You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgsvj1.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static doublereal c_b35 = 1.;
  489. /* > \brief \b DGSVJ1 pre-processor for the routine dgesvj, applies Jacobi rotations targeting only particular
  490. pivots. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DGSVJ1 + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgsvj1.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgsvj1.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgsvj1.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV, */
  509. /* EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO ) */
  510. /* DOUBLE PRECISION EPS, SFMIN, TOL */
  511. /* INTEGER INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP */
  512. /* CHARACTER*1 JOBV */
  513. /* DOUBLE PRECISION A( LDA, * ), D( N ), SVA( N ), V( LDV, * ), */
  514. /* $ WORK( LWORK ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DGSVJ1 is called from DGESVJ as a pre-processor and that is its main */
  521. /* > purpose. It applies Jacobi rotations in the same way as DGESVJ does, but */
  522. /* > it targets only particular pivots and it does not check convergence */
  523. /* > (stopping criterion). Few tunning parameters (marked by [TP]) are */
  524. /* > available for the implementer. */
  525. /* > */
  526. /* > Further Details */
  527. /* > ~~~~~~~~~~~~~~~ */
  528. /* > DGSVJ1 applies few sweeps of Jacobi rotations in the column space of */
  529. /* > the input M-by-N matrix A. The pivot pairs are taken from the (1,2) */
  530. /* > off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The */
  531. /* > block-entries (tiles) of the (1,2) off-diagonal block are marked by the */
  532. /* > [x]'s in the following scheme: */
  533. /* > */
  534. /* > | * * * [x] [x] [x]| */
  535. /* > | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  536. /* > | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  537. /* > |[x] [x] [x] * * * | */
  538. /* > |[x] [x] [x] * * * | */
  539. /* > |[x] [x] [x] * * * | */
  540. /* > */
  541. /* > In terms of the columns of A, the first N1 columns are rotated 'against' */
  542. /* > the remaining N-N1 columns, trying to increase the angle between the */
  543. /* > corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is */
  544. /* > tiled using quadratic tiles of side KBL. Here, KBL is a tunning parameter. */
  545. /* > The number of sweeps is given in NSWEEP and the orthogonality threshold */
  546. /* > is given in TOL. */
  547. /* > \endverbatim */
  548. /* Arguments: */
  549. /* ========== */
  550. /* > \param[in] JOBV */
  551. /* > \verbatim */
  552. /* > JOBV is CHARACTER*1 */
  553. /* > Specifies whether the output from this procedure is used */
  554. /* > to compute the matrix V: */
  555. /* > = 'V': the product of the Jacobi rotations is accumulated */
  556. /* > by postmulyiplying the N-by-N array V. */
  557. /* > (See the description of V.) */
  558. /* > = 'A': the product of the Jacobi rotations is accumulated */
  559. /* > by postmulyiplying the MV-by-N array V. */
  560. /* > (See the descriptions of MV and V.) */
  561. /* > = 'N': the Jacobi rotations are not accumulated. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] M */
