You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqtr.c 37 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static logical c_false = FALSE_;
  488. static integer c__2 = 2;
  489. static doublereal c_b21 = 1.;
  490. static doublereal c_b25 = 0.;
  491. static logical c_true = TRUE_;
  492. /* > \brief \b DLAQTR solves a real quasi-triangular system of equations, or a complex quasi-triangular system
  493. of special form, in real arithmetic. */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download DLAQTR + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqtr.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqtr.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqtr.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE DLAQTR( LTRAN, LREAL, N, T, LDT, B, W, SCALE, X, WORK, */
  512. /* INFO ) */
  513. /* LOGICAL LREAL, LTRAN */
  514. /* INTEGER INFO, LDT, N */
  515. /* DOUBLE PRECISION SCALE, W */
  516. /* DOUBLE PRECISION B( * ), T( LDT, * ), WORK( * ), X( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DLAQTR solves the real quasi-triangular system */
  523. /* > */
  524. /* > op(T)*p = scale*c, if LREAL = .TRUE. */
  525. /* > */
  526. /* > or the complex quasi-triangular systems */
  527. /* > */
  528. /* > op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
  529. /* > */
  530. /* > in real arithmetic, where T is upper quasi-triangular. */
  531. /* > If LREAL = .FALSE., then the first diagonal block of T must be */
  532. /* > 1 by 1, B is the specially structured matrix */
  533. /* > */
  534. /* > B = [ b(1) b(2) ... b(n) ] */
  535. /* > [ w ] */
  536. /* > [ w ] */
  537. /* > [ . ] */
  538. /* > [ w ] */
  539. /* > */
  540. /* > op(A) = A or A**T, A**T denotes the transpose of */
  541. /* > matrix A. */
  542. /* > */
  543. /* > On input, X = [ c ]. On output, X = [ p ]. */
  544. /* > [ d ] [ q ] */
  545. /* > */
  546. /* > This subroutine is designed for the condition number estimation */
  547. /* > in routine DTRSNA. */
  548. /* > \endverbatim */
  549. /* Arguments: */
  550. /* ========== */
  551. /* > \param[in] LTRAN */
  552. /* > \verbatim */
  553. /* > LTRAN is LOGICAL */
  554. /* > On entry, LTRAN specifies the option of conjugate transpose: */
  555. /* > = .FALSE., op(T+i*B) = T+i*B, */
  556. /* > = .TRUE., op(T+i*B) = (T+i*B)**T. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] LREAL */
  560. /* > \verbatim */
  561. /* > LREAL is LOGICAL */
  562. /* > On entry, LREAL specifies the input matrix structure: */
  563. /* > = .FALSE., the input is complex */
  564. /* > = .TRUE., the input is real */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] N */
  568. /* > \verbatim */
  569. /* > N is INTEGER */
  570. /* > On entry, N specifies the order of T+i*B. N >= 0. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] T */
  574. /* > \verbatim */
  575. /* > T is DOUBLE PRECISION array, dimension (LDT,N) */
  576. /* > On entry, T contains a matrix in Schur canonical form. */
  577. /* > If LREAL = .FALSE., then the first diagonal block of T mu */
  578. /* > be 1 by 1. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] LDT */
  582. /* > \verbatim */
  583. /* > LDT is INTEGER */
  584. /* > The leading dimension of the matrix T. LDT >= f2cmax(1,N). */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] B */
  588. /* > \verbatim */
