You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clals0.c 34 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b5 = -1.f;
  487. static integer c__1 = 1;
  488. static real c_b13 = 1.f;
  489. static real c_b15 = 0.f;
  490. static integer c__0 = 0;
  491. /* > \brief \b CLALS0 applies back multiplying factors in solving the least squares problem using divide and c
  492. onquer SVD approach. Used by sgelsd. */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CLALS0 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clals0.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clals0.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clals0.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, */
  511. /* PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
  512. /* POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO ) */
  513. /* INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, */
  514. /* $ LDGNUM, NL, NR, NRHS, SQRE */
  515. /* REAL C, S */
  516. /* INTEGER GIVCOL( LDGCOL, * ), PERM( * ) */
  517. /* REAL DIFL( * ), DIFR( LDGNUM, * ), */
  518. /* $ GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
  519. /* $ RWORK( * ), Z( * ) */
  520. /* COMPLEX B( LDB, * ), BX( LDBX, * ) */
  521. /* > \par Purpose: */
  522. /* ============= */
  523. /* > */
  524. /* > \verbatim */
  525. /* > */
  526. /* > CLALS0 applies back the multiplying factors of either the left or the */
  527. /* > right singular vector matrix of a diagonal matrix appended by a row */
  528. /* > to the right hand side matrix B in solving the least squares problem */
  529. /* > using the divide-and-conquer SVD approach. */
  530. /* > */
  531. /* > For the left singular vector matrix, three types of orthogonal */
  532. /* > matrices are involved: */
  533. /* > */
  534. /* > (1L) Givens rotations: the number of such rotations is GIVPTR; the */
  535. /* > pairs of columns/rows they were applied to are stored in GIVCOL; */
  536. /* > and the C- and S-values of these rotations are stored in GIVNUM. */
  537. /* > */
  538. /* > (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
  539. /* > row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
  540. /* > J-th row. */
  541. /* > */
  542. /* > (3L) The left singular vector matrix of the remaining matrix. */
  543. /* > */
  544. /* > For the right singular vector matrix, four types of orthogonal */
  545. /* > matrices are involved: */
  546. /* > */
  547. /* > (1R) The right singular vector matrix of the remaining matrix. */
  548. /* > */
  549. /* > (2R) If SQRE = 1, one extra Givens rotation to generate the right */
  550. /* > null space. */
  551. /* > */
  552. /* > (3R) The inverse transformation of (2L). */
  553. /* > */
  554. /* > (4R) The inverse transformation of (1L). */
  555. /* > \endverbatim */
  556. /* Arguments: */
  557. /* ========== */
  558. /* > \param[in] ICOMPQ */
  559. /* > \verbatim */
  560. /* > ICOMPQ is INTEGER */
  561. /* > Specifies whether singular vectors are to be computed in */
  562. /* > factored form: */
  563. /* > = 0: Left singular vector matrix. */
  564. /* > = 1: Right singular vector matrix. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] NL */
  568. /* > \verbatim */
  569. /* > NL is INTEGER */
  570. /* > The row dimension of the upper block. NL >= 1. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] NR */
  574. /* > \verbatim */
  575. /* > NR is INTEGER */
  576. /* > The row dimension of the lower block. NR >= 1. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] SQRE */
  580. /* > \verbatim */
  581. /* > SQRE is INTEGER */
  582. /* > = 0: the lower block is an NR-by-NR square matrix. */
  583. /* > = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
  584. /* > */
  585. /* > The bidiagonal matrix has row dimension N = NL + NR + 1, */
  586. /* > and column dimension M = N + SQRE. */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in] NRHS */
  590. /* > \verbatim */
  591. /* > NRHS is INTEGER */
  592. /* > The number of columns of B and BX. NRHS must be at least 1. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in,out] B */
  596. /* > \verbatim */
  597. /* > B is COMPLEX array, dimension ( LDB, NRHS ) */
