You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsteqr.c 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublereal c_b9 = 0.;
  487. static doublereal c_b10 = 1.;
  488. static integer c__0 = 0;
  489. static integer c__1 = 1;
  490. static integer c__2 = 2;
  491. /* > \brief \b DSTEQR */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download DSTEQR + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsteqr.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsteqr.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsteqr.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO ) */
  510. /* CHARACTER COMPZ */
  511. /* INTEGER INFO, LDZ, N */
  512. /* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > DSTEQR computes all eigenvalues and, optionally, eigenvectors of a */
  519. /* > symmetric tridiagonal matrix using the implicit QL or QR method. */
  520. /* > The eigenvectors of a full or band symmetric matrix can also be found */
  521. /* > if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to */
  522. /* > tridiagonal form. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] COMPZ */
  527. /* > \verbatim */
  528. /* > COMPZ is CHARACTER*1 */
  529. /* > = 'N': Compute eigenvalues only. */
  530. /* > = 'V': Compute eigenvalues and eigenvectors of the original */
  531. /* > symmetric matrix. On entry, Z must contain the */
  532. /* > orthogonal matrix used to reduce the original matrix */
  533. /* > to tridiagonal form. */
  534. /* > = 'I': Compute eigenvalues and eigenvectors of the */
  535. /* > tridiagonal matrix. Z is initialized to the identity */
  536. /* > matrix. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in,out] D */
  546. /* > \verbatim */
  547. /* > D is DOUBLE PRECISION array, dimension (N) */
  548. /* > On entry, the diagonal elements of the tridiagonal matrix. */
  549. /* > On exit, if INFO = 0, the eigenvalues in ascending order. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in,out] E */
  553. /* > \verbatim */
  554. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  555. /* > On entry, the (n-1) subdiagonal elements of the tridiagonal */
  556. /* > matrix. */
  557. /* > On exit, E has been destroyed. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] Z */
  561. /* > \verbatim */
  562. /* > Z is DOUBLE PRECISION array, dimension (LDZ, N) */
  563. /* > On entry, if COMPZ = 'V', then Z contains the orthogonal */
  564. /* > matrix used in the reduction to tridiagonal form. */
  565. /* > On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */
  566. /* > orthonormal eigenvectors of the original symmetric matrix, */
  567. /* > and if COMPZ = 'I', Z contains the orthonormal eigenvectors */
  568. /* > of the symmetric tridiagonal matrix. */
  569. /* > If COMPZ = 'N', then Z is not referenced. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDZ */
  573. /* > \verbatim */
  574. /* > LDZ is INTEGER */
  575. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  576. /* > eigenvectors are desired, then LDZ >= f2cmax(1,N). */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[out] WORK */
  580. /* > \verbatim */
  581. /* > WORK is DOUBLE PRECISION array, dimension (f2cmax(1,2*N-2)) */
  582. /* > If COMPZ = 'N', then WORK is not referenced. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[out] INFO */
  586. /* > \verbatim */
  587. /* > INFO is INTEGER */
  588. /* > = 0: successful exit */
  589. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  590. /* > > 0: the algorithm has failed to find all the eigenvalues in */
  591. /* > a total of 30*N iterations; if INFO = i, then i */
  592. /* > elements of E have not converged to zero; on exit, D */
  593. /* > and E contain the elements of a symmetric tridiagonal */
  594. /* > matrix which is orthogonally similar to the original */
  595. /* > matrix. */
  596. /* > \endverbatim */
  597. /* Authors: */
  598. /* ======== */
  599. /* > \author Univ. of Tennessee */
  600. /* > \author Univ. of California Berkeley */
  601. /* > \author Univ. of Colorado Denver */
  602. /* > \author NAG Ltd. */
  603. /* > \date December 2016 */
