You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaed4.c 38 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b DLAED4 used by sstedc. Finds a single root of the secular equation. */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DLAED4 + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed4.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed4.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed4.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DLAED4( N, I, D, Z, DELTA, RHO, DLAM, INFO ) */
  504. /* INTEGER I, INFO, N */
  505. /* DOUBLE PRECISION DLAM, RHO */
  506. /* DOUBLE PRECISION D( * ), DELTA( * ), Z( * ) */
  507. /* > \par Purpose: */
  508. /* ============= */
  509. /* > */
  510. /* > \verbatim */
  511. /* > */
  512. /* > This subroutine computes the I-th updated eigenvalue of a symmetric */
  513. /* > rank-one modification to a diagonal matrix whose elements are */
  514. /* > given in the array d, and that */
  515. /* > */
  516. /* > D(i) < D(j) for i < j */
  517. /* > */
  518. /* > and that RHO > 0. This is arranged by the calling routine, and is */
  519. /* > no loss in generality. The rank-one modified system is thus */
  520. /* > */
  521. /* > diag( D ) + RHO * Z * Z_transpose. */
  522. /* > */
  523. /* > where we assume the Euclidean norm of Z is 1. */
  524. /* > */
  525. /* > The method consists of approximating the rational functions in the */
  526. /* > secular equation by simpler interpolating rational functions. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] N */
  531. /* > \verbatim */
  532. /* > N is INTEGER */
  533. /* > The length of all arrays. */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] I */
  537. /* > \verbatim */
  538. /* > I is INTEGER */
  539. /* > The index of the eigenvalue to be computed. 1 <= I <= N. */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] D */
  543. /* > \verbatim */
  544. /* > D is DOUBLE PRECISION array, dimension (N) */
  545. /* > The original eigenvalues. It is assumed that they are in */
  546. /* > order, D(I) < D(J) for I < J. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] Z */
  550. /* > \verbatim */
  551. /* > Z is DOUBLE PRECISION array, dimension (N) */
  552. /* > The components of the updating vector. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[out] DELTA */
  556. /* > \verbatim */
  557. /* > DELTA is DOUBLE PRECISION array, dimension (N) */
  558. /* > If N > 2, DELTA contains (D(j) - lambda_I) in its j-th */
  559. /* > component. If N = 1, then DELTA(1) = 1. If N = 2, see DLAED5 */
  560. /* > for detail. The vector DELTA contains the information necessary */
  561. /* > to construct the eigenvectors by DLAED3 and DLAED9. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] RHO */
  565. /* > \verbatim */
  566. /* > RHO is DOUBLE PRECISION */
  567. /* > The scalar in the symmetric updating formula. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[out] DLAM */
  571. /* > \verbatim */
  572. /* > DLAM is DOUBLE PRECISION */
  573. /* > The computed lambda_I, the I-th updated eigenvalue. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] INFO */
  577. /* > \verbatim */
  578. /* > INFO is INTEGER */