  565. /* > \verbatim */
  566. /* > M is INTEGER */
  567. /* > The number of rows of the input matrix A. M >= 0. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The number of columns of the input matrix A. */
  574. /* > M >= N >= 0. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in] N1 */
  578. /* > \verbatim */
  579. /* > N1 is INTEGER */
  580. /* > N1 specifies the 2 x 2 block partition, the first N1 columns are */
  581. /* > rotated 'against' the remaining N-N1 columns of A. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] A */
  585. /* > \verbatim */
  586. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  587. /* > On entry, M-by-N matrix A, such that A*diag(D) represents */
  588. /* > the input matrix. */
  589. /* > On exit, */
  590. /* > A_onexit * D_onexit represents the input matrix A*diag(D) */
  591. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  592. /* > rotation threshold and the total number of sweeps are given in */
  593. /* > TOL and NSWEEP, respectively. */
  594. /* > (See the descriptions of N1, D, TOL and NSWEEP.) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDA */
  598. /* > \verbatim */
  599. /* > LDA is INTEGER */
  600. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in,out] D */
  604. /* > \verbatim */
  605. /* > D is DOUBLE PRECISION array, dimension (N) */
  606. /* > The array D accumulates the scaling factors from the fast scaled */
  607. /* > Jacobi rotations. */
  608. /* > On entry, A*diag(D) represents the input matrix. */
  609. /* > On exit, A_onexit*diag(D_onexit) represents the input matrix */
  610. /* > post-multiplied by a sequence of Jacobi rotations, where the */
  611. /* > rotation threshold and the total number of sweeps are given in */
  612. /* > TOL and NSWEEP, respectively. */
  613. /* > (See the descriptions of N1, A, TOL and NSWEEP.) */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] SVA */
  617. /* > \verbatim */
  618. /* > SVA is DOUBLE PRECISION array, dimension (N) */
  619. /* > On entry, SVA contains the Euclidean norms of the columns of */
  620. /* > the matrix A*diag(D). */
  621. /* > On exit, SVA contains the Euclidean norms of the columns of */
  622. /* > the matrix onexit*diag(D_onexit). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] MV */
  626. /* > \verbatim */
  627. /* > MV is INTEGER */
  628. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  629. /* > sequence of Jacobi rotations. */
  630. /* > If JOBV = 'N', then MV is not referenced. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in,out] V */
  634. /* > \verbatim */
  635. /* > V is DOUBLE PRECISION array, dimension (LDV,N) */
  636. /* > If JOBV = 'V', then N rows of V are post-multipled by a */
  637. /* > sequence of Jacobi rotations. */
  638. /* > If JOBV = 'A', then MV rows of V are post-multipled by a */
  639. /* > sequence of Jacobi rotations. */
  640. /* > If JOBV = 'N', then V is not referenced. */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[in] LDV */
  644. /* > \verbatim */
  645. /* > LDV is INTEGER */
  646. /* > The leading dimension of the array V, LDV >= 1. */
  647. /* > If JOBV = 'V', LDV >= N. */
  648. /* > If JOBV = 'A', LDV >= MV. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] EPS */