  589. /* > B is DOUBLE PRECISION array, dimension (N) */
  590. /* > On entry, B contains the elements to form the matrix */
  591. /* > B as described above. */
  592. /* > If LREAL = .TRUE., B is not referenced. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] W */
  596. /* > \verbatim */
  597. /* > W is DOUBLE PRECISION */
  598. /* > On entry, W is the diagonal element of the matrix B. */
  599. /* > If LREAL = .TRUE., W is not referenced. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] SCALE */
  603. /* > \verbatim */
  604. /* > SCALE is DOUBLE PRECISION */
  605. /* > On exit, SCALE is the scale factor. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in,out] X */
  609. /* > \verbatim */
  610. /* > X is DOUBLE PRECISION array, dimension (2*N) */
  611. /* > On entry, X contains the right hand side of the system. */
  612. /* > On exit, X is overwritten by the solution. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[out] WORK */
  616. /* > \verbatim */
  617. /* > WORK is DOUBLE PRECISION array, dimension (N) */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] INFO */
  621. /* > \verbatim */
  622. /* > INFO is INTEGER */
  623. /* > On exit, INFO is set to */
  624. /* > 0: successful exit. */
  625. /* > 1: the some diagonal 1 by 1 block has been perturbed by */
  626. /* > a small number SMIN to keep nonsingularity. */
  627. /* > 2: the some diagonal 2 by 2 block has been perturbed by */
  628. /* > a small number in DLALN2 to keep nonsingularity. */
  629. /* > NOTE: In the interests of speed, this routine does not */
  630. /* > check the inputs for errors. */
  631. /* > \endverbatim */
  632. /* Authors: */
  633. /* ======== */
  634. /* > \author Univ. of Tennessee */
  635. /* > \author Univ. of California Berkeley */
  636. /* > \author Univ. of Colorado Denver */
  637. /* > \author NAG Ltd. */
  638. /* > \date December 2016 */
  639. /* > \ingroup doubleOTHERauxiliary */
  640. /* ===================================================================== */
  641. /* Subroutine */ void dlaqtr_(logical *ltran, logical *lreal, integer *n,
  642. doublereal *t, integer *ldt, doublereal *b, doublereal *w, doublereal
  643. *scale, doublereal *x, doublereal *work, integer *info)
  644. {
  645. /* System generated locals */
  646. integer t_dim1, t_offset, i__1, i__2;
  647. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  648. /* Local variables */
  649. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  650. integer *);
  651. integer ierr;
  652. doublereal smin, xmax, d__[4] /* was [2][2] */;
  653. integer i__, j, k;
  654. doublereal v[4] /* was [2][2] */, z__;
  655. extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *,
  656. integer *);
  657. extern doublereal dasum_(integer *, doublereal *, integer *);
  658. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  659. integer *, doublereal *, integer *);
  660. integer jnext, j1, j2;
  661. doublereal sminw;
  662. integer n1, n2;
  663. doublereal xnorm;
  664. extern /* Subroutine */ void dlaln2_(logical *, integer *, integer *,
  665. doublereal *, doublereal *, doublereal *, integer *, doublereal *,
  666. doublereal *, doublereal *, integer *, doublereal *, doublereal *
  667. , doublereal *, integer *, doublereal *, doublereal *, integer *);