  579. /* > = 0: successful exit */
  580. /* > > 0: if INFO = 1, the updating process failed. */
  581. /* > \endverbatim */
  582. /* > \par Internal Parameters: */
  583. /* ========================= */
  584. /* > */
  585. /* > \verbatim */
  586. /* > Logical variable ORGATI (origin-at-i?) is used for distinguishing */
  587. /* > whether D(i) or D(i+1) is treated as the origin. */
  588. /* > */
  589. /* > ORGATI = .true. origin at i */
  590. /* > ORGATI = .false. origin at i+1 */
  591. /* > */
  592. /* > Logical variable SWTCH3 (switch-for-3-poles?) is for noting */
  593. /* > if we are working with THREE poles! */
  594. /* > */
  595. /* > MAXIT is the maximum number of iterations allowed for each */
  596. /* > eigenvalue. */
  597. /* > \endverbatim */
  598. /* Authors: */
  599. /* ======== */
  600. /* > \author Univ. of Tennessee */
  601. /* > \author Univ. of California Berkeley */
  602. /* > \author Univ. of Colorado Denver */
  603. /* > \author NAG Ltd. */
  604. /* > \date December 2016 */
  605. /* > \ingroup auxOTHERcomputational */
  606. /* > \par Contributors: */
  607. /* ================== */
  608. /* > */
  609. /* > Ren-Cang Li, Computer Science Division, University of California */
  610. /* > at Berkeley, USA */
  611. /* > */
  612. /* ===================================================================== */
  613. /* Subroutine */ void dlaed4_(integer *n, integer *i__, doublereal *d__,
  614. doublereal *z__, doublereal *delta, doublereal *rho, doublereal *dlam,
  615. integer *info)
  616. {
  617. /* System generated locals */
  618. integer i__1;
  619. doublereal d__1;
  620. /* Local variables */
  621. doublereal dphi, dpsi;
  622. integer iter;
  623. doublereal temp, prew, temp1, a, b, c__;
  624. integer j;
  625. doublereal w, dltlb, dltub, midpt;
  626. integer niter;
  627. logical swtch;
  628. extern /* Subroutine */ void dlaed5_(integer *, doublereal *, doublereal *,
  629. doublereal *, doublereal *, doublereal *), dlaed6_(integer *,
  630. logical *, doublereal *, doublereal *, doublereal *, doublereal *,
  631. doublereal *, integer *);
  632. logical swtch3;
  633. integer ii;
  634. extern doublereal dlamch_(char *);
  635. doublereal dw, zz[3];
  636. logical orgati;
  637. doublereal erretm, rhoinv;
  638. integer ip1;
  639. doublereal del, eta, phi, eps, tau, psi;
  640. integer iim1, iip1;
  641. /* -- LAPACK computational routine (version 3.7.0) -- */
  642. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  643. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  644. /* December 2016 */
  645. /* ===================================================================== */
  646. /* Since this routine is called in an inner loop, we do no argument */
  647. /* checking. */
  648. /* Quick return for N=1 and 2. */
  649. /* Parameter adjustments */
  650. --delta;
  651. --z__;
  652. --d__;
  653. /* Function Body */
  654. *info = 0;
  655. if (*n == 1) {
  656. /* Presumably, I=1 upon entry */
  657. *dlam = d__[1] + *rho * z__[1] * z__[1];
  658. delta[1] = 1.;
  659. return;
  660. }
  661. if (*n == 2) {
  662. dlaed5_(i__, &d__[1], &z__[1], &delta[1], rho, dlam);
  663. return;
  664. }
  665. /* Compute machine epsilon */