  652. /* > \verbatim */
  653. /* > EPS is DOUBLE PRECISION */
  654. /* > EPS = DLAMCH('Epsilon') */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[in] SFMIN */
  658. /* > \verbatim */
  659. /* > SFMIN is DOUBLE PRECISION */
  660. /* > SFMIN = DLAMCH('Safe Minimum') */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[in] TOL */
  664. /* > \verbatim */
  665. /* > TOL is DOUBLE PRECISION */
  666. /* > TOL is the threshold for Jacobi rotations. For a pair */
  667. /* > A(:,p), A(:,q) of pivot columns, the Jacobi rotation is */
  668. /* > applied only if DABS(COS(angle(A(:,p),A(:,q)))) > TOL. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] NSWEEP */
  672. /* > \verbatim */
  673. /* > NSWEEP is INTEGER */
  674. /* > NSWEEP is the number of sweeps of Jacobi rotations to be */
  675. /* > performed. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] WORK */
  679. /* > \verbatim */
  680. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[in] LWORK */
  684. /* > \verbatim */
  685. /* > LWORK is INTEGER */
  686. /* > LWORK is the dimension of WORK. LWORK >= M. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] INFO */
  690. /* > \verbatim */
  691. /* > INFO is INTEGER */
  692. /* > = 0: successful exit. */
  693. /* > < 0: if INFO = -i, then the i-th argument had an illegal value */
  694. /* > \endverbatim */
  695. /* Authors: */
  696. /* ======== */
  697. /* > \author Univ. of Tennessee */
  698. /* > \author Univ. of California Berkeley */
  699. /* > \author Univ. of Colorado Denver */
  700. /* > \author NAG Ltd. */
  701. /* > \date June 2016 */
  702. /* > \ingroup doubleOTHERcomputational */
  703. /* > \par Contributors: */
  704. /* ================== */
  705. /* > */
  706. /* > Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
  707. /* ===================================================================== */
  708. /* Subroutine */ void dgsvj1_(char *jobv, integer *m, integer *n, integer *n1,
  709. doublereal *a, integer *lda, doublereal *d__, doublereal *sva,
  710. integer *mv, doublereal *v, integer *ldv, doublereal *eps, doublereal
  711. *sfmin, doublereal *tol, integer *nsweep, doublereal *work, integer *
  712. lwork, integer *info)
  713. {
  714. /* System generated locals */
  715. integer a_dim1, a_offset, v_dim1, v_offset, i__1, i__2, i__3, i__4, i__5,
  716. i__6;
  717. doublereal d__1, d__2;
  718. /* Local variables */
  719. integer nblc;
  720. doublereal aapp, aapq, aaqq;
  721. extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
  722. integer *);
  723. integer nblr, ierr;
  724. doublereal bigtheta;
  725. integer pskipped;
  726. doublereal aapp0;
  727. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  728. doublereal temp1;
  729. integer i__, p, q;
  730. doublereal t, large, apoaq, aqoap;
  731. extern logical lsame_(char *, char *);
  732. doublereal theta, small;
  733. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  734. doublereal *, integer *);
  735. doublereal fastr[5];
  736. extern /* Subroutine */ void dswap_(integer *, doublereal *, integer *,
  737. doublereal *, integer *);
  738. logical applv, rsvec;
  739. extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *,
