You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggbal.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b35 = 10.f;
  488. static real c_b71 = .5f;
  489. /* > \brief \b SGGBAL */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SGGBAL + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggbal.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggbal.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggbal.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
  508. /* RSCALE, WORK, INFO ) */
  509. /* CHARACTER JOB */
  510. /* INTEGER IHI, ILO, INFO, LDA, LDB, N */
  511. /* REAL A( LDA, * ), B( LDB, * ), LSCALE( * ), */
  512. /* $ RSCALE( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SGGBAL balances a pair of general real matrices (A,B). This */
  519. /* > involves, first, permuting A and B by similarity transformations to */
  520. /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
  521. /* > elements on the diagonal; and second, applying a diagonal similarity */
  522. /* > transformation to rows and columns ILO to IHI to make the rows */
  523. /* > and columns as close in norm as possible. Both steps are optional. */
  524. /* > */
  525. /* > Balancing may reduce the 1-norm of the matrices, and improve the */
  526. /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
  527. /* > generalized eigenvalue problem A*x = lambda*B*x. */
  528. /* > \endverbatim */
  529. /* Arguments: */
  530. /* ========== */
  531. /* > \param[in] JOB */
  532. /* > \verbatim */
  533. /* > JOB is CHARACTER*1 */
  534. /* > Specifies the operations to be performed on A and B: */
  535. /* > = 'N': none: simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
  536. /* > and RSCALE(I) = 1.0 for i = 1,...,N. */
  537. /* > = 'P': permute only; */
  538. /* > = 'S': scale only; */
  539. /* > = 'B': both permute and scale. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrices A and B. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is REAL array, dimension (LDA,N) */
  551. /* > On entry, the input matrix A. */
  552. /* > On exit, A is overwritten by the balanced matrix. */
  553. /* > If JOB = 'N', A is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] LDA */
  557. /* > \verbatim */
  558. /* > LDA is INTEGER */
  559. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] B */
  563. /* > \verbatim */
  564. /* > B is REAL array, dimension (LDB,N) */
  565. /* > On entry, the input matrix B. */
  566. /* > On exit, B is overwritten by the balanced matrix. */
  567. /* > If JOB = 'N', B is not referenced. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDB */
  571. /* > \verbatim */
  572. /* > LDB is INTEGER */
  573. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] ILO */
  577. /* > \verbatim */
  578. /* > ILO is INTEGER */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] IHI */
  582. /* > \verbatim */
  583. /* > IHI is INTEGER */
  584. /* > ILO and IHI are set to integers such that on exit */
  585. /* > A(i,j) = 0 and B(i,j) = 0 if i > j and */
  586. /* > j = 1,...,ILO-1 or i = IHI+1,...,N. */
  587. /* > If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[out] LSCALE */
  591. /* > \verbatim */
  592. /* > LSCALE is REAL array, dimension (N) */
  593. /* > Details of the permutations and scaling factors applied */
  594. /* > to the left side of A and B. If P(j) is the index of the */
  595. /* > row interchanged with row j, and D(j) */
  596. /* > is the scaling factor applied to row j, then */