  666. eps = dlamch_("Epsilon");
  667. rhoinv = 1. / *rho;
  668. /* The case I = N */
  669. if (*i__ == *n) {
  670. /* Initialize some basic variables */
  671. ii = *n - 1;
  672. niter = 1;
  673. /* Calculate initial guess */
  674. midpt = *rho / 2.;
  675. /* If ||Z||_2 is not one, then TEMP should be set to */
  676. /* RHO * ||Z||_2^2 / TWO */
  677. i__1 = *n;
  678. for (j = 1; j <= i__1; ++j) {
  679. delta[j] = d__[j] - d__[*i__] - midpt;
  680. /* L10: */
  681. }
  682. psi = 0.;
  683. i__1 = *n - 2;
  684. for (j = 1; j <= i__1; ++j) {
  685. psi += z__[j] * z__[j] / delta[j];
  686. /* L20: */
  687. }
  688. c__ = rhoinv + psi;
  689. w = c__ + z__[ii] * z__[ii] / delta[ii] + z__[*n] * z__[*n] / delta[*
  690. n];
  691. if (w <= 0.) {
  692. temp = z__[*n - 1] * z__[*n - 1] / (d__[*n] - d__[*n - 1] + *rho)
  693. + z__[*n] * z__[*n] / *rho;
  694. if (c__ <= temp) {
  695. tau = *rho;
  696. } else {
  697. del = d__[*n] - d__[*n - 1];
  698. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n]
  699. ;
  700. b = z__[*n] * z__[*n] * del;
  701. if (a < 0.) {
  702. tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  703. } else {
  704. tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  705. }
  706. }
  707. /* It can be proved that */
  708. /* D(N)+RHO/2 <= LAMBDA(N) < D(N)+TAU <= D(N)+RHO */
  709. dltlb = midpt;
  710. dltub = *rho;
  711. } else {
  712. del = d__[*n] - d__[*n - 1];
  713. a = -c__ * del + z__[*n - 1] * z__[*n - 1] + z__[*n] * z__[*n];
  714. b = z__[*n] * z__[*n] * del;
  715. if (a < 0.) {
  716. tau = b * 2. / (sqrt(a * a + b * 4. * c__) - a);
  717. } else {
  718. tau = (a + sqrt(a * a + b * 4. * c__)) / (c__ * 2.);
  719. }
  720. /* It can be proved that */
  721. /* D(N) < D(N)+TAU < LAMBDA(N) < D(N)+RHO/2 */
  722. dltlb = 0.;
  723. dltub = midpt;
  724. }
  725. i__1 = *n;
  726. for (j = 1; j <= i__1; ++j) {
  727. delta[j] = d__[j] - d__[*i__] - tau;
  728. /* L30: */
  729. }
  730. /* Evaluate PSI and the derivative DPSI */
  731. dpsi = 0.;
  732. psi = 0.;
  733. erretm = 0.;
  734. i__1 = ii;
  735. for (j = 1; j <= i__1; ++j) {
  736. temp = z__[j] / delta[j];
  737. psi += z__[j] * temp;
  738. dpsi += temp * temp;
  739. erretm += psi;
  740. /* L40: */
  741. }
  742. erretm = abs(erretm);
  743. /* Evaluate PHI and the derivative DPHI */
  744. temp = z__[*n] / delta[*n];
  745. phi = z__[*n] * temp;
  746. dphi = temp * temp;
  747. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
  748. + dphi);
  749. w = rhoinv + phi + psi;
  750. /* Test for convergence */
  751. if (abs(w) <= eps * erretm) {
  752. *dlam = d__[*i__] + tau;
  753. goto L250;
  754. }
  755. if (w <= 0.) {
  756. dltlb = f2cmax(dltlb,tau);
  757. } else {
  758. dltub = f2cmin(dltub,tau);
  759. }
  760. /* Calculate the new step */
  761. ++niter;
  762. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  763. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] * (
  764. dpsi + dphi);
  765. b = delta[*n - 1] * delta[*n] * w;
  766. if (c__ < 0.) {
  767. c__ = abs(c__);
  768. }
  769. if (c__ == 0.) {
  770. /* ETA = B/A */
  771. /* ETA = RHO - TAU */
  772. eta = dltub - tau;
  773. } else if (a >= 0.) {