  740. integer *, doublereal *, integer *), drotm_(integer *, doublereal
  741. *, integer *, doublereal *, integer *, doublereal *);
  742. logical rotok;
  743. doublereal rootsfmin, cs, sn;
  744. extern /* Subroutine */ void dlascl_(char *, integer *, integer *,
  745. doublereal *, doublereal *, integer *, integer *, doublereal *,
  746. integer *, integer *);
  747. extern integer idamax_(integer *, doublereal *, integer *);
  748. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  749. integer ijblsk, swband, blskip;
  750. doublereal mxaapq;
  751. extern /* Subroutine */ void dlassq_(integer *, doublereal *, integer *,
  752. doublereal *, doublereal *);
  753. doublereal thsign, mxsinj;
  754. integer emptsw, notrot, iswrot, jbc;
  755. doublereal big;
  756. integer kbl, igl, ibr, jgl, mvl;
  757. doublereal rootbig, rooteps;
  758. integer rowskip;
  759. doublereal roottol;
  760. /* -- LAPACK computational routine (version 3.8.0) -- */
  761. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  762. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  763. /* June 2016 */
  764. /* ===================================================================== */
  765. /* Test the input parameters. */
  766. /* Parameter adjustments */
  767. --sva;
  768. --d__;
  769. a_dim1 = *lda;
  770. a_offset = 1 + a_dim1 * 1;
  771. a -= a_offset;
  772. v_dim1 = *ldv;
  773. v_offset = 1 + v_dim1 * 1;
  774. v -= v_offset;
  775. --work;
  776. /* Function Body */
  777. applv = lsame_(jobv, "A");
  778. rsvec = lsame_(jobv, "V");
  779. if (! (rsvec || applv || lsame_(jobv, "N"))) {
  780. *info = -1;
  781. } else if (*m < 0) {
  782. *info = -2;
  783. } else if (*n < 0 || *n > *m) {
  784. *info = -3;
  785. } else if (*n1 < 0) {
  786. *info = -4;
  787. } else if (*lda < *m) {
  788. *info = -6;
  789. } else if ((rsvec || applv) && *mv < 0) {
  790. *info = -9;
  791. } else if (rsvec && *ldv < *n || applv && *ldv < *mv) {
  792. *info = -11;
  793. } else if (*tol <= *eps) {
  794. *info = -14;
  795. } else if (*nsweep < 0) {
  796. *info = -15;
  797. } else if (*lwork < *m) {
  798. *info = -17;
  799. } else {
  800. *info = 0;
  801. }
  802. /* #:( */
  803. if (*info != 0) {
  804. i__1 = -(*info);
  805. xerbla_("DGSVJ1", &i__1, (ftnlen)6);
  806. return;
  807. }
  808. if (rsvec) {
  809. mvl = *n;
  810. } else if (applv) {
  811. mvl = *mv;
  812. }
  813. rsvec = rsvec || applv;
  814. rooteps = sqrt(*eps);
  815. rootsfmin = sqrt(*sfmin);
  816. small = *sfmin / *eps;
  817. big = 1. / *sfmin;
  818. rootbig = 1. / rootsfmin;
  819. large = big / sqrt((doublereal) (*m * *n));
  820. bigtheta = 1. / rooteps;
  821. roottol = sqrt(*tol);
  822. /* RSVEC = LSAME( JOBV, 'Y' ) */
  823. emptsw = *n1 * (*n - *n1);
  824. notrot = 0;
  825. fastr[0] = 0.;
  826. kbl = f2cmin(8,*n);
  827. nblr = *n1 / kbl;
  828. if (nblr * kbl != *n1) {
  829. ++nblr;
  830. }
  831. nblc = (*n - *n1) / kbl;
  832. if (nblc * kbl != *n - *n1) {
  833. ++nblc;
  834. }
  835. /* Computing 2nd power */
  836. i__1 = kbl;
  837. blskip = i__1 * i__1 + 1;
  838. /* [TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL. */
  839. rowskip = f2cmin(5,kbl);
  840. /* [TP] ROWSKIP is a tuning parameter. */
  841. swband = 0;
