|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static integer c__1 = 1;
- static doublereal c_b30 = 0.;
-
- /* > \brief \b DLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
- . */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download DLASD2 + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd2.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd2.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd2.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
- /* LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
- /* IDXC, IDXQ, COLTYP, INFO ) */
-
- /* INTEGER INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
- /* DOUBLE PRECISION ALPHA, BETA */
- /* INTEGER COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
- /* $ IDXQ( * ) */
- /* DOUBLE PRECISION D( * ), DSIGMA( * ), U( LDU, * ), */
- /* $ U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
- /* $ Z( * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > DLASD2 merges the two sets of singular values together into a single */
- /* > sorted set. Then it tries to deflate the size of the problem. */
- /* > There are two ways in which deflation can occur: when two or more */
- /* > singular values are close together or if there is a tiny entry in the */
- /* > Z vector. For each such occurrence the order of the related secular */
- /* > equation problem is reduced by one. */
- /* > */
- /* > DLASD2 is called from DLASD1. */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] NL */
- /* > \verbatim */
- /* > NL is INTEGER */
- /* > The row dimension of the upper block. NL >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NR */
- /* > \verbatim */
- /* > NR is INTEGER */
- /* > The row dimension of the lower block. NR >= 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] SQRE */
- /* > \verbatim */
- /* > SQRE is INTEGER */
- /* > = 0: the lower block is an NR-by-NR square matrix. */
- /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
- /* > */
- /* > The bidiagonal matrix has N = NL + NR + 1 rows and */
- /* > M = N + SQRE >= N columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] K */
- /* > \verbatim */
- /* > K is INTEGER */
- /* > Contains the dimension of the non-deflated matrix, */
- /* > This is the order of the related secular equation. 1 <= K <=N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension(N) */
- /* > On entry D contains the singular values of the two submatrices */
- /* > to be combined. On exit D contains the trailing (N-K) updated */
- /* > singular values (those which were deflated) sorted into */
- /* > increasing order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Z */
- /* > \verbatim */
- /* > Z is DOUBLE PRECISION array, dimension(N) */
- /* > On exit Z contains the updating row vector in the secular */
- /* > equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is DOUBLE PRECISION */
- /* > Contains the diagonal element associated with the added row. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] BETA */
- /* > \verbatim */
- /* > BETA is DOUBLE PRECISION */
- /* > Contains the off-diagonal element associated with the added */
- /* > row. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] U */
- /* > \verbatim */
- /* > U is DOUBLE PRECISION array, dimension(LDU,N) */
- /* > On entry U contains the left singular vectors of two */
- /* > submatrices in the two square blocks with corners at (1,1), */
- /* > (NL, NL), and (NL+2, NL+2), (N,N). */
- /* > On exit U contains the trailing (N-K) updated left singular */
- /* > vectors (those which were deflated) in its last N-K columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU */
- /* > \verbatim */
- /* > LDU is INTEGER */
- /* > The leading dimension of the array U. LDU >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] VT */
- /* > \verbatim */
- /* > VT is DOUBLE PRECISION array, dimension(LDVT,M) */
- /* > On entry VT**T contains the right singular vectors of two */
- /* > submatrices in the two square blocks with corners at (1,1), */
- /* > (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
- /* > On exit VT**T contains the trailing (N-K) updated right singular */
- /* > vectors (those which were deflated) in its last N-K columns. */
- /* > In case SQRE =1, the last row of VT spans the right null */
- /* > space. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT */
- /* > \verbatim */
- /* > LDVT is INTEGER */
- /* > The leading dimension of the array VT. LDVT >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] DSIGMA */
- /* > \verbatim */
- /* > DSIGMA is DOUBLE PRECISION array, dimension (N) */
- /* > Contains a copy of the diagonal elements (K-1 singular values */