  774. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (c__
  775. * 2.);
  776. } else {
  777. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))
  778. );
  779. }
  780. /* Note, eta should be positive if w is negative, and */
  781. /* eta should be negative otherwise. However, */
  782. /* if for some reason caused by roundoff, eta*w > 0, */
  783. /* we simply use one Newton step instead. This way */
  784. /* will guarantee eta*w < 0. */
  785. if (w * eta > 0.) {
  786. eta = -w / (dpsi + dphi);
  787. }
  788. temp = tau + eta;
  789. if (temp > dltub || temp < dltlb) {
  790. if (w < 0.) {
  791. eta = (dltub - tau) / 2.;
  792. } else {
  793. eta = (dltlb - tau) / 2.;
  794. }
  795. }
  796. i__1 = *n;
  797. for (j = 1; j <= i__1; ++j) {
  798. delta[j] -= eta;
  799. /* L50: */
  800. }
  801. tau += eta;
  802. /* Evaluate PSI and the derivative DPSI */
  803. dpsi = 0.;
  804. psi = 0.;
  805. erretm = 0.;
  806. i__1 = ii;
  807. for (j = 1; j <= i__1; ++j) {
  808. temp = z__[j] / delta[j];
  809. psi += z__[j] * temp;
  810. dpsi += temp * temp;
  811. erretm += psi;
  812. /* L60: */
  813. }
  814. erretm = abs(erretm);
  815. /* Evaluate PHI and the derivative DPHI */
  816. temp = z__[*n] / delta[*n];
  817. phi = z__[*n] * temp;
  818. dphi = temp * temp;
  819. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (dpsi
  820. + dphi);
  821. w = rhoinv + phi + psi;
  822. /* Main loop to update the values of the array DELTA */
  823. iter = niter + 1;
  824. for (niter = iter; niter <= 30; ++niter) {
  825. /* Test for convergence */
  826. if (abs(w) <= eps * erretm) {
  827. *dlam = d__[*i__] + tau;
  828. goto L250;
  829. }
  830. if (w <= 0.) {
  831. dltlb = f2cmax(dltlb,tau);
  832. } else {
  833. dltub = f2cmin(dltub,tau);
  834. }
  835. /* Calculate the new step */
  836. c__ = w - delta[*n - 1] * dpsi - delta[*n] * dphi;
  837. a = (delta[*n - 1] + delta[*n]) * w - delta[*n - 1] * delta[*n] *
  838. (dpsi + dphi);
  839. b = delta[*n - 1] * delta[*n] * w;
  840. if (a >= 0.) {
  841. eta = (a + sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  842. c__ * 2.);
  843. } else {
  844. eta = b * 2. / (a - sqrt((d__1 = a * a - b * 4. * c__, abs(
  845. d__1))));
  846. }
  847. /* Note, eta should be positive if w is negative, and */
  848. /* eta should be negative otherwise. However, */
  849. /* if for some reason caused by roundoff, eta*w > 0, */
  850. /* we simply use one Newton step instead. This way */
  851. /* will guarantee eta*w < 0. */
  852. if (w * eta > 0.) {
  853. eta = -w / (dpsi + dphi);
  854. }
  855. temp = tau + eta;
  856. if (temp > dltub || temp < dltlb) {
  857. if (w < 0.) {
  858. eta = (dltub - tau) / 2.;
  859. } else {
  860. eta = (dltlb - tau) / 2.;
  861. }
  862. }
  863. i__1 = *n;
  864. for (j = 1; j <= i__1; ++j) {
  865. delta[j] -= eta;
  866. /* L70: */
  867. }
  868. tau += eta;
  869. /* Evaluate PSI and the derivative DPSI */
  870. dpsi = 0.;
  871. psi = 0.;
  872. erretm = 0.;
  873. i__1 = ii;
  874. for (j = 1; j <= i__1; ++j) {
  875. temp = z__[j] / delta[j];
  876. psi += z__[j] * temp;
  877. dpsi += temp * temp;
  878. erretm += psi;
  879. /* L80: */
  880. }
  881. erretm = abs(erretm);