  842. /* [TP] SWBAND is a tuning parameter. It is meaningful and effective */
  843. /* if SGESVJ is used as a computational routine in the preconditioned */
  844. /* Jacobi SVD algorithm SGESVJ. */
  845. /* | * * * [x] [x] [x]| */
  846. /* | * * * [x] [x] [x]| Row-cycling in the nblr-by-nblc [x] blocks. */
  847. /* | * * * [x] [x] [x]| Row-cyclic pivoting inside each [x] block. */
  848. /* |[x] [x] [x] * * * | */
  849. /* |[x] [x] [x] * * * | */
  850. /* |[x] [x] [x] * * * | */
  851. i__1 = *nsweep;
  852. for (i__ = 1; i__ <= i__1; ++i__) {
  853. mxaapq = 0.;
  854. mxsinj = 0.;
  855. iswrot = 0;
  856. notrot = 0;
  857. pskipped = 0;
  858. i__2 = nblr;
  859. for (ibr = 1; ibr <= i__2; ++ibr) {
  860. igl = (ibr - 1) * kbl + 1;
  861. /* ........................................................ */
  862. /* ... go to the off diagonal blocks */
  863. igl = (ibr - 1) * kbl + 1;
  864. i__3 = nblc;
  865. for (jbc = 1; jbc <= i__3; ++jbc) {
  866. jgl = *n1 + (jbc - 1) * kbl + 1;
  867. /* doing the block at ( ibr, jbc ) */
  868. ijblsk = 0;
  869. /* Computing MIN */
  870. i__5 = igl + kbl - 1;
  871. i__4 = f2cmin(i__5,*n1);
  872. for (p = igl; p <= i__4; ++p) {
  873. aapp = sva[p];
  874. if (aapp > 0.) {
  875. pskipped = 0;
  876. /* Computing MIN */
  877. i__6 = jgl + kbl - 1;
  878. i__5 = f2cmin(i__6,*n);
  879. for (q = jgl; q <= i__5; ++q) {
  880. aaqq = sva[q];
  881. if (aaqq > 0.) {
  882. aapp0 = aapp;
  883. if (aaqq >= 1.) {
  884. if (aapp >= aaqq) {
  885. rotok = small * aapp <= aaqq;
  886. } else {
  887. rotok = small * aaqq <= aapp;
  888. }
  889. if (aapp < big / aaqq) {
  890. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  891. c__1, &a[q * a_dim1 + 1], &
  892. c__1) * d__[p] * d__[q] /
  893. aaqq / aapp;
  894. } else {
  895. dcopy_(m, &a[p * a_dim1 + 1], &c__1, &
  896. work[1], &c__1);
  897. dlascl_("G", &c__0, &c__0, &aapp, &
  898. d__[p], m, &c__1, &work[1],
  899. lda, &ierr);
  900. aapq = ddot_(m, &work[1], &c__1, &a[q
  901. * a_dim1 + 1], &c__1) * d__[q]
  902. / aaqq;
  903. }
  904. } else {
  905. if (aapp >= aaqq) {
  906. rotok = aapp <= aaqq / small;
  907. } else {
  908. rotok = aaqq <= aapp / small;
  909. }
  910. if (aapp > small / aaqq) {
  911. aapq = ddot_(m, &a[p * a_dim1 + 1], &
  912. c__1, &a[q * a_dim1 + 1], &
  913. c__1) * d__[p] * d__[q] /
  914. aaqq / aapp;
  915. } else {
  916. dcopy_(m, &a[q * a_dim1 + 1], &c__1, &
  917. work[1], &c__1);
  918. dlascl_("G", &c__0, &c__0, &aaqq, &
  919. d__[q], m, &c__1, &work[1],
  920. lda, &ierr);
  921. aapq = ddot_(m, &work[1], &c__1, &a[p
  922. * a_dim1 + 1], &c__1) * d__[p]
  923. / aapp;
  924. }
  925. }
  926. /* Computing MAX */
  927. d__1 = mxaapq, d__2 = abs(aapq);
  928. mxaapq = f2cmax(d__1,d__2);
  929. /* TO rotate or NOT to rotate, THAT is the question ... */
  930. if (abs(aapq) > *tol) {
  931. notrot = 0;
  932. /* ROTATED = ROTATED + 1 */
  933. pskipped = 0;
  934. ++iswrot;
  935. if (rotok) {
  936. aqoap = aaqq / aapp;
  937. apoaq = aapp / aaqq;
  938. theta = (d__1 = aqoap - apoaq, abs(
  939. d__1)) * -.5 / aapq;
  940. if (aaqq > aapp0) {
  941. theta = -theta;
  942. }
  943. if (abs(theta) > bigtheta) {
  944. t = .5 / theta;
  945. fastr[2] = t * d__[p] / d__[q];