  668. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  669. integer *, doublereal *, integer *, doublereal *);
  670. doublereal si, xj;
  671. extern integer idamax_(integer *, doublereal *, integer *);
  672. doublereal scaloc, sr;
  673. extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
  674. doublereal *, doublereal *, doublereal *, doublereal *);
  675. doublereal bignum;
  676. logical notran;
  677. doublereal smlnum, rec, eps, tjj, tmp;
  678. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  679. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  680. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  681. /* December 2016 */
  682. /* ===================================================================== */
  683. /* Do not test the input parameters for errors */
  684. /* Parameter adjustments */
  685. t_dim1 = *ldt;
  686. t_offset = 1 + t_dim1 * 1;
  687. t -= t_offset;
  688. --b;
  689. --x;
  690. --work;
  691. /* Function Body */
  692. notran = ! (*ltran);
  693. *info = 0;
  694. /* Quick return if possible */
  695. if (*n == 0) {
  696. return;
  697. }
  698. /* Set constants to control overflow */
  699. eps = dlamch_("P");
  700. smlnum = dlamch_("S") / eps;
  701. bignum = 1. / smlnum;
  702. xnorm = dlange_("M", n, n, &t[t_offset], ldt, d__);
  703. if (! (*lreal)) {
  704. /* Computing MAX */
  705. d__1 = xnorm, d__2 = abs(*w), d__1 = f2cmax(d__1,d__2), d__2 = dlange_(
  706. "M", n, &c__1, &b[1], n, d__);
  707. xnorm = f2cmax(d__1,d__2);
  708. }
  709. /* Computing MAX */
  710. d__1 = smlnum, d__2 = eps * xnorm;
  711. smin = f2cmax(d__1,d__2);
  712. /* Compute 1-norm of each column of strictly upper triangular */
  713. /* part of T to control overflow in triangular solver. */
  714. work[1] = 0.;
  715. i__1 = *n;
  716. for (j = 2; j <= i__1; ++j) {
  717. i__2 = j - 1;
  718. work[j] = dasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
  719. /* L10: */
  720. }
  721. if (! (*lreal)) {
  722. i__1 = *n;
  723. for (i__ = 2; i__ <= i__1; ++i__) {
  724. work[i__] += (d__1 = b[i__], abs(d__1));
  725. /* L20: */
  726. }
  727. }
  728. n2 = *n << 1;
  729. n1 = *n;
  730. if (! (*lreal)) {
  731. n1 = n2;
  732. }
  733. k = idamax_(&n1, &x[1], &c__1);
  734. xmax = (d__1 = x[k], abs(d__1));
  735. *scale = 1.;
  736. if (xmax > bignum) {
  737. *scale = bignum / xmax;
  738. dscal_(&n1, scale, &x[1], &c__1);
  739. xmax = bignum;
  740. }
  741. if (*lreal) {
  742. if (notran) {
  743. /* Solve T*p = scale*c */
  744. jnext = *n;
  745. for (j = *n; j >= 1; --j) {
  746. if (j > jnext) {
  747. goto L30;
  748. }
  749. j1 = j;
  750. j2 = j;
  751. jnext = j - 1;
  752. if (j > 1) {
  753. if (t[j + (j - 1) * t_dim1] != 0.) {
  754. j1 = j - 1;
  755. jnext = j - 2;
  756. }
  757. }
  758. if (j1 == j2) {
  759. /* Meet 1 by 1 diagonal block */
  760. /* Scale to avoid overflow when computing */
  761. /* x(j) = b(j)/T(j,j) */
  762. xj = (d__1 = x[j1], abs(d__1));
  763. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
  764. tmp = t[j1 + j1 * t_dim1];
  765. if (tjj < smin) {
  766. tmp = smin;
  767. tjj = smin;
  768. *info = 1;
  769. }
  770. if (xj == 0.) {
  771. goto L30;
  772. }
  773. if (tjj < 1.) {
  774. if (xj > bignum * tjj) {
  775. rec = 1. / xj;
  776. dscal_(n, &rec, &x[1], &c__1);
  777. *scale *= rec;
  778. xmax *= rec;
  779. }
  780. }
  781. x[j1] /= tmp;