  882. /* Evaluate PHI and the derivative DPHI */
  883. temp = z__[*n] / delta[*n];
  884. phi = z__[*n] * temp;
  885. dphi = temp * temp;
  886. erretm = (-phi - psi) * 8. + erretm - phi + rhoinv + abs(tau) * (
  887. dpsi + dphi);
  888. w = rhoinv + phi + psi;
  889. /* L90: */
  890. }
  891. /* Return with INFO = 1, NITER = MAXIT and not converged */
  892. *info = 1;
  893. *dlam = d__[*i__] + tau;
  894. goto L250;
  895. /* End for the case I = N */
  896. } else {
  897. /* The case for I < N */
  898. niter = 1;
  899. ip1 = *i__ + 1;
  900. /* Calculate initial guess */
  901. del = d__[ip1] - d__[*i__];
  902. midpt = del / 2.;
  903. i__1 = *n;
  904. for (j = 1; j <= i__1; ++j) {
  905. delta[j] = d__[j] - d__[*i__] - midpt;
  906. /* L100: */
  907. }
  908. psi = 0.;
  909. i__1 = *i__ - 1;
  910. for (j = 1; j <= i__1; ++j) {
  911. psi += z__[j] * z__[j] / delta[j];
  912. /* L110: */
  913. }
  914. phi = 0.;
  915. i__1 = *i__ + 2;
  916. for (j = *n; j >= i__1; --j) {
  917. phi += z__[j] * z__[j] / delta[j];
  918. /* L120: */
  919. }
  920. c__ = rhoinv + psi + phi;
  921. w = c__ + z__[*i__] * z__[*i__] / delta[*i__] + z__[ip1] * z__[ip1] /
  922. delta[ip1];
  923. if (w > 0.) {
  924. /* d(i)< the ith eigenvalue < (d(i)+d(i+1))/2 */
  925. /* We choose d(i) as origin. */
  926. orgati = TRUE_;
  927. a = c__ * del + z__[*i__] * z__[*i__] + z__[ip1] * z__[ip1];
  928. b = z__[*i__] * z__[*i__] * del;
  929. if (a > 0.) {
  930. tau = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  931. d__1))));
  932. } else {
  933. tau = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  934. c__ * 2.);
  935. }
  936. dltlb = 0.;
  937. dltub = midpt;
  938. } else {
  939. /* (d(i)+d(i+1))/2 <= the ith eigenvalue < d(i+1) */
  940. /* We choose d(i+1) as origin. */
  941. orgati = FALSE_;
  942. a = c__ * del - z__[*i__] * z__[*i__] - z__[ip1] * z__[ip1];
  943. b = z__[ip1] * z__[ip1] * del;
  944. if (a < 0.) {
  945. tau = b * 2. / (a - sqrt((d__1 = a * a + b * 4. * c__, abs(
  946. d__1))));
  947. } else {
  948. tau = -(a + sqrt((d__1 = a * a + b * 4. * c__, abs(d__1)))) /
  949. (c__ * 2.);
  950. }
  951. dltlb = -midpt;
  952. dltub = 0.;
  953. }
  954. if (orgati) {
  955. i__1 = *n;
  956. for (j = 1; j <= i__1; ++j) {
  957. delta[j] = d__[j] - d__[*i__] - tau;
  958. /* L130: */
  959. }
  960. } else {
  961. i__1 = *n;
  962. for (j = 1; j <= i__1; ++j) {
  963. delta[j] = d__[j] - d__[ip1] - tau;
  964. /* L140: */
  965. }
  966. }
  967. if (orgati) {
  968. ii = *i__;
  969. } else {
  970. ii = *i__ + 1;
  971. }
  972. iim1 = ii - 1;
  973. iip1 = ii + 1;
  974. /* Evaluate PSI and the derivative DPSI */
  975. dpsi = 0.;
  976. psi = 0.;
  977. erretm = 0.;
  978. i__1 = iim1;
  979. for (j = 1; j <= i__1; ++j) {
  980. temp = z__[j] / delta[j];
  981. psi += z__[j] * temp;
  982. dpsi += temp * temp;
  983. erretm += psi;
  984. /* L150: */
  985. }
  986. erretm = abs(erretm);
  987. /* Evaluate PHI and the derivative DPHI */
  988. dphi = 0.;
  989. phi = 0.;
  990. i__1 = iip1;
  991. for (j = *n; j >= i__1; --j) {
  992. temp = z__[j] / delta[j];
  993. phi += z__[j] * temp;
  994. dphi += temp * temp;
  995. erretm += phi;
  996. /* L160: */