  598. /* > On input, B contains the right hand sides of the least */
  599. /* > squares problem in rows 1 through M. On output, B contains */
  600. /* > the solution X in rows 1 through N. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] LDB */
  604. /* > \verbatim */
  605. /* > LDB is INTEGER */
  606. /* > The leading dimension of B. LDB must be at least */
  607. /* > f2cmax(1,MAX( M, N ) ). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] BX */
  611. /* > \verbatim */
  612. /* > BX is COMPLEX array, dimension ( LDBX, NRHS ) */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] LDBX */
  616. /* > \verbatim */
  617. /* > LDBX is INTEGER */
  618. /* > The leading dimension of BX. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] PERM */
  622. /* > \verbatim */
  623. /* > PERM is INTEGER array, dimension ( N ) */
  624. /* > The permutations (from deflation and sorting) applied */
  625. /* > to the two blocks. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] GIVPTR */
  629. /* > \verbatim */
  630. /* > GIVPTR is INTEGER */
  631. /* > The number of Givens rotations which took place in this */
  632. /* > subproblem. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] GIVCOL */
  636. /* > \verbatim */
  637. /* > GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
  638. /* > Each pair of numbers indicates a pair of rows/columns */
  639. /* > involved in a Givens rotation. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDGCOL */
  643. /* > \verbatim */
  644. /* > LDGCOL is INTEGER */
  645. /* > The leading dimension of GIVCOL, must be at least N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[in] GIVNUM */
  649. /* > \verbatim */
  650. /* > GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
  651. /* > Each number indicates the C or S value used in the */
  652. /* > corresponding Givens rotation. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in] LDGNUM */
  656. /* > \verbatim */
  657. /* > LDGNUM is INTEGER */
  658. /* > The leading dimension of arrays DIFR, POLES and */
  659. /* > GIVNUM, must be at least K. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[in] POLES */
  663. /* > \verbatim */
  664. /* > POLES is REAL array, dimension ( LDGNUM, 2 ) */
  665. /* > On entry, POLES(1:K, 1) contains the new singular */
  666. /* > values obtained from solving the secular equation, and */
  667. /* > POLES(1:K, 2) is an array containing the poles in the secular */
  668. /* > equation. */
  669. /* > \endverbatim */
  670. /* > */
  671. /* > \param[in] DIFL */
  672. /* > \verbatim */
  673. /* > DIFL is REAL array, dimension ( K ). */
  674. /* > On entry, DIFL(I) is the distance between I-th updated */
  675. /* > (undeflated) singular value and the I-th (undeflated) old */
  676. /* > singular value. */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] DIFR */
  680. /* > \verbatim */
  681. /* > DIFR is REAL array, dimension ( LDGNUM, 2 ). */
  682. /* > On entry, DIFR(I, 1) contains the distances between I-th */
  683. /* > updated (undeflated) singular value and the I+1-th */
  684. /* > (undeflated) old singular value. And DIFR(I, 2) is the */
  685. /* > normalizing factor for the I-th right singular vector. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in] Z */
  689. /* > \verbatim */
  690. /* > Z is REAL array, dimension ( K ) */
  691. /* > Contain the components of the deflation-adjusted updating row */
  692. /* > vector. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] K */
  696. /* > \verbatim */
  697. /* > K is INTEGER */
  698. /* > Contains the dimension of the non-deflated matrix, */
  699. /* > This is the order of the related secular equation. 1 <= K <=N. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[in] C */
  703. /* > \verbatim */
  704. /* > C is REAL */
  705. /* > C contains garbage if SQRE =0 and the C-value of a Givens */
  706. /* > rotation related to the right null space if SQRE = 1. */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in] S */
  710. /* > \verbatim */
  711. /* > S is REAL */
  712. /* > S contains garbage if SQRE =0 and the S-value of a Givens */
  713. /* > rotation related to the right null space if SQRE = 1. */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] RWORK */