  597. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  598. /* > = D(j) for J = ILO,...,IHI */
  599. /* > = P(j) for J = IHI+1,...,N. */
  600. /* > The order in which the interchanges are made is N to IHI+1, */
  601. /* > then 1 to ILO-1. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[out] RSCALE */
  605. /* > \verbatim */
  606. /* > RSCALE is REAL array, dimension (N) */
  607. /* > Details of the permutations and scaling factors applied */
  608. /* > to the right side of A and B. If P(j) is the index of the */
  609. /* > column interchanged with column j, and D(j) */
  610. /* > is the scaling factor applied to column j, then */
  611. /* > LSCALE(j) = P(j) for J = 1,...,ILO-1 */
  612. /* > = D(j) for J = ILO,...,IHI */
  613. /* > = P(j) for J = IHI+1,...,N. */
  614. /* > The order in which the interchanges are made is N to IHI+1, */
  615. /* > then 1 to ILO-1. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] WORK */
  619. /* > \verbatim */
  620. /* > WORK is REAL array, dimension (lwork) */
  621. /* > lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
  622. /* > at least 1 when JOB = 'N' or 'P'. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date December 2016 */
  638. /* > \ingroup realGBcomputational */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > See R.C. WARD, Balancing the generalized eigenvalue problem, */
  645. /* > SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* ===================================================================== */
  649. /* Subroutine */ void sggbal_(char *job, integer *n, real *a, integer *lda,
  650. real *b, integer *ldb, integer *ilo, integer *ihi, real *lscale, real
  651. *rscale, real *work, integer *info)
  652. {
  653. /* System generated locals */
  654. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  655. real r__1, r__2, r__3;
  656. /* Local variables */
  657. integer lcab;
  658. real beta, coef;
  659. integer irab, lrab;
  660. real basl, cmax;
  661. extern real sdot_(integer *, real *, integer *, real *, integer *);
  662. real coef2, coef5;
  663. integer i__, j, k, l, m;
  664. real gamma, t, alpha;
  665. extern logical lsame_(char *, char *);
  666. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  667. real sfmin, sfmax;
  668. integer iflow;
  669. extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *,
  670. integer *);
  671. integer kount;
  672. extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *,
  673. real *, integer *);
  674. integer jc;
  675. real ta, tb, tc;
  676. integer ir, it;
  677. real ew;
  678. integer nr;
  679. real pgamma;
  680. extern real slamch_(char *);
  681. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  682. extern integer isamax_(integer *, real *, integer *);
  683. integer lsfmin, lsfmax, ip1, jp1, lm1;
  684. real cab, rab, ewc, cor, sum;
  685. integer nrp2, icab;
  686. /* -- LAPACK computational routine (version 3.7.0) -- */
  687. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  688. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  689. /* December 2016 */
  690. /* ===================================================================== */
  691. /* Test the input parameters */
  692. /* Parameter adjustments */
  693. a_dim1 = *lda;
  694. a_offset = 1 + a_dim1 * 1;
  695. a -= a_offset;
  696. b_dim1 = *ldb;
  697. b_offset = 1 + b_dim1 * 1;
  698. b -= b_offset;
  699. --lscale;
  700. --rscale;
  701. --work;
  702. /* Function Body */
  703. *info = 0;