  997. }
  998. w = rhoinv + phi + psi;
  999. /* W is the value of the secular function with */
  1000. /* its ii-th element removed. */
  1001. swtch3 = FALSE_;
  1002. if (orgati) {
  1003. if (w < 0.) {
  1004. swtch3 = TRUE_;
  1005. }
  1006. } else {
  1007. if (w > 0.) {
  1008. swtch3 = TRUE_;
  1009. }
  1010. }
  1011. if (ii == 1 || ii == *n) {
  1012. swtch3 = FALSE_;
  1013. }
  1014. temp = z__[ii] / delta[ii];
  1015. dw = dpsi + dphi + temp * temp;
  1016. temp = z__[ii] * temp;
  1017. w += temp;
  1018. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. +
  1019. abs(tau) * dw;
  1020. /* Test for convergence */
  1021. if (abs(w) <= eps * erretm) {
  1022. if (orgati) {
  1023. *dlam = d__[*i__] + tau;
  1024. } else {
  1025. *dlam = d__[ip1] + tau;
  1026. }
  1027. goto L250;
  1028. }
  1029. if (w <= 0.) {
  1030. dltlb = f2cmax(dltlb,tau);
  1031. } else {
  1032. dltub = f2cmin(dltub,tau);
  1033. }
  1034. /* Calculate the new step */
  1035. ++niter;
  1036. if (! swtch3) {
  1037. if (orgati) {
  1038. /* Computing 2nd power */
  1039. d__1 = z__[*i__] / delta[*i__];
  1040. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (d__1 *
  1041. d__1);
  1042. } else {
  1043. /* Computing 2nd power */
  1044. d__1 = z__[ip1] / delta[ip1];
  1045. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) * (d__1 *
  1046. d__1);
  1047. }
  1048. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1] *
  1049. dw;
  1050. b = delta[*i__] * delta[ip1] * w;
  1051. if (c__ == 0.) {
  1052. if (a == 0.) {
  1053. if (orgati) {
  1054. a = z__[*i__] * z__[*i__] + delta[ip1] * delta[ip1] *
  1055. (dpsi + dphi);
  1056. } else {
  1057. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[*i__] *
  1058. (dpsi + dphi);
  1059. }
  1060. }
  1061. eta = b / a;
  1062. } else if (a <= 0.) {
  1063. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1)))) / (
  1064. c__ * 2.);
  1065. } else {
  1066. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__, abs(
  1067. d__1))));
  1068. }
  1069. } else {
  1070. /* Interpolation using THREE most relevant poles */
  1071. temp = rhoinv + psi + phi;
  1072. if (orgati) {
  1073. temp1 = z__[iim1] / delta[iim1];
  1074. temp1 *= temp1;
  1075. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1] - d__[
  1076. iip1]) * temp1;
  1077. zz[0] = z__[iim1] * z__[iim1];
  1078. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 + dphi);
  1079. } else {
  1080. temp1 = z__[iip1] / delta[iip1];
  1081. temp1 *= temp1;
  1082. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1] - d__[
  1083. iim1]) * temp1;
  1084. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi - temp1));
  1085. zz[2] = z__[iip1] * z__[iip1];
  1086. }
  1087. zz[1] = z__[ii] * z__[ii];
  1088. dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta, info);
  1089. if (*info != 0) {
  1090. goto L250;
  1091. }
  1092. }
  1093. /* Note, eta should be positive if w is negative, and */
  1094. /* eta should be negative otherwise. However, */
  1095. /* if for some reason caused by roundoff, eta*w > 0, */
  1096. /* we simply use one Newton step instead. This way */
  1097. /* will guarantee eta*w < 0. */
  1098. if (w * eta >= 0.) {