  946. fastr[3] = -t * d__[q] / d__[p];
  947. drotm_(m, &a[p * a_dim1 + 1], &
  948. c__1, &a[q * a_dim1 + 1],
  949. &c__1, fastr);
  950. if (rsvec) {
  951. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q *
  952. v_dim1 + 1], &c__1, fastr);
  953. }
  954. /* Computing MAX */
  955. d__1 = 0., d__2 = t * apoaq *
  956. aapq + 1.;
  957. sva[q] = aaqq * sqrt((f2cmax(d__1,
  958. d__2)));
  959. /* Computing MAX */
  960. d__1 = 0., d__2 = 1. - t * aqoap *
  961. aapq;
  962. aapp *= sqrt((f2cmax(d__1,d__2)));
  963. /* Computing MAX */
  964. d__1 = mxsinj, d__2 = abs(t);
  965. mxsinj = f2cmax(d__1,d__2);
  966. } else {
  967. thsign = -d_sign(&c_b35, &aapq);
  968. if (aaqq > aapp0) {
  969. thsign = -thsign;
  970. }
  971. t = 1. / (theta + thsign * sqrt(
  972. theta * theta + 1.));
  973. cs = sqrt(1. / (t * t + 1.));
  974. sn = t * cs;
  975. /* Computing MAX */
  976. d__1 = mxsinj, d__2 = abs(sn);
  977. mxsinj = f2cmax(d__1,d__2);
  978. /* Computing MAX */
  979. d__1 = 0., d__2 = t * apoaq *
  980. aapq + 1.;
  981. sva[q] = aaqq * sqrt((f2cmax(d__1,
  982. d__2)));
  983. /* Computing MAX */
  984. d__1 = 0., d__2 = 1. - t * aqoap *
  985. aapq;
  986. aapp *= sqrt((f2cmax(d__1,d__2)));
  987. apoaq = d__[p] / d__[q];
  988. aqoap = d__[q] / d__[p];
  989. if (d__[p] >= 1.) {
  990. if (d__[q] >= 1.) {
  991. fastr[2] = t * apoaq;
  992. fastr[3] = -t * aqoap;
  993. d__[p] *= cs;
  994. d__[q] *= cs;
  995. drotm_(m, &a[p * a_dim1 + 1], &c__1, &a[q *
  996. a_dim1 + 1], &c__1, fastr);
  997. if (rsvec) {
  998. drotm_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[
  999. q * v_dim1 + 1], &c__1, fastr);
  1000. }
  1001. } else {
  1002. d__1 = -t * aqoap;
  1003. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1004. p * a_dim1 + 1], &c__1);
  1005. d__1 = cs * sn * apoaq;
  1006. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1007. q * a_dim1 + 1], &c__1);
  1008. if (rsvec) {
  1009. d__1 = -t * aqoap;
  1010. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1011. c__1, &v[p * v_dim1 + 1], &c__1);
  1012. d__1 = cs * sn * apoaq;
  1013. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1014. c__1, &v[q * v_dim1 + 1], &c__1);
  1015. }
  1016. d__[p] *= cs;
  1017. d__[q] /= cs;
  1018. }
  1019. } else {
  1020. if (d__[q] >= 1.) {
  1021. d__1 = t * apoaq;
  1022. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1, &a[
  1023. q * a_dim1 + 1], &c__1);
  1024. d__1 = -cs * sn * aqoap;
  1025. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1, &a[
  1026. p * a_dim1 + 1], &c__1);
  1027. if (rsvec) {
  1028. d__1 = t * apoaq;
  1029. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1], &
  1030. c__1, &v[q * v_dim1 + 1], &c__1);
  1031. d__1 = -cs * sn * aqoap;
  1032. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1], &
  1033. c__1, &v[p * v_dim1 + 1], &c__1);
  1034. }
  1035. d__[p] /= cs;
  1036. d__[q] *= cs;
  1037. } else {
  1038. if (d__[p] >= d__[q]) {
  1039. d__1 = -t * aqoap;
  1040. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1041. &a[p * a_dim1 + 1], &c__1);
  1042. d__1 = cs * sn * apoaq;
  1043. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1044. &a[q * a_dim1 + 1], &c__1);
  1045. d__[p] *= cs;
  1046. d__[q] /= cs;
  1047. if (rsvec) {