  704. if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S")
  705. && ! lsame_(job, "B")) {
  706. *info = -1;
  707. } else if (*n < 0) {
  708. *info = -2;
  709. } else if (*lda < f2cmax(1,*n)) {
  710. *info = -4;
  711. } else if (*ldb < f2cmax(1,*n)) {
  712. *info = -6;
  713. }
  714. if (*info != 0) {
  715. i__1 = -(*info);
  716. xerbla_("SGGBAL", &i__1, (ftnlen)6);
  717. return;
  718. }
  719. /* Quick return if possible */
  720. if (*n == 0) {
  721. *ilo = 1;
  722. *ihi = *n;
  723. return;
  724. }
  725. if (*n == 1) {
  726. *ilo = 1;
  727. *ihi = *n;
  728. lscale[1] = 1.f;
  729. rscale[1] = 1.f;
  730. return;
  731. }
  732. if (lsame_(job, "N")) {
  733. *ilo = 1;
  734. *ihi = *n;
  735. i__1 = *n;
  736. for (i__ = 1; i__ <= i__1; ++i__) {
  737. lscale[i__] = 1.f;
  738. rscale[i__] = 1.f;
  739. /* L10: */
  740. }
  741. return;
  742. }
  743. k = 1;
  744. l = *n;
  745. if (lsame_(job, "S")) {
  746. goto L190;
  747. }
  748. goto L30;
  749. /* Permute the matrices A and B to isolate the eigenvalues. */
  750. /* Find row with one nonzero in columns 1 through L */
  751. L20:
  752. l = lm1;
  753. if (l != 1) {
  754. goto L30;
  755. }
  756. rscale[1] = 1.f;
  757. lscale[1] = 1.f;
  758. goto L190;
  759. L30:
  760. lm1 = l - 1;
  761. for (i__ = l; i__ >= 1; --i__) {
  762. i__1 = lm1;
  763. for (j = 1; j <= i__1; ++j) {
  764. jp1 = j + 1;
  765. if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
  766. goto L50;
  767. }
  768. /* L40: */
  769. }
  770. j = l;
  771. goto L70;
  772. L50:
  773. i__1 = l;
  774. for (j = jp1; j <= i__1; ++j) {
  775. if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
  776. goto L80;
  777. }
  778. /* L60: */
  779. }
  780. j = jp1 - 1;
  781. L70:
  782. m = l;
  783. iflow = 1;
  784. goto L160;
  785. L80:
  786. ;
  787. }
  788. goto L100;
  789. /* Find column with one nonzero in rows K through N */
  790. L90:
  791. ++k;
  792. L100:
  793. i__1 = l;
  794. for (j = k; j <= i__1; ++j) {
  795. i__2 = lm1;
  796. for (i__ = k; i__ <= i__2; ++i__) {
  797. ip1 = i__ + 1;
  798. if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
  799. goto L120;
  800. }
  801. /* L110: */
  802. }
  803. i__ = l;
  804. goto L140;
  805. L120:
  806. i__2 = l;
  807. for (i__ = ip1; i__ <= i__2; ++i__) {
  808. if (a[i__ + j * a_dim1] != 0.f || b[i__ + j * b_dim1] != 0.f) {
  809. goto L150;
  810. }
  811. /* L130: */
  812. }
  813. i__ = ip1 - 1;
  814. L140:
  815. m = k;
  816. iflow = 2;
  817. goto L160;
  818. L150:
  819. ;
  820. }
  821. goto L190;
  822. /* Permute rows M and I */
  823. L160:
  824. lscale[m] = (real) i__;
  825. if (i__ == m) {
  826. goto L170;
  827. }
  828. i__1 = *n - k + 1;
  829. sswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
  830. i__1 = *n - k + 1;
  831. sswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
  832. /* Permute columns M and J */
  833. L170:
  834. rscale[m] = (real) j;
  835. if (j == m) {
  836. goto L180;
  837. }
  838. sswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
  839. sswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
  840. L180:
  841. switch (iflow) {
  842. case 1: goto L20;
  843. case 2: goto L90;
  844. }
  845. L190:
  846. *ilo = k;
  847. *ihi = l;
  848. if (lsame_(job, "P")) {
  849. i__1 = *ihi;
  850. for (i__ = *ilo; i__ <= i__1; ++i__) {
  851. lscale[i__] = 1.f;
  852. rscale[i__] = 1.f;
  853. /* L195: */
  854. }
  855. return;
  856. }
  857. if (*ilo == *ihi) {
