvec = rsvec || applv;
  787. rooteps = sqrt(*eps);
  788. rootsfmin = sqrt(*sfmin);
  789. small = *sfmin / *eps;
  790. big = 1.f / *sfmin;
  791. rootbig = 1.f / rootsfmin;
  792. bigtheta = 1.f / rooteps;
  793. roottol = sqrt(*tol);
  794. emptsw = *n * (*n - 1) / 2;
  795. notrot = 0;
  796. fastr[0] = 0.f;
  797. swband = 0;
  798. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  799. /* if SGESVJ is used as a computational routine in the preconditioned */
  800. /* Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure */
  801. /* ...... */
  802. kbl = f2cmin(8,*n);
  803. /* [TP] KBL is a tuning parameter that defines the tile size in the */
  804. /* tiling of the p-q loops of pivot pairs. In general, an optimal */
  805. /* value of KBL depends on the matrix dimensions and on the */
  806. /* parameters of the computer's memory. */
  807. nbl = *n / kbl;
  808. if (nbl * kbl != *n) {
  809. ++nbl;
  810. }
  811. /* Computing 2nd power */
  812. i__1 = kbl;
  813. blskip = i__1 * i__1 + 1;
  814. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  815. rowskip = f2cmin(5,kbl);
  816. /* [TP] ROWSKIP is a tuning parameter. */
  817. lkahead = 1;
  818. /* [TP] LKAHEAD is a tuning parameter. */
  819. swband = 0;
  820. pskipped = 0;
  821. i__1 = *nsweep;
  822. for (i__ = 1; i__ <= i__1; ++i__) {
  823. mxaapq = 0.f;
  824. mxsinj = 0.f;
  825. iswrot = 0;
  826. notrot = 0;
  827. pskipped = 0;
  828. i__2 = nbl;
  829. for (ibr = 1; ibr <= i__2; ++ibr) {
  830. igl = (ibr - 1) * kbl + 1;
  831. /* Computing MIN */
  832. i__4 = lkahead, i__5 = nbl - ibr;
  833. i__3 = f2cmin(i__4,i__5);
  834. for (ir1 = 0; ir1 <= i__3; ++ir1) {
  835. igl += ir1 * kbl;
  836. /* Computing MIN */
  837. i__5 = igl + kbl - 1, i__6 = *n - 1;
  838. i__4 = f2cmin(i__5,i__6);
  839. for (p = igl; p <= i__4; ++p) {
  840. i__5 = *n - p + 1;
  841. q = isamax_(&i__5, &sva[p], &c__1) + p - 1;
  842. if (p != q) {
  843. sswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 +
  844. 1], &c__1);
  845. if (rsvec) {
  846. sswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  847. v_dim1 + 1], &c__1);
  848. }
  849. temp1 = sva[p];
  850. sva[p] = sva[q];
  851. sva[q] = temp1;
  852. temp1 = d__[p];
  853. d__[p] = d__[q];
  854. d__[q] = temp1;
  855. }
  856. if (ir1 == 0) {
  857. /* Column norms are periodically updated by explicit */
  858. /* norm computation. */
  859. /* Caveat: */
  860. /* Some BLAS implementations compute SNRM2(M,A(1,p),1) */
  861. /* as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in */
  862. /* overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and */
  863. /* undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold). */
  864. /* Hence, SNRM2 cannot be trusted, not even in the case when */
  865. /* the true norm is far from the under(over)flow boundaries. */
  866. /* If properly implemented SNRM2 is available, the IF-THEN-ELSE */
  867. /* below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)". */
  868. if (sva[p] < rootbig && sva[p] > rootsfmin) {