- /* > and one zero) in the secular equation. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] U2 */
- /* > \verbatim */
- /* > U2 is DOUBLE PRECISION array, dimension(LDU2,N) */
- /* > Contains a copy of the first K-1 left singular vectors which */
- /* > will be used by DLASD3 in a matrix multiply (DGEMM) to solve */
- /* > for the new left singular vectors. U2 is arranged into four */
- /* > blocks. The first block contains a column with 1 at NL+1 and */
- /* > zero everywhere else; the second block contains non-zero */
- /* > entries only at and above NL; the third contains non-zero */
- /* > entries only below NL+1; and the fourth is dense. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDU2 */
- /* > \verbatim */
- /* > LDU2 is INTEGER */
- /* > The leading dimension of the array U2. LDU2 >= N. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] VT2 */
- /* > \verbatim */
- /* > VT2 is DOUBLE PRECISION array, dimension(LDVT2,N) */
- /* > VT2**T contains a copy of the first K right singular vectors */
- /* > which will be used by DLASD3 in a matrix multiply (DGEMM) to */
- /* > solve for the new right singular vectors. VT2 is arranged into */
- /* > three blocks. The first block contains a row that corresponds */
- /* > to the special 0 diagonal element in SIGMA; the second block */
- /* > contains non-zeros only at and before NL +1; the third block */
- /* > contains non-zeros only at and after NL +2. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDVT2 */
- /* > \verbatim */
- /* > LDVT2 is INTEGER */
- /* > The leading dimension of the array VT2. LDVT2 >= M. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IDXP */
- /* > \verbatim */
- /* > IDXP is INTEGER array, dimension(N) */
- /* > This will contain the permutation used to place deflated */
- /* > values of D at the end of the array. On output IDXP(2:K) */
- /* > points to the nondeflated D-values and IDXP(K+1:N) */
- /* > points to the deflated singular values. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IDX */
- /* > \verbatim */
- /* > IDX is INTEGER array, dimension(N) */
- /* > This will contain the permutation used to sort the contents of */
- /* > D into ascending order. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] IDXC */
- /* > \verbatim */
- /* > IDXC is INTEGER array, dimension(N) */
- /* > This will contain the permutation used to arrange the columns */
- /* > of the deflated U matrix into three groups: the first group */
- /* > contains non-zero entries only at and above NL, the second */
- /* > contains non-zero entries only below NL+2, and the third is */
- /* > dense. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] IDXQ */
- /* > \verbatim */
- /* > IDXQ is INTEGER array, dimension(N) */
- /* > This contains the permutation which separately sorts the two */
- /* > sub-problems in D into ascending order. Note that entries in */
- /* > the first hlaf of this permutation must first be moved one */
- /* > position backward; and entries in the second half */
- /* > must first have NL+1 added to their values. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] COLTYP */
- /* > \verbatim */
- /* > COLTYP is INTEGER array, dimension(N) */
- /* > As workspace, this will contain a label which will indicate */
- /* > which of the following types a column in the U2 matrix or a */
- /* > row in the VT2 matrix is: */
- /* > 1 : non-zero in the upper half only */
- /* > 2 : non-zero in the lower half only */
- /* > 3 : dense */
- /* > 4 : deflated */
- /* > */
- /* > On exit, it is an array of dimension 4, with COLTYP(I) being */
- /* > the dimension of the I-th type columns. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] INFO */
- /* > \verbatim */
- /* > INFO is INTEGER */
- /* > = 0: successful exit. */
- /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup OTHERauxiliary */
-
- /* > \par Contributors: */
- /* ================== */
- /* > */
- /* > Ming Gu and Huan Ren, Computer Science Division, University of */
- /* > California at Berkeley, USA */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ void dlasd2_(integer *nl, integer *nr, integer *sqre, integer
- *k, doublereal *d__, doublereal *z__, doublereal *alpha, doublereal *
- beta, doublereal *u, integer *ldu, doublereal *vt, integer *ldvt,
- doublereal *dsigma, doublereal *u2, integer *ldu2, doublereal *vt2,
- integer *ldvt2, integer *idxp, integer *idx, integer *idxc, integer *
- idxq, integer *coltyp, integer *info)
- {
- /* System generated locals */
- integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset,
- vt2_dim1, vt2_offset, i__1;
- doublereal d__1, d__2;
-
- /* Local variables */
- integer idxi, idxj;
- extern /* Subroutine */ void drot_(integer *, doublereal *, integer *,