  858. return;
  859. }
  860. /* Balance the submatrix in rows ILO to IHI. */
  861. nr = *ihi - *ilo + 1;
  862. i__1 = *ihi;
  863. for (i__ = *ilo; i__ <= i__1; ++i__) {
  864. rscale[i__] = 0.f;
  865. lscale[i__] = 0.f;
  866. work[i__] = 0.f;
  867. work[i__ + *n] = 0.f;
  868. work[i__ + (*n << 1)] = 0.f;
  869. work[i__ + *n * 3] = 0.f;
  870. work[i__ + (*n << 2)] = 0.f;
  871. work[i__ + *n * 5] = 0.f;
  872. /* L200: */
  873. }
  874. /* Compute right side vector in resulting linear equations */
  875. basl = r_lg10(&c_b35);
  876. i__1 = *ihi;
  877. for (i__ = *ilo; i__ <= i__1; ++i__) {
  878. i__2 = *ihi;
  879. for (j = *ilo; j <= i__2; ++j) {
  880. tb = b[i__ + j * b_dim1];
  881. ta = a[i__ + j * a_dim1];
  882. if (ta == 0.f) {
  883. goto L210;
  884. }
  885. r__1 = abs(ta);
  886. ta = r_lg10(&r__1) / basl;
  887. L210:
  888. if (tb == 0.f) {
  889. goto L220;
  890. }
  891. r__1 = abs(tb);
  892. tb = r_lg10(&r__1) / basl;
  893. L220:
  894. work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
  895. work[j + *n * 5] = work[j + *n * 5] - ta - tb;
  896. /* L230: */
  897. }
  898. /* L240: */
  899. }
  900. coef = 1.f / (real) (nr << 1);
  901. coef2 = coef * coef;
  902. coef5 = coef2 * .5f;
  903. nrp2 = nr + 2;
  904. beta = 0.f;
  905. it = 1;
  906. /* Start generalized conjugate gradient iteration */
  907. L250:
  908. gamma = sdot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
  909. , &c__1) + sdot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
  910. n * 5], &c__1);
  911. ew = 0.f;
  912. ewc = 0.f;
  913. i__1 = *ihi;
  914. for (i__ = *ilo; i__ <= i__1; ++i__) {
  915. ew += work[i__ + (*n << 2)];
  916. ewc += work[i__ + *n * 5];
  917. /* L260: */
  918. }
  919. /* Computing 2nd power */
  920. r__1 = ew;
  921. /* Computing 2nd power */
  922. r__2 = ewc;
  923. /* Computing 2nd power */
  924. r__3 = ew - ewc;
  925. gamma = coef * gamma - coef2 * (r__1 * r__1 + r__2 * r__2) - coef5 * (
  926. r__3 * r__3);
  927. if (gamma == 0.f) {
  928. goto L350;
  929. }
  930. if (it != 1) {
  931. beta = gamma / pgamma;
  932. }
  933. t = coef5 * (ewc - ew * 3.f);
  934. tc = coef5 * (ew - ewc * 3.f);
  935. sscal_(&nr, &beta, &work[*ilo], &c__1);
  936. sscal_(&nr, &beta, &work[*ilo + *n], &c__1);
  937. saxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
  938. c__1);
  939. saxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
  940. i__1 = *ihi;
  941. for (i__ = *ilo; i__ <= i__1; ++i__) {
  942. work[i__] += tc;
  943. work[i__ + *n] += t;
  944. /* L270: */
  945. }
  946. /* Apply matrix to vector */
  947. i__1 = *ihi;
  948. for (i__ = *ilo; i__ <= i__1; ++i__) {
  949. kount = 0;
  950. sum = 0.f;
  951. i__2 = *ihi;
  952. for (j = *ilo; j <= i__2; ++j) {
  953. if (a[i__ + j * a_dim1] == 0.f) {
  954. goto L280;
  955. }
  956. ++kount;
  957. sum += work[j];
  958. L280:
  959. if (b[i__ + j * b_dim1] == 0.f) {
  960. goto L290;
  961. }
  962. ++kount;
  963. sum += work[j];
  964. L290:
  965. ;
  966. }
  967. work[i__ + (*n << 1)] = (real) kount * work[i__ + *n] + sum;
  968. /* L300: */
  969. }
  970. i__1 = *ihi;
  971. for (j = *ilo; j <= i__1; ++j) {
  972. kount = 0;
  973. sum = 0.f;
  974. i__2 = *ihi;
  975. for (i__ = *ilo; i__ <= i__2; ++i__) {
  976. if (a[i__ + j * a_dim1] == 0.f) {
  977. goto L310;
  978. }
  979. ++kount;
  980. sum += work[i__ + *n];
  981. L310:
  982. if (b[i__ + j * b_dim1] == 0.f) {
  983. goto L320;
  984. }
  985. ++kount;
  986. sum += work[i__ + *n];