  869. sva[p] = snrm2_(m, &a[p * a_dim1 + 1], &c__1) *
  870. d__[p];
  871. } else {
  872. temp1 = 0.f;
  873. aapp = 1.f;
  874. slassq_(m, &a[p * a_dim1 + 1], &c__1, &temp1, &
  875. aapp);
  876. sva[p] = temp1 * sqrt(aapp) * d__[p];
  877. }
  878. aapp = sva[p];
  879. } else {
  880. aapp = sva[p];
  881. }
  882. if (aapp > 0.f) {
  883. pskipped = 0;
  884. /* Computing MIN */
  885. i__6 = igl + kbl - 1;
  886. i__5 = f2cmin(i__6,*n);
  887. for (q = p + 1; q <= i__5; ++q) {
  888. aaqq = sva[q];
  889. if (aaqq > 0.f) {
  890. aapp0 = aapp;
  891. if (aaqq >= 1.f) {
  892. rotok = small * aapp <= aaqq;
  893. if (aapp < big / aaqq) {
  894. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  895. c__1, &a[q * a_dim1 + 1], &
  896. c__1) * d__[p] * d__[q] /
  897. aaqq / aapp;
  898. } else {
  899. scopy_(m, &a[p * a_dim1 + 1], &c__1, &
  900. work[1], &c__1);
  901. slascl_("G", &c__0, &c__0, &aapp, &
  902. d__[p], m, &c__1, &work[1],
  903. lda, &ierr);
  904. aapq = sdot_(m, &work[1], &c__1, &a[q
  905. * a_dim1 + 1], &c__1) * d__[q]
  906. / aaqq;
  907. }
  908. } else {
  909. rotok = aapp <= aaqq / small;
  910. if (aapp > small / aaqq) {
  911. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  912. c__1, &a[q * a_dim1 + 1], &
  913. c__1) * d__[p] * d__[q] /
  914. aaqq / aapp;
  915. } else {
  916. scopy_(m, &a[q * a_dim1 + 1], &c__1, &
  917. work[1], &c__1);
  918. slascl_("G", &c__0, &c__0, &aaqq, &
  919. d__[q], m, &c__1, &work[1],
  920. lda, &ierr);
  921. aapq = sdot_(m, &work[1], &c__1, &a[p
  922. * a_dim1 + 1], &c__1) * d__[p]
  923. / aapp;
  924. }
  925. }
  926. /* Computing MAX */
  927. r__1 = mxaapq, r__2 = abs(aapq);
  928. mxaapq = f2cmax(r__1,r__2);
  929. /* TO rotate or NOT to rotate, THAT is the question ... */
  930. if (abs(aapq) > *tol) {
  931. /* ROTATED = ROTATED + ONE */
  932. if (ir1 == 0) {
  933. notrot = 0;
  934. pskipped = 0;
  935. ++iswrot;
  936. }
  937. if (rotok) {
  938. aqoap = aaqq / aapp;
  939. apoaq = aapp / aaqq;
  940. theta = (r__1 = aqoap - apoaq, abs(
  941. r__1)) * -.5f / aapq;
  942. if (abs(theta) > bigtheta) {
  943. t = .5f / theta;
  944. fastr[2] = t * d__[p] / d__[q];
  945. fastr[3] = -t * d__[q] / d__[p];
  946. srotm_(m, &a[p * a_dim1 + 1], &
  947. c__1, &a[q * a_dim1 + 1],
  948. &c__1, fastr);
  949. if (rsvec) {
  950. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  951. v_dim1 + 1], &c__1, fastr);
  952. }
  953. /* Computing MAX */
  954. r__1 = 0.f, r__2 = t * apoaq *
  955. aapq + 1.f;
  956. sva[q] = aaqq * sqrt((f2cmax(r__1,
  957. r__2)));
  958. /* Computing MAX */
  959. r__1 = 0.f, r__2 = 1.f - t *
  960. aqoap * aapq;
  961. aapp *= sqrt((f2cmax(r__1,r__2)));
  962. /* Computing MAX */
  963. r__1 = mxsinj, r__2 = abs(t);
  964. mxsinj = f2cmax(r__1,r__2);
  965. } else {
  966. thsign = -r_sign(&c_b42, &aapq);
  967. t = 1.f / (theta + thsign * sqrt(
  968. theta * theta + 1.f));
  969. cs = sqrt(1.f / (t * t + 1.f));
  970. sn = t * cs;
  971. /* Computing MAX */