  782. xj = (d__1 = x[j1], abs(d__1));
  783. /* Scale x if necessary to avoid overflow when adding a */
  784. /* multiple of column j1 of T. */
  785. if (xj > 1.) {
  786. rec = 1. / xj;
  787. if (work[j1] > (bignum - xmax) * rec) {
  788. dscal_(n, &rec, &x[1], &c__1);
  789. *scale *= rec;
  790. }
  791. }
  792. if (j1 > 1) {
  793. i__1 = j1 - 1;
  794. d__1 = -x[j1];
  795. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  796. , &c__1);
  797. i__1 = j1 - 1;
  798. k = idamax_(&i__1, &x[1], &c__1);
  799. xmax = (d__1 = x[k], abs(d__1));
  800. }
  801. } else {
  802. /* Meet 2 by 2 diagonal block */
  803. /* Call 2 by 2 linear system solve, to take */
  804. /* care of possible overflow by scaling factor. */
  805. d__[0] = x[j1];
  806. d__[1] = x[j2];
  807. dlaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
  808. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  809. c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  810. if (ierr != 0) {
  811. *info = 2;
  812. }
  813. if (scaloc != 1.) {
  814. dscal_(n, &scaloc, &x[1], &c__1);
  815. *scale *= scaloc;
  816. }
  817. x[j1] = v[0];
  818. x[j2] = v[1];
  819. /* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
  820. /* to avoid overflow in updating right-hand side. */
  821. /* Computing MAX */
  822. d__1 = abs(v[0]), d__2 = abs(v[1]);
  823. xj = f2cmax(d__1,d__2);
  824. if (xj > 1.) {
  825. rec = 1. / xj;
  826. /* Computing MAX */
  827. d__1 = work[j1], d__2 = work[j2];
  828. if (f2cmax(d__1,d__2) > (bignum - xmax) * rec) {
  829. dscal_(n, &rec, &x[1], &c__1);
  830. *scale *= rec;
  831. }
  832. }
  833. /* Update right-hand side */
  834. if (j1 > 1) {
  835. i__1 = j1 - 1;
  836. d__1 = -x[j1];
  837. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  838. , &c__1);
  839. i__1 = j1 - 1;
  840. d__1 = -x[j2];
  841. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  842. , &c__1);
  843. i__1 = j1 - 1;
  844. k = idamax_(&i__1, &x[1], &c__1);
  845. xmax = (d__1 = x[k], abs(d__1));
  846. }
  847. }
  848. L30:
  849. ;
  850. }
  851. } else {
  852. /* Solve T**T*p = scale*c */
  853. jnext = 1;
  854. i__1 = *n;
  855. for (j = 1; j <= i__1; ++j) {
  856. if (j < jnext) {
  857. goto L40;
  858. }
  859. j1 = j;
  860. j2 = j;
  861. jnext = j + 1;
  862. if (j < *n) {
  863. if (t[j + 1 + j * t_dim1] != 0.) {
  864. j2 = j + 1;
  865. jnext = j + 2;
  866. }
  867. }
  868. if (j1 == j2) {
  869. /* 1 by 1 diagonal block */
  870. /* Scale if necessary to avoid overflow in forming the */
  871. /* right-hand side element by inner product. */
  872. xj = (d__1 = x[j1], abs(d__1));
  873. if (xmax > 1.) {
  874. rec = 1. / xmax;
  875. if (work[j1] > (bignum - xj) * rec) {
  876. dscal_(n, &rec, &x[1], &c__1);
  877. *scale *= rec;
  878. xmax *= rec;
  879. }
  880. }
  881. i__2 = j1 - 1;
  882. x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  883. c__1);
  884. xj = (d__1 = x[j1], abs(d__1));
  885. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1));
  886. tmp = t[j1 + j1 * t_dim1];
  887. if (tjj < smin) {
  888. tmp = smin;
  889. tjj = smin;
  890. *info = 1;
  891. }
  892. if (tjj < 1.) {
  893. if (xj > bignum * tjj) {
  894. rec = 1. / xj;
  895. dscal_(n, &rec, &x[1], &c__1);
  896. *scale *= rec;
  897. xmax *= rec;
  898. }
  899. }
  900. x[j1] /= tmp;
  901. /* Computing MAX */