  717. /* > \verbatim */
  718. /* > RWORK is REAL array, dimension */
  719. /* > ( K*(1+NRHS) + 2*NRHS ) */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] INFO */
  723. /* > \verbatim */
  724. /* > INFO is INTEGER */
  725. /* > = 0: successful exit. */
  726. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  727. /* > \endverbatim */
  728. /* Authors: */
  729. /* ======== */
  730. /* > \author Univ. of Tennessee */
  731. /* > \author Univ. of California Berkeley */
  732. /* > \author Univ. of Colorado Denver */
  733. /* > \author NAG Ltd. */
  734. /* > \date December 2016 */
  735. /* > \ingroup complexOTHERcomputational */
  736. /* > \par Contributors: */
  737. /* ================== */
  738. /* > */
  739. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  740. /* > California at Berkeley, USA \n */
  741. /* > Osni Marques, LBNL/NERSC, USA \n */
  742. /* ===================================================================== */
  743. /* Subroutine */ void clals0_(integer *icompq, integer *nl, integer *nr,
  744. integer *sqre, integer *nrhs, complex *b, integer *ldb, complex *bx,
  745. integer *ldbx, integer *perm, integer *givptr, integer *givcol,
  746. integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real *
  747. difl, real *difr, real *z__, integer *k, real *c__, real *s, real *
  748. rwork, integer *info)
  749. {
  750. /* System generated locals */
  751. integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1,
  752. givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset,
  753. bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5;
  754. real r__1;
  755. complex q__1;
  756. /* Local variables */
  757. integer jcol;
  758. real temp;
  759. integer jrow;
  760. extern real snrm2_(integer *, real *, integer *);
  761. integer i__, j, m, n;
  762. real diflj, difrj, dsigj;
  763. extern /* Subroutine */ void ccopy_(integer *, complex *, integer *,
  764. complex *, integer *), sgemv_(char *, integer *, integer *, real *
  765. , real *, integer *, real *, integer *, real *, real *, integer *), csrot_(integer *, complex *, integer *, complex *,
  766. integer *, real *, real *);
  767. extern real slamc3_(real *, real *);
  768. real dj;
  769. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  770. real *, integer *, integer *, complex *, integer *, integer *), csscal_(integer *, real *, complex *, integer *),
  771. clacpy_(char *, integer *, integer *, complex *, integer *,
  772. complex *, integer *);
  773. extern int xerbla_(char *, integer *, ftnlen);
  774. real dsigjp;
  775. integer nlp1;
  776. /* -- LAPACK computational routine (version 3.7.0) -- */
  777. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  778. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  779. /* December 2016 */
  780. /* ===================================================================== */
  781. /* Test the input parameters. */
  782. /* Parameter adjustments */
  783. b_dim1 = *ldb;
  784. b_offset = 1 + b_dim1 * 1;
  785. b -= b_offset;
  786. bx_dim1 = *ldbx;
  787. bx_offset = 1 + bx_dim1 * 1;
  788. bx -= bx_offset;
  789. --perm;
  790. givcol_dim1 = *ldgcol;
  791. givcol_offset = 1 + givcol_dim1 * 1;
  792. givcol -= givcol_offset;
  793. difr_dim1 = *ldgnum;
  794. difr_offset = 1 + difr_dim1 * 1;
  795. difr -= difr_offset;
  796. poles_dim1 = *ldgnum;
  797. poles_offset = 1 + poles_dim1 * 1;
  798. poles -= poles_offset;
  799. givnum_dim1 = *ldgnum;
  800. givnum_offset = 1 + givnum_dim1 * 1;
  801. givnum -= givnum_offset;
  802. --difl;
  803. --z__;
  804. --rwork;
  805. /* Function Body */
  806. *info = 0;
  807. n = *nl + *nr + 1;
  808. if (*icompq < 0 || *icompq > 1) {
  809. *info = -1;
  810. } else if (*nl < 1) {
  811. *info = -2;
  812. } else if (*nr < 1) {
  813. *info = -3;
  814. } else if (*sqre < 0 || *sqre > 1) {
  815. *info = -4;
  816. } else if (*nrhs < 1) {
  817. *info = -5;
  818. } else if (*ldb < n) {
  819. *info = -7;
  820. } else if (*ldbx < n) {
  821. *info = -9;
  822. } else if (*givptr < 0) {
  823. *info = -11;
  824. } else if (*ldgcol < n) {
  825. *info = -13;
  826. } else if (*ldgnum < n) {