  972. r__1 = mxsinj, r__2 = abs(sn);
  973. mxsinj = f2cmax(r__1,r__2);
  974. /* Computing MAX */
  975. r__1 = 0.f, r__2 = t * apoaq *
  976. aapq + 1.f;
  977. sva[q] = aaqq * sqrt((f2cmax(r__1,
  978. r__2)));
  979. /* Computing MAX */
  980. r__1 = 0.f, r__2 = 1.f - t *
  981. aqoap * aapq;
  982. aapp *= sqrt((f2cmax(r__1,r__2)));
  983. apoaq = d__[p] / d__[q];
  984. aqoap = d__[q] / d__[p];
  985. if (d__[p] >= 1.f) {
  986. if (d__[q] >= 1.f) {
  987. fastr[2] = t * apoaq;
  988. fastr[3] = -t * aqoap;
  989. d__[p] *= cs;
  990. d__[q] *= cs;
  991. srotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  992. a_dim1 + 1], &c__1, fastr);
  993. if (rsvec) {
  994. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  995. q * v_dim1 + 1], &c__1, fastr);
  996. }
  997. } else {
  998. r__1 = -t * aqoap;
  999. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  1000. p * a_dim1 + 1], &c__1);
  1001. r__1 = cs * sn * apoaq;
  1002. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1003. q * a_dim1 + 1], &c__1);
  1004. d__[p] *= cs;
  1005. d__[q] /= cs;
  1006. if (rsvec) {
  1007. r__1 = -t * aqoap;
  1008. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1009. c__1, &v[p * v_dim1 + 1], &c__1);
  1010. r__1 = cs * sn * apoaq;
  1011. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1012. c__1, &v[q * v_dim1 + 1], &c__1);
  1013. }
  1014. }
  1015. } else {
  1016. if (d__[q] >= 1.f) {
  1017. r__1 = t * apoaq;
  1018. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1019. q * a_dim1 + 1], &c__1);
  1020. r__1 = -cs * sn * aqoap;
  1021. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  1022. p * a_dim1 + 1], &c__1);
  1023. d__[p] /= cs;
  1024. d__[q] *= cs;
  1025. if (rsvec) {
  1026. r__1 = t * apoaq;
  1027. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1028. c__1, &v[q * v_dim1 + 1], &c__1);
  1029. r__1 = -cs * sn * aqoap;
  1030. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1031. c__1, &v[p * v_dim1 + 1], &c__1);
  1032. }
  1033. } else {
  1034. if (d__[p] >= d__[q]) {
  1035. r__1 = -t * aqoap;
  1036. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1037. &a[p * a_dim1 + 1], &c__1);
  1038. r__1 = cs * sn * apoaq;
  1039. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1040. &a[q * a_dim1 + 1], &c__1);
  1041. d__[p] *= cs;
  1042. d__[q] /= cs;
  1043. if (rsvec) {
  1044. r__1 = -t * aqoap;
  1045. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1046. &c__1, &v[p * v_dim1 + 1], &
  1047. c__1);
  1048. r__1 = cs * sn * apoaq;
  1049. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1050. &c__1, &v[q * v_dim1 + 1], &
  1051. c__1);
  1052. }
  1053. } else {
  1054. r__1 = t * apoaq;
  1055. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1056. &a[q * a_dim1 + 1], &c__1);
  1057. r__1 = -cs * sn * aqoap;
  1058. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1059. &a[p * a_dim1 + 1], &c__1);
  1060. d__[p] /= cs;
  1061. d__[q] *= cs;
  1062. if (rsvec) {
  1063. r__1 = t * apoaq;