  902. d__2 = xmax, d__3 = (d__1 = x[j1], abs(d__1));
  903. xmax = f2cmax(d__2,d__3);
  904. } else {
  905. /* 2 by 2 diagonal block */
  906. /* Scale if necessary to avoid overflow in forming the */
  907. /* right-hand side elements by inner product. */
  908. /* Computing MAX */
  909. d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
  910. abs(d__2));
  911. xj = f2cmax(d__3,d__4);
  912. if (xmax > 1.) {
  913. rec = 1. / xmax;
  914. /* Computing MAX */
  915. d__1 = work[j2], d__2 = work[j1];
  916. if (f2cmax(d__1,d__2) > (bignum - xj) * rec) {
  917. dscal_(n, &rec, &x[1], &c__1);
  918. *scale *= rec;
  919. xmax *= rec;
  920. }
  921. }
  922. i__2 = j1 - 1;
  923. d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  924. &x[1], &c__1);
  925. i__2 = j1 - 1;
  926. d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  927. &x[1], &c__1);
  928. dlaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
  929. t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
  930. &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
  931. if (ierr != 0) {
  932. *info = 2;
  933. }
  934. if (scaloc != 1.) {
  935. dscal_(n, &scaloc, &x[1], &c__1);
  936. *scale *= scaloc;
  937. }
  938. x[j1] = v[0];
  939. x[j2] = v[1];
  940. /* Computing MAX */
  941. d__3 = (d__1 = x[j1], abs(d__1)), d__4 = (d__2 = x[j2],
  942. abs(d__2)), d__3 = f2cmax(d__3,d__4);
  943. xmax = f2cmax(d__3,xmax);
  944. }
  945. L40:
  946. ;
  947. }
  948. }
  949. } else {
  950. /* Computing MAX */
  951. d__1 = eps * abs(*w);
  952. sminw = f2cmax(d__1,smin);
  953. if (notran) {
  954. /* Solve (T + iB)*(p+iq) = c+id */
  955. jnext = *n;
  956. for (j = *n; j >= 1; --j) {
  957. if (j > jnext) {
  958. goto L70;
  959. }
  960. j1 = j;
  961. j2 = j;
  962. jnext = j - 1;
  963. if (j > 1) {
  964. if (t[j + (j - 1) * t_dim1] != 0.) {
  965. j1 = j - 1;
  966. jnext = j - 2;
  967. }
  968. }
  969. if (j1 == j2) {
  970. /* 1 by 1 diagonal block */
  971. /* Scale if necessary to avoid overflow in division */
  972. z__ = *w;
  973. if (j1 == 1) {
  974. z__ = b[1];
  975. }
  976. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
  977. d__2));
  978. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
  979. tmp = t[j1 + j1 * t_dim1];
  980. if (tjj < sminw) {
  981. tmp = sminw;
  982. tjj = sminw;
  983. *info = 1;
  984. }
  985. if (xj == 0.) {
  986. goto L70;
  987. }
  988. if (tjj < 1.) {
  989. if (xj > bignum * tjj) {
  990. rec = 1. / xj;
  991. dscal_(&n2, &rec, &x[1], &c__1);
  992. *scale *= rec;
  993. xmax *= rec;
  994. }
  995. }
  996. dladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
  997. x[j1] = sr;
  998. x[*n + j1] = si;
  999. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1], abs(
  1000. d__2));
  1001. /* Scale x if necessary to avoid overflow when adding a */
  1002. /* multiple of column j1 of T. */
  1003. if (xj > 1.) {
  1004. rec = 1. / xj;
  1005. if (work[j1] > (bignum - xmax) * rec) {
  1006. dscal_(&n2, &rec, &x[1], &c__1);
  1007. *scale *= rec;
  1008. }
  1009. }
  1010. if (j1 > 1) {
  1011. i__1 = j1 - 1;
  1012. d__1 = -x[j1];
  1013. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1014. , &c__1);
  1015. i__1 = j1 - 1;
  1016. d__1 = -x[*n + j1];
  1017. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1018. n + 1], &c__1);
  1019. x[1] += b[j1] * x[*n + j1];