- doublereal *, integer *, doublereal *, doublereal *);
- integer ctot[4];
- doublereal c__;
- integer i__, j, m, n;
- doublereal s;
- integer idxjp;
- extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
- doublereal *, integer *);
- integer jprev, k2;
- doublereal z1;
- extern doublereal dlapy2_(doublereal *, doublereal *);
- integer ct;
- extern doublereal dlamch_(char *);
- integer jp;
- extern /* Subroutine */ void dlamrg_(integer *, integer *, doublereal *,
- integer *, integer *, integer *), dlacpy_(char *, integer *,
- integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *,
- doublereal *, doublereal *, integer *);
- extern int xerbla_(char *, integer *, ftnlen);
- doublereal hlftol, eps, tau, tol;
- integer psm[4], nlp1, nlp2;
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Test the input parameters. */
-
- /* Parameter adjustments */
- --d__;
- --z__;
- u_dim1 = *ldu;
- u_offset = 1 + u_dim1 * 1;
- u -= u_offset;
- vt_dim1 = *ldvt;
- vt_offset = 1 + vt_dim1 * 1;
- vt -= vt_offset;
- --dsigma;
- u2_dim1 = *ldu2;
- u2_offset = 1 + u2_dim1 * 1;
- u2 -= u2_offset;
- vt2_dim1 = *ldvt2;
- vt2_offset = 1 + vt2_dim1 * 1;
- vt2 -= vt2_offset;
- --idxp;
- --idx;
- --idxc;
- --idxq;
- --coltyp;
-
- /* Function Body */
- *info = 0;
-
- if (*nl < 1) {
- *info = -1;
- } else if (*nr < 1) {
- *info = -2;
- } else if (*sqre != 1 && *sqre != 0) {
- *info = -3;
- }
-
- n = *nl + *nr + 1;
- m = n + *sqre;
-
- if (*ldu < n) {
- *info = -10;
- } else if (*ldvt < m) {
- *info = -12;
- } else if (*ldu2 < n) {
- *info = -15;
- } else if (*ldvt2 < m) {
- *info = -17;
- }
- if (*info != 0) {
- i__1 = -(*info);
- xerbla_("DLASD2", &i__1, (ftnlen)6);
- return;
- }
-
- nlp1 = *nl + 1;
- nlp2 = *nl + 2;
-
- /* Generate the first part of the vector Z; and move the singular */
- /* values in the first part of D one position backward. */
-
- z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
- z__[1] = z1;
- for (i__ = *nl; i__ >= 1; --i__) {
- z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
- d__[i__ + 1] = d__[i__];
- idxq[i__ + 1] = idxq[i__] + 1;
- /* L10: */
- }
-
- /* Generate the second part of the vector Z. */
-
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
- /* L20: */
- }
-
- /* Initialize some reference arrays. */
-
- i__1 = nlp1;
- for (i__ = 2; i__ <= i__1; ++i__) {
- coltyp[i__] = 1;
- /* L30: */
- }
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- coltyp[i__] = 2;
- /* L40: */
- }
-
- /* Sort the singular values into increasing order */
-
- i__1 = n;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- idxq[i__] += nlp1;
- /* L50: */
- }
-
- /* DSIGMA, IDXC, IDXC, and the first column of U2 */
- /* are used as storage space. */
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- dsigma[i__] = d__[idxq[i__]];
- u2[i__ + u2_dim1] = z__[idxq[i__]];
- idxc[i__] = coltyp[idxq[i__]];
- /* L60: */
- }
-
- dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
-
- i__1 = n;
- for (i__ = 2; i__ <= i__1; ++i__) {
- idxi = idx[i__] + 1;
- d__[i__] = dsigma[idxi];
- z__[i__] = u2[idxi + u2_dim1];
- coltyp[i__] = idxc[idxi];
- /* L70: */
- }
-
- /* Calculate the allowable deflation tolerance */
-
- eps = dlamch_("Epsilon");
- /* Computing MAX */
- d__1 = abs(*alpha), d__2 = abs(*beta);
- tol = f2cmax(d__1,d__2);
- /* Computing MAX */
- d__2 = (d__1 = d__[n], abs(d__1));
- tol = eps * 8. * f2cmax(d__2,tol);
-
- /* There are 2 kinds of deflation -- first a value in the z-vector */
- /* is small, second two (or more) singular values are very close */
- /* together (their difference is small). */
-
- /* If the value in the z-vector is small, we simply permute the */
- /* array so that the corresponding singular value is moved to the */
- /* end. */
-
- /* If two values in the D-vector are close, we perform a two-sided */
- /* rotation designed to make one of the corresponding z-vector */
- /* entries zero, and then permute the array so that the deflated */
- /* singular value is moved to the end. */
-
- /* If there are multiple singular values then the problem deflates. */
- /* Here the number of equal singular values are found. As each equal */
- /* singular value is found, an elementary reflector is computed to */
- /* rotate the corresponding singular subspace so that the */
- /* corresponding components of Z are zero in this new basis. */
-
- *k = 1;
- k2 = n + 1;
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- if (j == n) {
- goto L120;
- }
- } else {
- jprev = j;
- goto L90;
- }
- /* L80: */
- }
- L90:
- j = jprev;
- L100:
- ++j;
- if (j > n) {
- goto L110;
- }
- if ((d__1 = z__[j], abs(d__1)) <= tol) {
-
- /* Deflate due to small z component. */
-
- --k2;
- idxp[k2] = j;