  1064. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1065. &c__1, &v[q * v_dim1 + 1], &
  1066. c__1);
  1067. r__1 = -cs * sn * aqoap;
  1068. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1069. &c__1, &v[p * v_dim1 + 1], &
  1070. c__1);
  1071. }
  1072. }
  1073. }
  1074. }
  1075. }
  1076. } else {
  1077. scopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1078. work[1], &c__1);
  1079. slascl_("G", &c__0, &c__0, &aapp, &
  1080. c_b42, m, &c__1, &work[1],
  1081. lda, &ierr);
  1082. slascl_("G", &c__0, &c__0, &aaqq, &
  1083. c_b42, m, &c__1, &a[q *
  1084. a_dim1 + 1], lda, &ierr);
  1085. temp1 = -aapq * d__[p] / d__[q];
  1086. saxpy_(m, &temp1, &work[1], &c__1, &a[
  1087. q * a_dim1 + 1], &c__1);
  1088. slascl_("G", &c__0, &c__0, &c_b42, &
  1089. aaqq, m, &c__1, &a[q * a_dim1
  1090. + 1], lda, &ierr);
  1091. /* Computing MAX */
  1092. r__1 = 0.f, r__2 = 1.f - aapq * aapq;
  1093. sva[q] = aaqq * sqrt((f2cmax(r__1,r__2)))
  1094. ;
  1095. mxsinj = f2cmax(mxsinj,*sfmin);
  1096. }
  1097. /* END IF ROTOK THEN ... ELSE */
  1098. /* In the case of cancellation in updating SVA(q), SVA(p) */
  1099. /* recompute SVA(q), SVA(p). */
  1100. /* Computing 2nd power */
  1101. r__1 = sva[q] / aaqq;
  1102. if (r__1 * r__1 <= rooteps) {
  1103. if (aaqq < rootbig && aaqq >
  1104. rootsfmin) {
  1105. sva[q] = snrm2_(m, &a[q * a_dim1
  1106. + 1], &c__1) * d__[q];
  1107. } else {
  1108. t = 0.f;
  1109. aaqq = 1.f;
  1110. slassq_(m, &a[q * a_dim1 + 1], &
  1111. c__1, &t, &aaqq);
  1112. sva[q] = t * sqrt(aaqq) * d__[q];
  1113. }
  1114. }
  1115. if (aapp / aapp0 <= rooteps) {
  1116. if (aapp < rootbig && aapp >
  1117. rootsfmin) {
  1118. aapp = snrm2_(m, &a[p * a_dim1 +
  1119. 1], &c__1) * d__[p];
  1120. } else {
  1121. t = 0.f;
  1122. aapp = 1.f;
  1123. slassq_(m, &a[p * a_dim1 + 1], &
  1124. c__1, &t, &aapp);
  1125. aapp = t * sqrt(aapp) * d__[p];
  1126. }
  1127. sva[p] = aapp;
  1128. }
  1129. } else {
  1130. /* A(:,p) and A(:,q) already numerically orthogonal */
  1131. if (ir1 == 0) {
  1132. ++notrot;
  1133. }
  1134. ++pskipped;
  1135. }
  1136. } else {
  1137. /* A(:,q) is zero column */
  1138. if (ir1 == 0) {
  1139. ++notrot;
  1140. }
  1141. ++pskipped;
  1142. }
  1143. if (i__ <= swband && pskipped > rowskip) {
  1144. if (ir1 == 0) {
  1145. aapp = -aapp;
  1146. }
  1147. notrot = 0;
  1148. goto L2103;
  1149. }
  1150. /* L2002: */
  1151. }
  1152. /* END q-LOOP */
  1153. L2103:
  1154. /* bailed out of q-loop */
  1155. sva[p] = aapp;
  1156. } else {
  1157. sva[p] = aapp;
  1158. if (ir1 == 0 && aapp == 0.f) {
  1159. /* Computing MIN */
  1160. i__5 = igl + kbl - 1;
  1161. notrot = notrot + f2cmin(i__5,*n) - p;
  1162. }
  1163. }
  1164. /* L2001: */
  1165. }
  1166. /* end of the p-loop */
  1167. /* end of doing the block ( ibr, ibr ) */
  1168. /* L1002: */
  1169. }
  1170. /* end of ir1-loop */
  1171. /* ........................................................ */
  1172. /* ... go to the off diagonal blocks */
  1173. igl = (ibr - 1) * kbl + 1;