  1020. x[*n + 1] -= b[j1] * x[j1];
  1021. xmax = 0.;
  1022. i__1 = j1 - 1;
  1023. for (k = 1; k <= i__1; ++k) {
  1024. /* Computing MAX */
  1025. d__3 = xmax, d__4 = (d__1 = x[k], abs(d__1)) + (
  1026. d__2 = x[k + *n], abs(d__2));
  1027. xmax = f2cmax(d__3,d__4);
  1028. /* L50: */
  1029. }
  1030. }
  1031. } else {
  1032. /* Meet 2 by 2 diagonal block */
  1033. d__[0] = x[j1];
  1034. d__[1] = x[j2];
  1035. d__[2] = x[*n + j1];
  1036. d__[3] = x[*n + j2];
  1037. d__1 = -(*w);
  1038. dlaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
  1039. j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1040. c_b25, &d__1, v, &c__2, &scaloc, &xnorm, &ierr);
  1041. if (ierr != 0) {
  1042. *info = 2;
  1043. }
  1044. if (scaloc != 1.) {
  1045. i__1 = *n << 1;
  1046. dscal_(&i__1, &scaloc, &x[1], &c__1);
  1047. *scale = scaloc * *scale;
  1048. }
  1049. x[j1] = v[0];
  1050. x[j2] = v[1];
  1051. x[*n + j1] = v[2];
  1052. x[*n + j2] = v[3];
  1053. /* Scale X(J1), .... to avoid overflow in */
  1054. /* updating right hand side. */
  1055. /* Computing MAX */
  1056. d__1 = abs(v[0]) + abs(v[2]), d__2 = abs(v[1]) + abs(v[3])
  1057. ;
  1058. xj = f2cmax(d__1,d__2);
  1059. if (xj > 1.) {
  1060. rec = 1. / xj;
  1061. /* Computing MAX */
  1062. d__1 = work[j1], d__2 = work[j2];
  1063. if (f2cmax(d__1,d__2) > (bignum - xmax) * rec) {
  1064. dscal_(&n2, &rec, &x[1], &c__1);
  1065. *scale *= rec;
  1066. }
  1067. }
  1068. /* Update the right-hand side. */
  1069. if (j1 > 1) {
  1070. i__1 = j1 - 1;
  1071. d__1 = -x[j1];
  1072. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
  1073. , &c__1);
  1074. i__1 = j1 - 1;
  1075. d__1 = -x[j2];
  1076. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
  1077. , &c__1);
  1078. i__1 = j1 - 1;
  1079. d__1 = -x[*n + j1];
  1080. daxpy_(&i__1, &d__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
  1081. n + 1], &c__1);
  1082. i__1 = j1 - 1;
  1083. d__1 = -x[*n + j2];
  1084. daxpy_(&i__1, &d__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
  1085. n + 1], &c__1);
  1086. x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
  1087. x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
  1088. xmax = 0.;
  1089. i__1 = j1 - 1;
  1090. for (k = 1; k <= i__1; ++k) {
  1091. /* Computing MAX */
  1092. d__3 = (d__1 = x[k], abs(d__1)) + (d__2 = x[k + *
  1093. n], abs(d__2));
  1094. xmax = f2cmax(d__3,xmax);
  1095. /* L60: */
  1096. }
  1097. }
  1098. }
  1099. L70:
  1100. ;
  1101. }
  1102. } else {
  1103. /* Solve (T + iB)**T*(p+iq) = c+id */
  1104. jnext = 1;
  1105. i__1 = *n;
  1106. for (j = 1; j <= i__1; ++j) {
  1107. if (j < jnext) {
  1108. goto L80;
  1109. }
  1110. j1 = j;
  1111. j2 = j;
  1112. jnext = j + 1;
  1113. if (j < *n) {
  1114. if (t[j + 1 + j * t_dim1] != 0.) {
  1115. j2 = j + 1;
  1116. jnext = j + 2;
  1117. }
  1118. }
  1119. if (j1 == j2) {
  1120. /* 1 by 1 diagonal block */
  1121. /* Scale if necessary to avoid overflow in forming the */
  1122. /* right-hand side element by inner product. */
  1123. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
  1124. d__2));
  1125. if (xmax > 1.) {
  1126. rec = 1. / xmax;
  1127. if (work[j1] > (bignum - xj) * rec) {
  1128. dscal_(&n2, &rec, &x[1], &c__1);
  1129. *scale *= rec;
  1130. xmax *= rec;
  1131. }
  1132. }
  1133. i__2 = j1 - 1;