  1099. eta = -w / dw;
  1100. }
  1101. temp = tau + eta;
  1102. if (temp > dltub || temp < dltlb) {
  1103. if (w < 0.) {
  1104. eta = (dltub - tau) / 2.;
  1105. } else {
  1106. eta = (dltlb - tau) / 2.;
  1107. }
  1108. }
  1109. prew = w;
  1110. i__1 = *n;
  1111. for (j = 1; j <= i__1; ++j) {
  1112. delta[j] -= eta;
  1113. /* L180: */
  1114. }
  1115. /* Evaluate PSI and the derivative DPSI */
  1116. dpsi = 0.;
  1117. psi = 0.;
  1118. erretm = 0.;
  1119. i__1 = iim1;
  1120. for (j = 1; j <= i__1; ++j) {
  1121. temp = z__[j] / delta[j];
  1122. psi += z__[j] * temp;
  1123. dpsi += temp * temp;
  1124. erretm += psi;
  1125. /* L190: */
  1126. }
  1127. erretm = abs(erretm);
  1128. /* Evaluate PHI and the derivative DPHI */
  1129. dphi = 0.;
  1130. phi = 0.;
  1131. i__1 = iip1;
  1132. for (j = *n; j >= i__1; --j) {
  1133. temp = z__[j] / delta[j];
  1134. phi += z__[j] * temp;
  1135. dphi += temp * temp;
  1136. erretm += phi;
  1137. /* L200: */
  1138. }
  1139. temp = z__[ii] / delta[ii];
  1140. dw = dpsi + dphi + temp * temp;
  1141. temp = z__[ii] * temp;
  1142. w = rhoinv + phi + psi + temp;
  1143. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3. + (
  1144. d__1 = tau + eta, abs(d__1)) * dw;
  1145. swtch = FALSE_;
  1146. if (orgati) {
  1147. if (-w > abs(prew) / 10.) {
  1148. swtch = TRUE_;
  1149. }
  1150. } else {
  1151. if (w > abs(prew) / 10.) {
  1152. swtch = TRUE_;
  1153. }
  1154. }
  1155. tau += eta;
  1156. /* Main loop to update the values of the array DELTA */
  1157. iter = niter + 1;
  1158. for (niter = iter; niter <= 30; ++niter) {
  1159. /* Test for convergence */
  1160. if (abs(w) <= eps * erretm) {
  1161. if (orgati) {
  1162. *dlam = d__[*i__] + tau;
  1163. } else {
  1164. *dlam = d__[ip1] + tau;
  1165. }
  1166. goto L250;
  1167. }
  1168. if (w <= 0.) {
  1169. dltlb = f2cmax(dltlb,tau);
  1170. } else {
  1171. dltub = f2cmin(dltub,tau);
  1172. }
  1173. /* Calculate the new step */
  1174. if (! swtch3) {
  1175. if (! swtch) {
  1176. if (orgati) {
  1177. /* Computing 2nd power */
  1178. d__1 = z__[*i__] / delta[*i__];
  1179. c__ = w - delta[ip1] * dw - (d__[*i__] - d__[ip1]) * (
  1180. d__1 * d__1);
  1181. } else {
  1182. /* Computing 2nd power */
  1183. d__1 = z__[ip1] / delta[ip1];
  1184. c__ = w - delta[*i__] * dw - (d__[ip1] - d__[*i__]) *
  1185. (d__1 * d__1);
  1186. }
  1187. } else {
  1188. temp = z__[ii] / delta[ii];
  1189. if (orgati) {
  1190. dpsi += temp * temp;
  1191. } else {
  1192. dphi += temp * temp;
  1193. }
  1194. c__ = w - delta[*i__] * dpsi - delta[ip1] * dphi;
  1195. }
  1196. a = (delta[*i__] + delta[ip1]) * w - delta[*i__] * delta[ip1]
  1197. * dw;
  1198. b = delta[*i__] * delta[ip1] * w;
  1199. if (c__ == 0.) {
  1200. if (a == 0.) {
  1201. if (! swtch) {
  1202. if (orgati) {
  1203. a = z__[*i__] * z__[*i__] + delta[ip1] *
  1204. delta[ip1] * (dpsi + dphi);
  1205. } else {
  1206. a = z__[ip1] * z__[ip1] + delta[*i__] * delta[
  1207. *i__] * (dpsi + dphi);
  1208. }
  1209. } else {
  1210. a = delta[*i__] * delta[*i__] * dpsi + delta[ip1]
  1211. * delta[ip1] * dphi;
  1212. }
  1213. }
  1214. eta = b / a;
  1215. } else if (a <= 0.) {