  1174. i__3 = nbl;
  1175. for (jbc = ibr + 1; jbc <= i__3; ++jbc) {
  1176. jgl = (jbc - 1) * kbl + 1;
  1177. /* doing the block at ( ibr, jbc ) */
  1178. ijblsk = 0;
  1179. /* Computing MIN */
  1180. i__5 = igl + kbl - 1;
  1181. i__4 = f2cmin(i__5,*n);
  1182. for (p = igl; p <= i__4; ++p) {
  1183. aapp = sva[p];
  1184. if (aapp > 0.f) {
  1185. pskipped = 0;
  1186. /* Computing MIN */
  1187. i__6 = jgl + kbl - 1;
  1188. i__5 = f2cmin(i__6,*n);
  1189. for (q = jgl; q <= i__5; ++q) {
  1190. aaqq = sva[q];
  1191. if (aaqq > 0.f) {
  1192. aapp0 = aapp;
  1193. if (aaqq >= 1.f) {
  1194. if (aapp >= aaqq) {
  1195. rotok = small * aapp <= aaqq;
  1196. } else {
  1197. rotok = small * aaqq <= aapp;
  1198. }
  1199. if (aapp < big / aaqq) {
  1200. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  1201. c__1, &a[q * a_dim1 + 1], &
  1202. c__1) * d__[p] * d__[q] /
  1203. aaqq / aapp;
  1204. } else {
  1205. scopy_(m, &a[p * a_dim1 + 1], &c__1, &
  1206. work[1], &c__1);
  1207. slascl_("G", &c__0, &c__0, &aapp, &
  1208. d__[p], m, &c__1, &work[1],
  1209. lda, &ierr);
  1210. aapq = sdot_(m, &work[1], &c__1, &a[q
  1211. * a_dim1 + 1], &c__1) * d__[q]
  1212. / aaqq;
  1213. }
  1214. } else {
  1215. if (aapp >= aaqq) {
  1216. rotok = aapp <= aaqq / small;
  1217. } else {
  1218. rotok = aaqq <= aapp / small;
  1219. }
  1220. if (aapp > small / aaqq) {
  1221. aapq = sdot_(m, &a[p * a_dim1 + 1], &
  1222. c__1, &a[q * a_dim1 + 1], &
  1223. c__1) * d__[p] * d__[q] /
  1224. aaqq / aapp;
  1225. } else {
  1226. scopy_(m, &a[q * a_dim1 + 1], &c__1, &
  1227. work[1], &c__1);
  1228. slascl_("G", &c__0, &c__0, &aaqq, &
  1229. d__[q], m, &c__1, &work[1],
  1230. lda, &ierr);
  1231. aapq = sdot_(m, &work[1], &c__1, &a[p
  1232. * a_dim1 + 1], &c__1) * d__[p]
  1233. / aapp;
  1234. }
  1235. }
  1236. /* Computing MAX */
  1237. r__1 = mxaapq, r__2 = abs(aapq);
  1238. mxaapq = f2cmax(r__1,r__2);
  1239. /* TO rotate or NOT to rotate, THAT is the question ... */
  1240. if (abs(aapq) > *tol) {
  1241. notrot = 0;
  1242. /* ROTATED = ROTATED + 1 */
  1243. pskipped = 0;
  1244. ++iswrot;
  1245. if (rotok) {
  1246. aqoap = aaqq / aapp;
  1247. apoaq = aapp / aaqq;
  1248. theta = (r__1 = aqoap - apoaq, abs(
  1249. r__1)) * -.5f / aapq;
  1250. if (aaqq > aapp0) {
  1251. theta = -theta;
  1252. }
  1253. if (abs(theta) > bigtheta) {
  1254. t = .5f / theta;
  1255. fastr[2] = t * d__[p] / d__[q];
  1256. fastr[3] = -t * d__[q] / d__[p];
  1257. srotm_(m, &a[p * a_dim1 + 1], &
  1258. c__1, &a[q * a_dim1 + 1],
  1259. &c__1, fastr);
  1260. if (rsvec) {
  1261. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  1262. v_dim1 + 1], &c__1, fastr);
  1263. }
  1264. /* Computing MAX */
  1265. r__1 = 0.f, r__2 = t * apoaq *
  1266. aapq + 1.f;
  1267. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1268. r__2)));
  1269. /* Computing MAX */
  1270. r__1 = 0.f, r__2 = 1.f - t *
  1271. aqoap * aapq;
  1272. aapp *= sqrt((f2cmax(r__1,r__2)));
  1273. /* Computing MAX */