  1048. d__1 = -t * aqoap;
  1049. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1050. &c__1, &v[p * v_dim1 + 1], &
  1051. c__1);
  1052. d__1 = cs * sn * apoaq;
  1053. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1054. &c__1, &v[q * v_dim1 + 1], &
  1055. c__1);
  1056. }
  1057. } else {
  1058. d__1 = t * apoaq;
  1059. daxpy_(m, &d__1, &a[p * a_dim1 + 1], &c__1,
  1060. &a[q * a_dim1 + 1], &c__1);
  1061. d__1 = -cs * sn * aqoap;
  1062. daxpy_(m, &d__1, &a[q * a_dim1 + 1], &c__1,
  1063. &a[p * a_dim1 + 1], &c__1);
  1064. d__[p] /= cs;
  1065. d__[q] *= cs;
  1066. if (rsvec) {
  1067. d__1 = t * apoaq;
  1068. daxpy_(&mvl, &d__1, &v[p * v_dim1 + 1],
  1069. &c__1, &v[q * v_dim1 + 1], &
  1070. c__1);
  1071. d__1 = -cs * sn * aqoap;
  1072. daxpy_(&mvl, &d__1, &v[q * v_dim1 + 1],
  1073. &c__1, &v[p * v_dim1 + 1], &
  1074. c__1);
  1075. }
  1076. }
  1077. }
  1078. }
  1079. }
  1080. } else {
  1081. if (aapp > aaqq) {
  1082. dcopy_(m, &a[p * a_dim1 + 1], &
  1083. c__1, &work[1], &c__1);
  1084. dlascl_("G", &c__0, &c__0, &aapp,
  1085. &c_b35, m, &c__1, &work[1]
  1086. , lda, &ierr);
  1087. dlascl_("G", &c__0, &c__0, &aaqq,
  1088. &c_b35, m, &c__1, &a[q *
  1089. a_dim1 + 1], lda, &ierr);
  1090. temp1 = -aapq * d__[p] / d__[q];
  1091. daxpy_(m, &temp1, &work[1], &c__1,
  1092. &a[q * a_dim1 + 1], &
  1093. c__1);
  1094. dlascl_("G", &c__0, &c__0, &c_b35,
  1095. &aaqq, m, &c__1, &a[q *
  1096. a_dim1 + 1], lda, &ierr);
  1097. /* Computing MAX */
  1098. d__1 = 0., d__2 = 1. - aapq *
  1099. aapq;
  1100. sva[q] = aaqq * sqrt((f2cmax(d__1,
  1101. d__2)));
  1102. mxsinj = f2cmax(mxsinj,*sfmin);
  1103. } else {
  1104. dcopy_(m, &a[q * a_dim1 + 1], &
  1105. c__1, &work[1], &c__1);
  1106. dlascl_("G", &c__0, &c__0, &aaqq,
  1107. &c_b35, m, &c__1, &work[1]
  1108. , lda, &ierr);
  1109. dlascl_("G", &c__0, &c__0, &aapp,
  1110. &c_b35, m, &c__1, &a[p *
  1111. a_dim1 + 1], lda, &ierr);
  1112. temp1 = -aapq * d__[q] / d__[p];
  1113. daxpy_(m, &temp1, &work[1], &c__1,
  1114. &a[p * a_dim1 + 1], &
  1115. c__1);
  1116. dlascl_("G", &c__0, &c__0, &c_b35,
  1117. &aapp, m, &c__1, &a[p *
  1118. a_dim1 + 1], lda, &ierr);
  1119. /* Computing MAX */
  1120. d__1 = 0., d__2 = 1. - aapq *
  1121. aapq;
  1122. sva[p] = aapp * sqrt((f2cmax(d__1,
  1123. d__2)));
  1124. mxsinj = f2cmax(mxsinj,*sfmin);
  1125. }
  1126. }
  1127. /* END IF ROTOK THEN ... ELSE */
  1128. /* In the case of cancellation in updating SVA(q) */
  1129. /* Computing 2nd power */
  1130. d__1 = sva[q] / aaqq;
  1131. if (d__1 * d__1 <= rooteps) {
  1132. if (aaqq < rootbig && aaqq >
  1133. rootsfmin) {
  1134. sva[q] = dnrm2_(m, &a[q * a_dim1
  1135. + 1], &c__1) * d__[q];
  1136. } else {
  1137. t = 0.;
  1138. aaqq = 1.;
  1139. dlassq_(m, &a[q * a_dim1 + 1], &
  1140. c__1, &t, &aaqq);
  1141. sva[q] = t * sqrt(aaqq) * d__[q];
  1142. }
  1143. }
  1144. /* Computing 2nd power */
  1145. d__1 = aapp / aapp0;
  1146. if (d__1 * d__1 <= rooteps) {
  1147. if (aapp < rootbig && aapp >
  1148. rootsfmin) {
  1149. aapp = dnrm2_(m, &a[p * a_dim1 +
  1150. 1], &c__1) * d__[p];
  1151. } else {
  1152. t = 0.;
  1153. aapp = 1.;
  1154. dlassq_(m, &a[p * a_dim1 + 1], &
  1155. c__1, &t, &aapp);