- coltyp[j] = 4;
- } else {
-
- /* Check if singular values are close enough to allow deflation. */
-
- if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {
-
- /* Deflation is possible. */
-
- s = z__[jprev];
- c__ = z__[j];
-
- /* Find sqrt(a**2+b**2) without overflow or */
- /* destructive underflow. */
-
- tau = dlapy2_(&c__, &s);
- c__ /= tau;
- s = -s / tau;
- z__[j] = tau;
- z__[jprev] = 0.;
-
- /* Apply back the Givens rotation to the left and right */
- /* singular vector matrices. */
-
- idxjp = idxq[idx[jprev] + 1];
- idxj = idxq[idx[j] + 1];
- if (idxjp <= nlp1) {
- --idxjp;
- }
- if (idxj <= nlp1) {
- --idxj;
- }
- drot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
- c__1, &c__, &s);
- drot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
- c__, &s);
- if (coltyp[j] != coltyp[jprev]) {
- coltyp[j] = 3;
- }
- coltyp[jprev] = 4;
- --k2;
- idxp[k2] = jprev;
- jprev = j;
- } else {
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
- jprev = j;
- }
- }
- goto L100;
- L110:
-
- /* Record the last singular value. */
-
- ++(*k);
- u2[*k + u2_dim1] = z__[jprev];
- dsigma[*k] = d__[jprev];
- idxp[*k] = jprev;
-
- L120:
-
- /* Count up the total number of the various types of columns, then */
- /* form a permutation which positions the four column types into */
- /* four groups of uniform structure (although one or more of these */
- /* groups may be empty). */
-
- for (j = 1; j <= 4; ++j) {
- ctot[j - 1] = 0;
- /* L130: */
- }
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- ct = coltyp[j];
- ++ctot[ct - 1];
- /* L140: */
- }
-
- /* PSM(*) = Position in SubMatrix (of types 1 through 4) */
-
- psm[0] = 2;
- psm[1] = ctot[0] + 2;
- psm[2] = psm[1] + ctot[1];
- psm[3] = psm[2] + ctot[2];
-
- /* Fill out the IDXC array so that the permutation which it induces */
- /* will place all type-1 columns first, all type-2 columns next, */
- /* then all type-3's, and finally all type-4's, starting from the */
- /* second column. This applies similarly to the rows of VT. */
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- ct = coltyp[jp];
- idxc[psm[ct - 1]] = j;
- ++psm[ct - 1];
- /* L150: */
- }
-
- /* Sort the singular values and corresponding singular vectors into */
- /* DSIGMA, U2, and VT2 respectively. The singular values/vectors */
- /* which were not deflated go into the first K slots of DSIGMA, U2, */
- /* and VT2 respectively, while those which were deflated go into the */
- /* last N - K slots, except that the first column/row will be treated */
- /* separately. */
-
- i__1 = n;
- for (j = 2; j <= i__1; ++j) {
- jp = idxp[j];
- dsigma[j] = d__[jp];
- idxj = idxq[idx[idxp[idxc[j]]] + 1];
- if (idxj <= nlp1) {
- --idxj;
- }
- dcopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
- dcopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
- /* L160: */
- }
-
- /* Determine DSIGMA(1), DSIGMA(2) and Z(1) */
-
- dsigma[1] = 0.;
- hlftol = tol / 2.;
- if (abs(dsigma[2]) <= hlftol) {
- dsigma[2] = hlftol;
- }
- if (m > n) {
- z__[1] = dlapy2_(&z1, &z__[m]);
- if (z__[1] <= tol) {
- c__ = 1.;
- s = 0.;
- z__[1] = tol;
- } else {
- c__ = z1 / z__[1];
- s = z__[m] / z__[1];
- }
- } else {
- if (abs(z1) <= tol) {
- z__[1] = tol;
- } else {
- z__[1] = z1;
- }
- }
-
- /* Move the rest of the updating row to Z. */
-
- i__1 = *k - 1;
- dcopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
-
- /* Determine the first column of U2, the first row of VT2 and the */
- /* last row of VT. */
-
- dlaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
- u2[nlp1 + u2_dim1] = 1.;
- if (m > n) {
- i__1 = nlp1;
- for (i__ = 1; i__ <= i__1; ++i__) {
- vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
- vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
- /* L170: */
- }
- i__1 = m;
- for (i__ = nlp2; i__ <= i__1; ++i__) {
- vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
- vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
- /* L180: */
- }
- } else {
- dcopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
- }
- if (m > n) {
- dcopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
- }
-
- /* The deflated singular values and their corresponding vectors go */
- /* into the back of D, U, and V respectively. */
-
- if (n > *k) {
- i__1 = n - *k;
- dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
- i__1 = n - *k;
- dlacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
- * u_dim1 + 1], ldu);
- i__1 = n - *k;
- dlacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 +
- vt_dim1], ldvt);
- }
-
- /* Copy CTOT into COLTYP for referencing in DLASD3. */
-
- for (j = 1; j <= 4; ++j) {
- coltyp[j] = ctot[j - 1];
- /* L190: */
- }
-
- return;
-
- /* End of DLASD2 */
-
- } /* dlasd2_ */
-
|