  1274. r__1 = mxsinj, r__2 = abs(t);
  1275. mxsinj = f2cmax(r__1,r__2);
  1276. } else {
  1277. thsign = -r_sign(&c_b42, &aapq);
  1278. if (aaqq > aapp0) {
  1279. thsign = -thsign;
  1280. }
  1281. t = 1.f / (theta + thsign * sqrt(
  1282. theta * theta + 1.f));
  1283. cs = sqrt(1.f / (t * t + 1.f));
  1284. sn = t * cs;
  1285. /* Computing MAX */
  1286. r__1 = mxsinj, r__2 = abs(sn);
  1287. mxsinj = f2cmax(r__1,r__2);
  1288. /* Computing MAX */
  1289. r__1 = 0.f, r__2 = t * apoaq *
  1290. aapq + 1.f;
  1291. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1292. r__2)));
  1293. /* Computing MAX */
  1294. r__1 = 0.f, r__2 = 1.f - t *
  1295. aqoap * aapq;
  1296. aapp *= sqrt((f2cmax(r__1,r__2)));
  1297. apoaq = d__[p] / d__[q];
  1298. aqoap = d__[q] / d__[p];
  1299. if (d__[p] >= 1.f) {
  1300. if (d__[q] >= 1.f) {
  1301. fastr[2] = t * apoaq;
  1302. fastr[3] = -t * aqoap;
  1303. d__[p] *= cs;
  1304. d__[q] *= cs;
  1305. srotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  1306. a_dim1 + 1], &c__1, fastr);
  1307. if (rsvec) {
  1308. srotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  1309. q * v_dim1 + 1], &c__1, fastr);
  1310. }
  1311. } else {
  1312. r__1 = -t * aqoap;
  1313. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  1314. p * a_dim1 + 1], &c__1);
  1315. r__1 = cs * sn * apoaq;
  1316. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1317. q * a_dim1 + 1], &c__1);
  1318. if (rsvec) {
  1319. r__1 = -t * aqoap;
  1320. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1321. c__1, &v[p * v_dim1 + 1], &c__1);
  1322. r__1 = cs * sn * apoaq;
  1323. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1324. c__1, &v[q * v_dim1 + 1], &c__1);
  1325. }
  1326. d__[p] *= cs;
  1327. d__[q] /= cs;
  1328. }
  1329. } else {
  1330. if (d__[q] >= 1.f) {
  1331. r__1 = t * apoaq;
  1332. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1, &a[
  1333. q * a_dim1 + 1], &c__1);
  1334. r__1 = -cs * sn * aqoap;
  1335. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1, &a[
  1336. p * a_dim1 + 1], &c__1);
  1337. if (rsvec) {
  1338. r__1 = t * apoaq;
  1339. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1], &
  1340. c__1, &v[q * v_dim1 + 1], &c__1);
  1341. r__1 = -cs * sn * aqoap;
  1342. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1], &
  1343. c__1, &v[p * v_dim1 + 1], &c__1);
  1344. }
  1345. d__[p] /= cs;
  1346. d__[q] *= cs;
  1347. } else {
  1348. if (d__[p] >= d__[q]) {
  1349. r__1 = -t * aqoap;
  1350. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1351. &a[p * a_dim1 + 1], &c__1);
  1352. r__1 = cs * sn * apoaq;
  1353. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1354. &a[q * a_dim1 + 1], &c__1);
  1355. d__[p] *= cs;
  1356. d__[q] /= cs;
  1357. if (rsvec) {
  1358. r__1 = -t * aqoap;
  1359. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1360. &c__1, &v[p * v_dim1 + 1], &
  1361. c__1);
  1362. r__1 = cs * sn * apoaq;
  1363. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1364. &c__1, &v[q * v_dim1 + 1], &