  604. /* > \ingroup auxOTHERcomputational */
  605. /* ===================================================================== */
  606. /* Subroutine */ void dsteqr_(char *compz, integer *n, doublereal *d__,
  607. doublereal *e, doublereal *z__, integer *ldz, doublereal *work,
  608. integer *info)
  609. {
  610. /* System generated locals */
  611. integer z_dim1, z_offset, i__1, i__2;
  612. doublereal d__1, d__2;
  613. /* Local variables */
  614. integer lend, jtot;
  615. extern /* Subroutine */ void dlae2_(doublereal *, doublereal *, doublereal
  616. *, doublereal *, doublereal *);
  617. doublereal b, c__, f, g;
  618. integer i__, j, k, l, m;
  619. doublereal p, r__, s;
  620. extern logical lsame_(char *, char *);
  621. extern /* Subroutine */ void dlasr_(char *, char *, char *, integer *,
  622. integer *, doublereal *, doublereal *, doublereal *, integer *);
  623. doublereal anorm;
  624. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  625. doublereal *, integer *);
  626. integer l1;
  627. extern /* Subroutine */ void dlaev2_(doublereal *, doublereal *,
  628. doublereal *, doublereal *, doublereal *, doublereal *,
  629. doublereal *);
  630. integer lendm1, lendp1;
  631. extern doublereal dlapy2_(doublereal *, doublereal *);
  632. integer ii;
  633. extern doublereal dlamch_(char *);
  634. integer mm, iscale;
  635. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  636. doublereal *, doublereal *, integer *, integer *, doublereal *,
  637. integer *, integer *), dlaset_(char *, integer *, integer
  638. *, doublereal *, doublereal *, doublereal *, integer *);
  639. doublereal safmin;
  640. extern /* Subroutine */ void dlartg_(doublereal *, doublereal *,
  641. doublereal *, doublereal *, doublereal *);
  642. doublereal safmax;
  643. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  644. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  645. extern /* Subroutine */ void dlasrt_(char *, integer *, doublereal *,
  646. integer *);
  647. integer lendsv;
  648. doublereal ssfmin;
  649. integer nmaxit, icompz;
  650. doublereal ssfmax;
  651. integer lm1, mm1, nm1;
  652. doublereal rt1, rt2, eps;
  653. integer lsv;
  654. doublereal tst, eps2;
  655. /* -- LAPACK computational routine (version 3.7.0) -- */
  656. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  657. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  658. /* December 2016 */
  659. /* ===================================================================== */
  660. /* Test the input parameters. */
  661. /* Parameter adjustments */
  662. --d__;
  663. --e;
  664. z_dim1 = *ldz;
  665. z_offset = 1 + z_dim1 * 1;
  666. z__ -= z_offset;
  667. --work;
  668. /* Function Body */
  669. *info = 0;
  670. if (lsame_(compz, "N")) {
  671. icompz = 0;
  672. } else if (lsame_(compz, "V")) {
  673. icompz = 1;
  674. } else if (lsame_(compz, "I")) {
  675. icompz = 2;
  676. } else {
  677. icompz = -1;
  678. }
  679. if (icompz < 0) {
  680. *info = -1;
  681. } else if (*n < 0) {
  682. *info = -2;
  683. } else if (*ldz < 1 || icompz > 0 && *ldz < f2cmax(1,*n)) {
  684. *info = -6;
  685. }
  686. if (*info != 0) {
  687. i__1 = -(*info);
  688. xerbla_("DSTEQR", &i__1, (ftnlen)6);
  689. return;
  690. }
  691. /* Quick return if possible */
  692. if (*n == 0) {
  693. return;
  694. }
  695. if (*n == 1) {
  696. if (icompz == 2) {
  697. z__[z_dim1 + 1] = 1.;
  698. }
  699. return;
  700. }
  701. /* Determine the unit roundoff and over/underflow thresholds. */
  702. eps = dlamch_("E");
  703. /* Computing 2nd power */
  704. d__1 = eps;
  705. eps2 = d__1 * d__1;
  706. safmin = dlamch_("S");
  707. safmax = 1. / safmin;
  708. ssfmax = sqrt(safmax) / 3.;
  709. ssfmin = sqrt(safmin) / eps2;
  710. /* Compute the eigenvalues and eigenvectors of the tridiagonal */
  711. /* matrix. */
  712. if (icompz == 2) {
  713. dlaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
  714. }
  715. nmaxit = *n * 30;
  716. jtot = 0;
  717. /* Determine where the matrix splits and choose QL or QR iteration */
  718. /* for each block, according to whether top or bottom diagonal */
  719. /* element is smaller. */