  987. L320:
  988. ;
  989. }
  990. work[j + *n * 3] = (real) kount * work[j] + sum;
  991. /* L330: */
  992. }
  993. sum = sdot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1)
  994. + sdot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
  995. alpha = gamma / sum;
  996. /* Determine correction to current iteration */
  997. cmax = 0.f;
  998. i__1 = *ihi;
  999. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1000. cor = alpha * work[i__ + *n];
  1001. if (abs(cor) > cmax) {
  1002. cmax = abs(cor);
  1003. }
  1004. lscale[i__] += cor;
  1005. cor = alpha * work[i__];
  1006. if (abs(cor) > cmax) {
  1007. cmax = abs(cor);
  1008. }
  1009. rscale[i__] += cor;
  1010. /* L340: */
  1011. }
  1012. if (cmax < .5f) {
  1013. goto L350;
  1014. }
  1015. r__1 = -alpha;
  1016. saxpy_(&nr, &r__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
  1017. , &c__1);
  1018. r__1 = -alpha;
  1019. saxpy_(&nr, &r__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
  1020. c__1);
  1021. pgamma = gamma;
  1022. ++it;
  1023. if (it <= nrp2) {
  1024. goto L250;
  1025. }
  1026. /* End generalized conjugate gradient iteration */
  1027. L350:
  1028. sfmin = slamch_("S");
  1029. sfmax = 1.f / sfmin;
  1030. lsfmin = (integer) (r_lg10(&sfmin) / basl + 1.f);
  1031. lsfmax = (integer) (r_lg10(&sfmax) / basl);
  1032. i__1 = *ihi;
  1033. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1034. i__2 = *n - *ilo + 1;
  1035. irab = isamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
  1036. rab = (r__1 = a[i__ + (irab + *ilo - 1) * a_dim1], abs(r__1));
  1037. i__2 = *n - *ilo + 1;
  1038. irab = isamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
  1039. /* Computing MAX */
  1040. r__2 = rab, r__3 = (r__1 = b[i__ + (irab + *ilo - 1) * b_dim1], abs(
  1041. r__1));
  1042. rab = f2cmax(r__2,r__3);
  1043. r__1 = rab + sfmin;
  1044. lrab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1045. ir = lscale[i__] + r_sign(&c_b71, &lscale[i__]);
  1046. /* Computing MIN */
  1047. i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
  1048. ir = f2cmin(i__2,i__3);
  1049. lscale[i__] = pow_ri(&c_b35, &ir);
  1050. icab = isamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
  1051. cab = (r__1 = a[icab + i__ * a_dim1], abs(r__1));
  1052. icab = isamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
  1053. /* Computing MAX */
  1054. r__2 = cab, r__3 = (r__1 = b[icab + i__ * b_dim1], abs(r__1));
  1055. cab = f2cmax(r__2,r__3);
  1056. r__1 = cab + sfmin;
  1057. lcab = (integer) (r_lg10(&r__1) / basl + 1.f);
  1058. jc = rscale[i__] + r_sign(&c_b71, &rscale[i__]);
  1059. /* Computing MIN */
  1060. i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
  1061. jc = f2cmin(i__2,i__3);
  1062. rscale[i__] = pow_ri(&c_b35, &jc);
  1063. /* L360: */
  1064. }
  1065. /* Row scaling of matrices A and B */
  1066. i__1 = *ihi;
  1067. for (i__ = *ilo; i__ <= i__1; ++i__) {
  1068. i__2 = *n - *ilo + 1;
  1069. sscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
  1070. i__2 = *n - *ilo + 1;
  1071. sscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
  1072. /* L370: */
  1073. }
  1074. /* Column scaling of matrices A and B */
  1075. i__1 = *ihi;
  1076. for (j = *ilo; j <= i__1; ++j) {
  1077. sscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
  1078. sscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
  1079. /* L380: */
  1080. }
  1081. return;
  1082. /* End of SGGBAL */
  1083. } /* sggbal_ */