  1365. c__1);
  1366. }
  1367. } else {
  1368. r__1 = t * apoaq;
  1369. saxpy_(m, &r__1, &a[p * a_dim1 + 1], &c__1,
  1370. &a[q * a_dim1 + 1], &c__1);
  1371. r__1 = -cs * sn * aqoap;
  1372. saxpy_(m, &r__1, &a[q * a_dim1 + 1], &c__1,
  1373. &a[p * a_dim1 + 1], &c__1);
  1374. d__[p] /= cs;
  1375. d__[q] *= cs;
  1376. if (rsvec) {
  1377. r__1 = t * apoaq;
  1378. saxpy_(&mvl, &r__1, &v[p * v_dim1 + 1],
  1379. &c__1, &v[q * v_dim1 + 1], &
  1380. c__1);
  1381. r__1 = -cs * sn * aqoap;
  1382. saxpy_(&mvl, &r__1, &v[q * v_dim1 + 1],
  1383. &c__1, &v[p * v_dim1 + 1], &
  1384. c__1);
  1385. }
  1386. }
  1387. }
  1388. }
  1389. }
  1390. } else {
  1391. if (aapp > aaqq) {
  1392. scopy_(m, &a[p * a_dim1 + 1], &
  1393. c__1, &work[1], &c__1);
  1394. slascl_("G", &c__0, &c__0, &aapp,
  1395. &c_b42, m, &c__1, &work[1]
  1396. , lda, &ierr);
  1397. slascl_("G", &c__0, &c__0, &aaqq,
  1398. &c_b42, m, &c__1, &a[q *
  1399. a_dim1 + 1], lda, &ierr);
  1400. temp1 = -aapq * d__[p] / d__[q];
  1401. saxpy_(m, &temp1, &work[1], &c__1,
  1402. &a[q * a_dim1 + 1], &
  1403. c__1);
  1404. slascl_("G", &c__0, &c__0, &c_b42,
  1405. &aaqq, m, &c__1, &a[q *
  1406. a_dim1 + 1], lda, &ierr);
  1407. /* Computing MAX */
  1408. r__1 = 0.f, r__2 = 1.f - aapq *
  1409. aapq;
  1410. sva[q] = aaqq * sqrt((f2cmax(r__1,
  1411. r__2)));
  1412. mxsinj = f2cmax(mxsinj,*sfmin);
  1413. } else {
  1414. scopy_(m, &a[q * a_dim1 + 1], &
  1415. c__1, &work[1], &c__1);
  1416. slascl_("G", &c__0, &c__0, &aaqq,
  1417. &c_b42, m, &c__1, &work[1]
  1418. , lda, &ierr);
  1419. slascl_("G", &c__0, &c__0, &aapp,
  1420. &c_b42, m, &c__1, &a[p *
  1421. a_dim1 + 1], lda, &ierr);
  1422. temp1 = -aapq * d__[q] / d__[p];
  1423. saxpy_(m, &temp1, &work[1], &c__1,
  1424. &a[p * a_dim1 + 1], &
  1425. c__1);
  1426. slascl_("G", &c__0, &c__0, &c_b42,
  1427. &aapp, m, &c__1, &a[p *
  1428. a_dim1 + 1], lda, &ierr);
  1429. /* Computing MAX */
  1430. r__1 = 0.f, r__2 = 1.f - aapq *
  1431. aapq;
  1432. sva[p] = aapp * sqrt((f2cmax(r__1,
  1433. r__2)));
  1434. mxsinj = f2cmax(mxsinj,*sfmin);
  1435. }
  1436. }
  1437. /* END IF ROTOK THEN ... ELSE */
  1438. /* In the case of cancellation in updating SVA(q) */
  1439. /* Computing 2nd power */
  1440. r__1 = sva[q] / aaqq;
  1441. if (r__1 * r__1 <= rooteps) {
  1442. if (aaqq < rootbig && aaqq >
  1443. rootsfmin) {
  1444. sva[q] = snrm2_(m, &a[q * a_dim1
  1445. + 1], &c__1) * d__[q];
  1446. } else {
  1447. t = 0.f;
  1448. aaqq = 1.f;
  1449. slassq_(m, &a[q * a_dim1 + 1], &
  1450. c__1, &t, &aaqq);
  1451. sva[q] = t * sqrt(aaqq) * d__[q];
  1452. }
  1453. }
  1454. /* Computing 2nd power */
  1455. r__1 = aapp / aapp0;
  1456. if (r__1 * r__1 <= rooteps) {
  1457. if (aapp < rootbig && aapp >
  1458. rootsfmin) {
  1459. aapp = snrm2_(m, &a[p * a_dim1 +
  1460. 1], &c__1) * d__[p];
  1461. } else {
  1462. t = 0.f;
  1463. aapp = 1.f;
  1464. slassq_(m, &a[p * a_dim1 + 1], &
  1465. c__1, &t, &aapp);