  1156. aapp = t * sqrt(aapp) * d__[p];
  1157. }
  1158. sva[p] = aapp;
  1159. }
  1160. /* end of OK rotation */
  1161. } else {
  1162. ++notrot;
  1163. /* SKIPPED = SKIPPED + 1 */
  1164. ++pskipped;
  1165. ++ijblsk;
  1166. }
  1167. } else {
  1168. ++notrot;
  1169. ++pskipped;
  1170. ++ijblsk;
  1171. }
  1172. /* IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1173. if (i__ <= swband && ijblsk >= blskip) {
  1174. sva[p] = aapp;
  1175. notrot = 0;
  1176. goto L2011;
  1177. }
  1178. if (i__ <= swband && pskipped > rowskip) {
  1179. aapp = -aapp;
  1180. notrot = 0;
  1181. goto L2203;
  1182. }
  1183. /* L2200: */
  1184. }
  1185. /* end of the q-loop */
  1186. L2203:
  1187. sva[p] = aapp;
  1188. } else {
  1189. if (aapp == 0.) {
  1190. /* Computing MIN */
  1191. i__5 = jgl + kbl - 1;
  1192. notrot = notrot + f2cmin(i__5,*n) - jgl + 1;
  1193. }
  1194. if (aapp < 0.) {
  1195. notrot = 0;
  1196. }
  1197. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 2011 */
  1198. }
  1199. /* L2100: */
  1200. }
  1201. /* end of the p-loop */
  1202. /* L2010: */
  1203. }
  1204. /* end of the jbc-loop */
  1205. L2011:
  1206. /* 2011 bailed out of the jbc-loop */
  1207. /* Computing MIN */
  1208. i__4 = igl + kbl - 1;
  1209. i__3 = f2cmin(i__4,*n);
  1210. for (p = igl; p <= i__3; ++p) {
  1211. sva[p] = (d__1 = sva[p], abs(d__1));
  1212. /* L2012: */
  1213. }
  1214. /* ** IF ( NOTROT .GE. EMPTSW ) GO TO 1994 */
  1215. /* L2000: */
  1216. }
  1217. /* 2000 :: end of the ibr-loop */
  1218. if (sva[*n] < rootbig && sva[*n] > rootsfmin) {
  1219. sva[*n] = dnrm2_(m, &a[*n * a_dim1 + 1], &c__1) * d__[*n];
  1220. } else {
  1221. t = 0.;
  1222. aapp = 1.;
  1223. dlassq_(m, &a[*n * a_dim1 + 1], &c__1, &t, &aapp);
  1224. sva[*n] = t * sqrt(aapp) * d__[*n];
  1225. }
  1226. /* Additional steering devices */
  1227. if (i__ < swband && (mxaapq <= roottol || iswrot <= *n)) {
  1228. swband = i__;
  1229. }
  1230. if (i__ > swband + 1 && mxaapq < (doublereal) (*n) * *tol && (
  1231. doublereal) (*n) * mxaapq * mxsinj < *tol) {
  1232. goto L1994;
  1233. }
  1234. if (notrot >= emptsw) {
  1235. goto L1994;
  1236. }
  1237. /* L1993: */
  1238. }
  1239. /* end i=1:NSWEEP loop */
  1240. /* #:) Reaching this point means that the procedure has completed the given */
  1241. /* number of sweeps. */
  1242. *info = *nsweep - 1;
  1243. goto L1995;
  1244. L1994:
  1245. /* #:) Reaching this point means that during the i-th sweep all pivots were */
  1246. /* below the given threshold, causing early exit. */
  1247. *info = 0;
  1248. /* #:) INFO = 0 confirms successful iterations. */
  1249. L1995:
  1250. /* Sort the vector D */
  1251. i__1 = *n - 1;
  1252. for (p = 1; p <= i__1; ++p) {
  1253. i__2 = *n - p + 1;
  1254. q = idamax_(&i__2, &sva[p], &c__1) + p - 1;
  1255. if (p != q) {
  1256. temp1 = sva[p];
  1257. sva[p] = sva[q];
  1258. sva[q] = temp1;
  1259. temp1 = d__[p];
  1260. d__[p] = d__[q];
  1261. d__[q] = temp1;
  1262. dswap_(m, &a[p * a_dim1 + 1], &c__1, &a[q * a_dim1 + 1], &c__1);
  1263. if (rsvec) {
  1264. dswap_(&mvl, &v[p * v_dim1 + 1], &c__1, &v[q * v_dim1 + 1], &
  1265. c__1);
  1266. }
  1267. }
  1268. /* L5991: */
  1269. }
  1270. return;
  1271. } /* dgsvj1_ */