  827. *info = -15;
  828. // } else if (*k < 1) {
  829. } else if (*k < 0) {
  830. *info = -20;
  831. }
  832. if (*info != 0) {
  833. i__1 = -(*info);
  834. xerbla_("CLALS0", &i__1, (ftnlen)6);
  835. return;
  836. }
  837. m = n + *sqre;
  838. nlp1 = *nl + 1;
  839. if (*icompq == 0) {
  840. /* Apply back orthogonal transformations from the left. */
  841. /* Step (1L): apply back the Givens rotations performed. */
  842. i__1 = *givptr;
  843. for (i__ = 1; i__ <= i__1; ++i__) {
  844. csrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  845. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  846. (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
  847. /* L10: */
  848. }
  849. /* Step (2L): permute rows of B. */
  850. ccopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
  851. i__1 = n;
  852. for (i__ = 2; i__ <= i__1; ++i__) {
  853. ccopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1],
  854. ldbx);
  855. /* L20: */
  856. }
  857. /* Step (3L): apply the inverse of the left singular vector */
  858. /* matrix to BX. */
  859. if (*k == 1) {
  860. ccopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
  861. if (z__[1] < 0.f) {
  862. csscal_(nrhs, &c_b5, &b[b_offset], ldb);
  863. }
  864. } else {
  865. i__1 = *k;
  866. for (j = 1; j <= i__1; ++j) {
  867. diflj = difl[j];
  868. dj = poles[j + poles_dim1];
  869. dsigj = -poles[j + (poles_dim1 << 1)];
  870. if (j < *k) {
  871. difrj = -difr[j + difr_dim1];
  872. dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
  873. }
  874. if (z__[j] == 0.f || poles[j + (poles_dim1 << 1)] == 0.f) {
  875. rwork[j] = 0.f;
  876. } else {
  877. rwork[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj
  878. / (poles[j + (poles_dim1 << 1)] + dj);
  879. }
  880. i__2 = j - 1;
  881. for (i__ = 1; i__ <= i__2; ++i__) {
  882. if (z__[i__] == 0.f || poles[i__ + (poles_dim1 << 1)] ==
  883. 0.f) {
  884. rwork[i__] = 0.f;
  885. } else {
  886. rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  887. / (slamc3_(&poles[i__ + (poles_dim1 << 1)], &
  888. dsigj) - diflj) / (poles[i__ + (poles_dim1 <<
  889. 1)] + dj);
  890. }
  891. /* L30: */
  892. }
  893. i__2 = *k;
  894. for (i__ = j + 1; i__ <= i__2; ++i__) {
  895. if (z__[i__] == 0.f || poles[i__ + (poles_dim1 << 1)] ==
  896. 0.f) {
  897. rwork[i__] = 0.f;
  898. } else {
  899. rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
  900. / (slamc3_(&poles[i__ + (poles_dim1 << 1)], &
  901. dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
  902. 1)] + dj);
  903. }
  904. /* L40: */
  905. }
  906. rwork[1] = -1.f;
  907. temp = snrm2_(k, &rwork[1], &c__1);
  908. /* Since B and BX are complex, the following call to SGEMV */
  909. /* is performed in two steps (real and imaginary parts). */
  910. /* CALL SGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, */
  911. /* $ B( J, 1 ), LDB ) */
  912. i__ = *k + (*nrhs << 1);
  913. i__2 = *nrhs;
  914. for (jcol = 1; jcol <= i__2; ++jcol) {
  915. i__3 = *k;
  916. for (jrow = 1; jrow <= i__3; ++jrow) {
  917. ++i__;
  918. i__4 = jrow + jcol * bx_dim1;
  919. rwork[i__] = bx[i__4].r;
  920. /* L50: */
  921. }
  922. /* L60: */
  923. }
  924. sgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  925. &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
  926. i__ = *k + (*nrhs << 1);
  927. i__2 = *nrhs;
  928. for (jcol = 1; jcol <= i__2; ++jcol) {
  929. i__3 = *k;
  930. for (jrow = 1; jrow <= i__3; ++jrow) {
  931. ++i__;
  932. rwork[i__] = r_imag(&bx[jrow + jcol * bx_dim1]);
  933. /* L70: */
  934. }
  935. /* L80: */
  936. }
  937. sgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  938. &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
  939. c__1);
  940. i__2 = *nrhs;
  941. for (jcol = 1; jcol <= i__2; ++jcol) {
  942. i__3 = j + jcol * b_dim1;
  943. i__4 = jcol + *k;
  944. i__5 = jcol + *k + *nrhs;
  945. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  946. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  947. /* L90: */
  948. }
  949. clascl_("G", &c__0, &c__0, &temp, &c_b13, &c__1, nrhs, &b[j +
  950. b_dim1], ldb, info);
  951. /* L100: */
  952. }
  953. }
  954. /* Move the deflated rows of BX to B also. */