  1466. aapp = t * sqrt(aapp) * d__[p];
  1467. }
  1468. sva[p] = aapp;
  1469. }
  1470. /* end of OK rotation */
  1471. } else {
  1472. ++notrot;
  1473. ++pskipped;
  1474. ++ijblsk;
  1475. }
  1476. } else {
  1477. ++notrot;
  1478. ++pskipped;
  1479. ++ijblsk;
  1480. }
  1481. if (i__ <= swband && ijblsk >= blskip) {
  1482. sva[p] = aapp;
  1483. notrot = 0;
  1484. goto L2011;
  1485. }
  1486. if (i__ <= swband && pskipped > rowskip) {
  1487. aapp = -aapp;
  1488. notrot = 0;
  1489. goto L2203;
  1490. }
  1491. /* L2200: */
  1492. }
  1493. /* end of the q-loop */
  1494. L2203:
  1495. sva[p] = aapp;
  1496. } else {
  1497. if (aapp == 0.f) {
  1498. /* Computing MIN */
  1499. i__5 = jgl + kbl - 1;
  1500. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1501. }
  1502. if (aapp < 0.f) {
  1503. notrot = 0;
  1504. }
  1505. }
  1506. /* L2100: */
  1507. }
  1508. /* end of the p-loop */
  1509. /* L2010: */
  1510. }
  1511. /* end of the jbc-loop */
  1512. L2011:
  1513. /* 2011 bailed out of the jbc-loop */
  1514. /* Computing MIN */
  1515. i__4 = igl + kbl - 1;
  1516. i__3 = f2cmin(i__4,*n);
  1517. for (p = igl; p <= i__3; ++p) {
  1518. sva[p] = (r__1 = sva[p], abs(r__1));
  1519. /* L2012: */
  1520. }
  1521. /* L2000: */
  1522. }
  1523. /* 2000 :: end of the ibr-loop */
  1524. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1525. sva[*n] = snrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
  1526. } else {
  1527. t = 0.f;
  1528. aapp = 1.f;
  1529. slassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1530. sva[*n] = t * sqrt(aapp) * d__[*n];
  1531. }
  1532. /* Additional steering devices */
  1533. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1534. swband = i__;
  1535. }
  1536. if (i__ > swband + 1 && mxaapq < (real) (*n) * *tol && (real) (*n) *
  1537. mxaapq * mxsinj < *tol) {
  1538. goto L1994;
  1539. }
  1540. if (notrot >= emptsw) {
  1541. goto L1994;
  1542. }
  1543. /* L1993: */
  1544. }
  1545. /* end i=1:NSWEEP loop */
  1546. /* #:) Reaching this point means that the procedure has completed the given */
  1547. /* number of iterations. */
  1548. *info = *nsweep - 1;
  1549. goto L1995;
  1550. L1994:
  1551. /* #:) Reaching this point means that during the i-th sweep all pivots were */
  1552. /* below the given tolerance, causing early exit. */
  1553. *info = 0;
  1554. /* #:) INFO = 0 confirms successful iterations. */
  1555. L1995:
  1556. /* Sort the vector D. */
  1557. i__1 = *n - 1;
  1558. for (p = 1; p <= i__1; ++p) {
  1559. i__2 = *n - p + 1;
  1560. q = isamax_(&i__2, &sva[p], &c__1) + p - 1;
  1561. if (p != q) {
  1562. temp1 = sva[p];
  1563. sva[p] = sva[q];
  1564. sva[q] = temp1;
  1565. temp1 = d__[p];
  1566. d__[p] = d__[q];
  1567. d__[q] = temp1;
  1568. sswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1569. if (rsvec) {
  1570. sswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1571. c__1);
  1572. }
  1573. }
  1574. /* L5991: */
  1575. }
  1576. return;
  1577. } /* sgsvj0_ */