  1216. eta = (a - sqrt((d__1 = a * a - b * 4. * c__, abs(d__1))))
  1217. / (c__ * 2.);
  1218. } else {
  1219. eta = b * 2. / (a + sqrt((d__1 = a * a - b * 4. * c__,
  1220. abs(d__1))));
  1221. }
  1222. } else {
  1223. /* Interpolation using THREE most relevant poles */
  1224. temp = rhoinv + psi + phi;
  1225. if (swtch) {
  1226. c__ = temp - delta[iim1] * dpsi - delta[iip1] * dphi;
  1227. zz[0] = delta[iim1] * delta[iim1] * dpsi;
  1228. zz[2] = delta[iip1] * delta[iip1] * dphi;
  1229. } else {
  1230. if (orgati) {
  1231. temp1 = z__[iim1] / delta[iim1];
  1232. temp1 *= temp1;
  1233. c__ = temp - delta[iip1] * (dpsi + dphi) - (d__[iim1]
  1234. - d__[iip1]) * temp1;
  1235. zz[0] = z__[iim1] * z__[iim1];
  1236. zz[2] = delta[iip1] * delta[iip1] * (dpsi - temp1 +
  1237. dphi);
  1238. } else {
  1239. temp1 = z__[iip1] / delta[iip1];
  1240. temp1 *= temp1;
  1241. c__ = temp - delta[iim1] * (dpsi + dphi) - (d__[iip1]
  1242. - d__[iim1]) * temp1;
  1243. zz[0] = delta[iim1] * delta[iim1] * (dpsi + (dphi -
  1244. temp1));
  1245. zz[2] = z__[iip1] * z__[iip1];
  1246. }
  1247. }
  1248. dlaed6_(&niter, &orgati, &c__, &delta[iim1], zz, &w, &eta,
  1249. info);
  1250. if (*info != 0) {
  1251. goto L250;
  1252. }
  1253. }
  1254. /* Note, eta should be positive if w is negative, and */
  1255. /* eta should be negative otherwise. However, */
  1256. /* if for some reason caused by roundoff, eta*w > 0, */
  1257. /* we simply use one Newton step instead. This way */
  1258. /* will guarantee eta*w < 0. */
  1259. if (w * eta >= 0.) {
  1260. eta = -w / dw;
  1261. }
  1262. temp = tau + eta;
  1263. if (temp > dltub || temp < dltlb) {
  1264. if (w < 0.) {
  1265. eta = (dltub - tau) / 2.;
  1266. } else {
  1267. eta = (dltlb - tau) / 2.;
  1268. }
  1269. }
  1270. i__1 = *n;
  1271. for (j = 1; j <= i__1; ++j) {
  1272. delta[j] -= eta;
  1273. /* L210: */
  1274. }
  1275. tau += eta;
  1276. prew = w;
  1277. /* Evaluate PSI and the derivative DPSI */
  1278. dpsi = 0.;
  1279. psi = 0.;
  1280. erretm = 0.;
  1281. i__1 = iim1;
  1282. for (j = 1; j <= i__1; ++j) {
  1283. temp = z__[j] / delta[j];
  1284. psi += z__[j] * temp;
  1285. dpsi += temp * temp;
  1286. erretm += psi;
  1287. /* L220: */
  1288. }
  1289. erretm = abs(erretm);
  1290. /* Evaluate PHI and the derivative DPHI */
  1291. dphi = 0.;
  1292. phi = 0.;
  1293. i__1 = iip1;
  1294. for (j = *n; j >= i__1; --j) {
  1295. temp = z__[j] / delta[j];
  1296. phi += z__[j] * temp;
  1297. dphi += temp * temp;
  1298. erretm += phi;
  1299. /* L230: */
  1300. }
  1301. temp = z__[ii] / delta[ii];
  1302. dw = dpsi + dphi + temp * temp;
  1303. temp = z__[ii] * temp;
  1304. w = rhoinv + phi + psi + temp;
  1305. erretm = (phi - psi) * 8. + erretm + rhoinv * 2. + abs(temp) * 3.
  1306. + abs(tau) * dw;
  1307. if (w * prew > 0. && abs(w) > abs(prew) / 10.) {
  1308. swtch = ! swtch;
  1309. }
  1310. /* L240: */
  1311. }
  1312. /* Return with INFO = 1, NITER = MAXIT and not converged */
  1313. *info = 1;
  1314. if (orgati) {
  1315. *dlam = d__[*i__] + tau;
  1316. } else {
  1317. *dlam = d__[ip1] + tau;
  1318. }
  1319. }
  1320. L250:
  1321. return;
  1322. /* End of DLAED4 */
  1323. } /* dlaed4_ */