  720. l1 = 1;
  721. nm1 = *n - 1;
  722. L10:
  723. if (l1 > *n) {
  724. goto L160;
  725. }
  726. if (l1 > 1) {
  727. e[l1 - 1] = 0.;
  728. }
  729. if (l1 <= nm1) {
  730. i__1 = nm1;
  731. for (m = l1; m <= i__1; ++m) {
  732. tst = (d__1 = e[m], abs(d__1));
  733. if (tst == 0.) {
  734. goto L30;
  735. }
  736. if (tst <= sqrt((d__1 = d__[m], abs(d__1))) * sqrt((d__2 = d__[m
  737. + 1], abs(d__2))) * eps) {
  738. e[m] = 0.;
  739. goto L30;
  740. }
  741. /* L20: */
  742. }
  743. }
  744. m = *n;
  745. L30:
  746. l = l1;
  747. lsv = l;
  748. lend = m;
  749. lendsv = lend;
  750. l1 = m + 1;
  751. if (lend == l) {
  752. goto L10;
  753. }
  754. /* Scale submatrix in rows and columns L to LEND */
  755. i__1 = lend - l + 1;
  756. anorm = dlanst_("M", &i__1, &d__[l], &e[l]);
  757. iscale = 0;
  758. if (anorm == 0.) {
  759. goto L10;
  760. }
  761. if (anorm > ssfmax) {
  762. iscale = 1;
  763. i__1 = lend - l + 1;
  764. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
  765. info);
  766. i__1 = lend - l;
  767. dlascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
  768. info);
  769. } else if (anorm < ssfmin) {
  770. iscale = 2;
  771. i__1 = lend - l + 1;
  772. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
  773. info);
  774. i__1 = lend - l;
  775. dlascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
  776. info);
  777. }
  778. /* Choose between QL and QR iteration */
  779. if ((d__1 = d__[lend], abs(d__1)) < (d__2 = d__[l], abs(d__2))) {
  780. lend = lsv;
  781. l = lendsv;
  782. }
  783. if (lend > l) {
  784. /* QL Iteration */
  785. /* Look for small subdiagonal element. */
  786. L40:
  787. if (l != lend) {
  788. lendm1 = lend - 1;
  789. i__1 = lendm1;
  790. for (m = l; m <= i__1; ++m) {
  791. /* Computing 2nd power */
  792. d__2 = (d__1 = e[m], abs(d__1));
  793. tst = d__2 * d__2;
  794. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  795. + 1], abs(d__2)) + safmin) {
  796. goto L60;
  797. }
  798. /* L50: */
  799. }
  800. }
  801. m = lend;
  802. L60:
  803. if (m < lend) {
  804. e[m] = 0.;
  805. }
  806. p = d__[l];
  807. if (m == l) {
  808. goto L80;
  809. }
  810. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  811. /* to compute its eigensystem. */
  812. if (m == l + 1) {
  813. if (icompz > 0) {
  814. dlaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
  815. work[l] = c__;
  816. work[*n - 1 + l] = s;
  817. dlasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
  818. z__[l * z_dim1 + 1], ldz);
  819. } else {
  820. dlae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
  821. }
  822. d__[l] = rt1;
  823. d__[l + 1] = rt2;
  824. e[l] = 0.;
  825. l += 2;
  826. if (l <= lend) {
  827. goto L40;
  828. }
  829. goto L140;
  830. }
  831. if (jtot == nmaxit) {
  832. goto L140;
  833. }
  834. ++jtot;
  835. /* Form shift. */
  836. g = (d__[l + 1] - p) / (e[l] * 2.);
  837. r__ = dlapy2_(&g, &c_b10);
  838. g = d__[m] - p + e[l] / (g + d_sign(&r__, &g));
  839. s = 1.;
  840. c__ = 1.;
  841. p = 0.;
  842. /* Inner loop */
  843. mm1 = m - 1;
  844. i__1 = l;
  845. for (i__ = mm1; i__ >= i__1; --i__) {
  846. f = s * e[i__];
  847. b = c__ * e[i__];
  848. dlartg_(&g, &f, &c__, &s, &r__);
  849. if (i__ != m - 1) {
  850. e[i__ + 1] = r__;
  851. }
  852. g = d__[i__ + 1] - p;
  853. r__ = (d__[i__] - g) * s + c__ * 2. * b;
  854. p = s * r__;
  855. d__[i__ + 1] = g + p;
  856. g = c__ * r__ - b;
  857. /* If eigenvectors are desired, then save rotations. */
  858. if (icompz > 0) {
  859. work[i__] = c__;
  860. work[*n - 1 + i__] = -s;
  861. }
  862. /* L70: */
  863. }
  864. /* If eigenvectors are desired, then apply saved rotations. */
  865. if (icompz > 0) {
  866. mm = m - l + 1;
  867. dlasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l
  868. * z_dim1 + 1], ldz);
  869. }
  870. d__[l] -= p;
  871. e[l] = g;
  872. goto L40;
  873. /* Eigenvalue found. */
  874. L80:
  875. d__[l] = p;
  876. ++l;
  877. if (l <= lend) {
  878. goto L40;
  879. }
  880. goto L140;
  881. } else {
  882. /* QR Iteration */
  883. /* Look for small superdiagonal element. */