  955. if (*k < f2cmax(m,n)) {
  956. i__1 = n - *k;
  957. clacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1
  958. + b_dim1], ldb);
  959. }
  960. } else {
  961. /* Apply back the right orthogonal transformations. */
  962. /* Step (1R): apply back the new right singular vector matrix */
  963. /* to B. */
  964. if (*k == 1) {
  965. ccopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
  966. } else {
  967. i__1 = *k;
  968. for (j = 1; j <= i__1; ++j) {
  969. dsigj = poles[j + (poles_dim1 << 1)];
  970. if (z__[j] == 0.f) {
  971. rwork[j] = 0.f;
  972. } else {
  973. rwork[j] = -z__[j] / difl[j] / (dsigj + poles[j +
  974. poles_dim1]) / difr[j + (difr_dim1 << 1)];
  975. }
  976. i__2 = j - 1;
  977. for (i__ = 1; i__ <= i__2; ++i__) {
  978. if (z__[j] == 0.f) {
  979. rwork[i__] = 0.f;
  980. } else {
  981. r__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
  982. rwork[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difr[
  983. i__ + difr_dim1]) / (dsigj + poles[i__ +
  984. poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
  985. }
  986. /* L110: */
  987. }
  988. i__2 = *k;
  989. for (i__ = j + 1; i__ <= i__2; ++i__) {
  990. if (z__[j] == 0.f) {
  991. rwork[i__] = 0.f;
  992. } else {
  993. r__1 = -poles[i__ + (poles_dim1 << 1)];
  994. rwork[i__] = z__[j] / (slamc3_(&dsigj, &r__1) - difl[
  995. i__]) / (dsigj + poles[i__ + poles_dim1]) /
  996. difr[i__ + (difr_dim1 << 1)];
  997. }
  998. /* L120: */
  999. }
  1000. /* Since B and BX are complex, the following call to SGEMV */
  1001. /* is performed in two steps (real and imaginary parts). */
  1002. /* CALL SGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, */
  1003. /* $ BX( J, 1 ), LDBX ) */
  1004. i__ = *k + (*nrhs << 1);
  1005. i__2 = *nrhs;
  1006. for (jcol = 1; jcol <= i__2; ++jcol) {
  1007. i__3 = *k;
  1008. for (jrow = 1; jrow <= i__3; ++jrow) {
  1009. ++i__;
  1010. i__4 = jrow + jcol * b_dim1;
  1011. rwork[i__] = b[i__4].r;
  1012. /* L130: */
  1013. }
  1014. /* L140: */
  1015. }
  1016. sgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  1017. &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
  1018. i__ = *k + (*nrhs << 1);
  1019. i__2 = *nrhs;
  1020. for (jcol = 1; jcol <= i__2; ++jcol) {
  1021. i__3 = *k;
  1022. for (jrow = 1; jrow <= i__3; ++jrow) {
  1023. ++i__;
  1024. rwork[i__] = r_imag(&b[jrow + jcol * b_dim1]);
  1025. /* L150: */
  1026. }
  1027. /* L160: */
  1028. }
  1029. sgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
  1030. &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
  1031. c__1);
  1032. i__2 = *nrhs;
  1033. for (jcol = 1; jcol <= i__2; ++jcol) {
  1034. i__3 = j + jcol * bx_dim1;
  1035. i__4 = jcol + *k;
  1036. i__5 = jcol + *k + *nrhs;
  1037. q__1.r = rwork[i__4], q__1.i = rwork[i__5];
  1038. bx[i__3].r = q__1.r, bx[i__3].i = q__1.i;
  1039. /* L170: */
  1040. }
  1041. /* L180: */
  1042. }
  1043. }
  1044. /* Step (2R): if SQRE = 1, apply back the rotation that is */
  1045. /* related to the right null space of the subproblem. */
  1046. if (*sqre == 1) {
  1047. ccopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
  1048. csrot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__,
  1049. s);
  1050. }
  1051. if (*k < f2cmax(m,n)) {
  1052. i__1 = n - *k;
  1053. clacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 +
  1054. bx_dim1], ldbx);
  1055. }
  1056. /* Step (3R): permute rows of B. */
  1057. ccopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
  1058. if (*sqre == 1) {
  1059. ccopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
  1060. }
  1061. i__1 = n;
  1062. for (i__ = 2; i__ <= i__1; ++i__) {
  1063. ccopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1],
  1064. ldb);
  1065. /* L190: */
  1066. }
  1067. /* Step (4R): apply back the Givens rotations performed. */
  1068. for (i__ = *givptr; i__ >= 1; --i__) {
  1069. r__1 = -givnum[i__ + givnum_dim1];
  1070. csrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
  1071. b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ +
  1072. (givnum_dim1 << 1)], &r__1);
  1073. /* L200: */
  1074. }
  1075. }
  1076. return;
  1077. /* End of CLALS0 */
  1078. } /* clals0_ */