  1134. x[j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
  1135. c__1);
  1136. i__2 = j1 - 1;
  1137. x[*n + j1] -= ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
  1138. *n + 1], &c__1);
  1139. if (j1 > 1) {
  1140. x[j1] -= b[j1] * x[*n + 1];
  1141. x[*n + j1] += b[j1] * x[1];
  1142. }
  1143. xj = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n], abs(
  1144. d__2));
  1145. z__ = *w;
  1146. if (j1 == 1) {
  1147. z__ = b[1];
  1148. }
  1149. /* Scale if necessary to avoid overflow in */
  1150. /* complex division */
  1151. tjj = (d__1 = t[j1 + j1 * t_dim1], abs(d__1)) + abs(z__);
  1152. tmp = t[j1 + j1 * t_dim1];
  1153. if (tjj < sminw) {
  1154. tmp = sminw;
  1155. tjj = sminw;
  1156. *info = 1;
  1157. }
  1158. if (tjj < 1.) {
  1159. if (xj > bignum * tjj) {
  1160. rec = 1. / xj;
  1161. dscal_(&n2, &rec, &x[1], &c__1);
  1162. *scale *= rec;
  1163. xmax *= rec;
  1164. }
  1165. }
  1166. d__1 = -z__;
  1167. dladiv_(&x[j1], &x[*n + j1], &tmp, &d__1, &sr, &si);
  1168. x[j1] = sr;
  1169. x[j1 + *n] = si;
  1170. /* Computing MAX */
  1171. d__3 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[j1 + *n],
  1172. abs(d__2));
  1173. xmax = f2cmax(d__3,xmax);
  1174. } else {
  1175. /* 2 by 2 diagonal block */
  1176. /* Scale if necessary to avoid overflow in forming the */
  1177. /* right-hand side element by inner product. */
  1178. /* Computing MAX */
  1179. d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
  1180. abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
  1181. d__4 = x[*n + j2], abs(d__4));
  1182. xj = f2cmax(d__5,d__6);
  1183. if (xmax > 1.) {
  1184. rec = 1. / xmax;
  1185. /* Computing MAX */
  1186. d__1 = work[j1], d__2 = work[j2];
  1187. if (f2cmax(d__1,d__2) > (bignum - xj) / xmax) {
  1188. dscal_(&n2, &rec, &x[1], &c__1);
  1189. *scale *= rec;
  1190. xmax *= rec;
  1191. }
  1192. }
  1193. i__2 = j1 - 1;
  1194. d__[0] = x[j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
  1195. &x[1], &c__1);
  1196. i__2 = j1 - 1;
  1197. d__[1] = x[j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
  1198. &x[1], &c__1);
  1199. i__2 = j1 - 1;
  1200. d__[2] = x[*n + j1] - ddot_(&i__2, &t[j1 * t_dim1 + 1], &
  1201. c__1, &x[*n + 1], &c__1);
  1202. i__2 = j1 - 1;
  1203. d__[3] = x[*n + j2] - ddot_(&i__2, &t[j2 * t_dim1 + 1], &
  1204. c__1, &x[*n + 1], &c__1);
  1205. d__[0] -= b[j1] * x[*n + 1];
  1206. d__[1] -= b[j2] * x[*n + 1];
  1207. d__[2] += b[j1] * x[1];
  1208. d__[3] += b[j2] * x[1];
  1209. dlaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
  1210. * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
  1211. c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
  1212. if (ierr != 0) {
  1213. *info = 2;
  1214. }
  1215. if (scaloc != 1.) {
  1216. dscal_(&n2, &scaloc, &x[1], &c__1);
  1217. *scale = scaloc * *scale;
  1218. }
  1219. x[j1] = v[0];
  1220. x[j2] = v[1];
  1221. x[*n + j1] = v[2];
  1222. x[*n + j2] = v[3];
  1223. /* Computing MAX */
  1224. d__5 = (d__1 = x[j1], abs(d__1)) + (d__2 = x[*n + j1],
  1225. abs(d__2)), d__6 = (d__3 = x[j2], abs(d__3)) + (
  1226. d__4 = x[*n + j2], abs(d__4)), d__5 = f2cmax(d__5,
  1227. d__6);
  1228. xmax = f2cmax(d__5,xmax);
  1229. }
  1230. L80:
  1231. ;
  1232. }
  1233. }
  1234. }
  1235. return;
  1236. /* End of DLAQTR */
  1237. } /* dlaqtr_ */