  884. L90:
  885. if (l != lend) {
  886. lendp1 = lend + 1;
  887. i__1 = lendp1;
  888. for (m = l; m >= i__1; --m) {
  889. /* Computing 2nd power */
  890. d__2 = (d__1 = e[m - 1], abs(d__1));
  891. tst = d__2 * d__2;
  892. if (tst <= eps2 * (d__1 = d__[m], abs(d__1)) * (d__2 = d__[m
  893. - 1], abs(d__2)) + safmin) {
  894. goto L110;
  895. }
  896. /* L100: */
  897. }
  898. }
  899. m = lend;
  900. L110:
  901. if (m > lend) {
  902. e[m - 1] = 0.;
  903. }
  904. p = d__[l];
  905. if (m == l) {
  906. goto L130;
  907. }
  908. /* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2 */
  909. /* to compute its eigensystem. */
  910. if (m == l - 1) {
  911. if (icompz > 0) {
  912. dlaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
  913. ;
  914. work[m] = c__;
  915. work[*n - 1 + m] = s;
  916. dlasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
  917. z__[(l - 1) * z_dim1 + 1], ldz);
  918. } else {
  919. dlae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
  920. }
  921. d__[l - 1] = rt1;
  922. d__[l] = rt2;
  923. e[l - 1] = 0.;
  924. l += -2;
  925. if (l >= lend) {
  926. goto L90;
  927. }
  928. goto L140;
  929. }
  930. if (jtot == nmaxit) {
  931. goto L140;
  932. }
  933. ++jtot;
  934. /* Form shift. */
  935. g = (d__[l - 1] - p) / (e[l - 1] * 2.);
  936. r__ = dlapy2_(&g, &c_b10);
  937. g = d__[m] - p + e[l - 1] / (g + d_sign(&r__, &g));
  938. s = 1.;
  939. c__ = 1.;
  940. p = 0.;
  941. /* Inner loop */
  942. lm1 = l - 1;
  943. i__1 = lm1;
  944. for (i__ = m; i__ <= i__1; ++i__) {
  945. f = s * e[i__];
  946. b = c__ * e[i__];
  947. dlartg_(&g, &f, &c__, &s, &r__);
  948. if (i__ != m) {
  949. e[i__ - 1] = r__;
  950. }
  951. g = d__[i__] - p;
  952. r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
  953. p = s * r__;
  954. d__[i__] = g + p;
  955. g = c__ * r__ - b;
  956. /* If eigenvectors are desired, then save rotations. */
  957. if (icompz > 0) {
  958. work[i__] = c__;
  959. work[*n - 1 + i__] = s;
  960. }
  961. /* L120: */
  962. }
  963. /* If eigenvectors are desired, then apply saved rotations. */
  964. if (icompz > 0) {
  965. mm = l - m + 1;
  966. dlasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m
  967. * z_dim1 + 1], ldz);
  968. }
  969. d__[l] -= p;
  970. e[lm1] = g;
  971. goto L90;
  972. /* Eigenvalue found. */
  973. L130:
  974. d__[l] = p;
  975. --l;
  976. if (l >= lend) {
  977. goto L90;
  978. }
  979. goto L140;
  980. }
  981. /* Undo scaling if necessary */
  982. L140:
  983. if (iscale == 1) {
  984. i__1 = lendsv - lsv + 1;
  985. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
  986. n, info);
  987. i__1 = lendsv - lsv;
  988. dlascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
  989. info);
  990. } else if (iscale == 2) {
  991. i__1 = lendsv - lsv + 1;
  992. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
  993. n, info);
  994. i__1 = lendsv - lsv;
  995. dlascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
  996. info);
  997. }
  998. /* Check for no convergence to an eigenvalue after a total */
  999. /* of N*MAXIT iterations. */
  1000. if (jtot < nmaxit) {
  1001. goto L10;
  1002. }
  1003. i__1 = *n - 1;
  1004. for (i__ = 1; i__ <= i__1; ++i__) {
  1005. if (e[i__] != 0.) {
  1006. ++(*info);
  1007. }
  1008. /* L150: */
  1009. }
  1010. goto L190;
  1011. /* Order eigenvalues and eigenvectors. */
  1012. L160:
  1013. if (icompz == 0) {
  1014. /* Use Quick Sort */
  1015. dlasrt_("I", n, &d__[1], info);
  1016. } else {
  1017. /* Use Selection Sort to minimize swaps of eigenvectors */
  1018. i__1 = *n;
  1019. for (ii = 2; ii <= i__1; ++ii) {
  1020. i__ = ii - 1;
  1021. k = i__;
  1022. p = d__[i__];
  1023. i__2 = *n;
  1024. for (j = ii; j <= i__2; ++j) {
  1025. if (d__[j] < p) {
  1026. k = j;
  1027. p = d__[j];
  1028. }
  1029. /* L170: */
  1030. }
  1031. if (k != i__) {
  1032. d__[k] = d__[i__];
  1033. d__[i__] = p;
  1034. dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1],
  1035. &c__1);
  1036. }
  1037. /* L180: */
  1038. }
  1039. }
  1040. L190:
  1041. return;
  1042. /* End of DSTEQR */
  1043. } /* dsteqr_ */