You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgesvx.c 38 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief <b> CGESVX computes the solution to system of linear equations A * X = B for GE matrices</b> */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CGESVX + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvx.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvx.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvx.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, */
  504. /* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, */
  505. /* WORK, RWORK, INFO ) */
  506. /* CHARACTER EQUED, FACT, TRANS */
  507. /* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS */
  508. /* REAL RCOND */
  509. /* INTEGER IPIV( * ) */
  510. /* REAL BERR( * ), C( * ), FERR( * ), R( * ), */
  511. /* $ RWORK( * ) */
  512. /* COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
  513. /* $ WORK( * ), X( LDX, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > CGESVX uses the LU factorization to compute the solution to a complex */
  520. /* > system of linear equations */
  521. /* > A * X = B, */
  522. /* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
  523. /* > */
  524. /* > Error bounds on the solution and a condition estimate are also */
  525. /* > provided. */
  526. /* > \endverbatim */
  527. /* > \par Description: */
  528. /* ================= */
  529. /* > */
  530. /* > \verbatim */
  531. /* > */
  532. /* > The following steps are performed: */
  533. /* > */
  534. /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
  535. /* > the system: */
  536. /* > TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
  537. /* > TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
  538. /* > TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
  539. /* > Whether or not the system will be equilibrated depends on the */
  540. /* > scaling of the matrix A, but if equilibration is used, A is */
  541. /* > overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
  542. /* > or diag(C)*B (if TRANS = 'T' or 'C'). */
  543. /* > */
  544. /* > 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the */
  545. /* > matrix A (after equilibration if FACT = 'E') as */
  546. /* > A = P * L * U, */
  547. /* > where P is a permutation matrix, L is a unit lower triangular */
  548. /* > matrix, and U is upper triangular. */
  549. /* > */
  550. /* > 3. If some U(i,i)=0, so that U is exactly singular, then the routine */
  551. /* > returns with INFO = i. Otherwise, the factored form of A is used */
  552. /* > to estimate the condition number of the matrix A. If the */
  553. /* > reciprocal of the condition number is less than machine precision, */
  554. /* > INFO = N+1 is returned as a warning, but the routine still goes on */
  555. /* > to solve for X and compute error bounds as described below. */
  556. /* > */
  557. /* > 4. The system of equations is solved for X using the factored form */
  558. /* > of A. */
  559. /* > */
  560. /* > 5. Iterative refinement is applied to improve the computed solution */
  561. /* > matrix and calculate error bounds and backward error estimates */
  562. /* > for it. */
  563. /* > */
  564. /* > 6. If equilibration was used, the matrix X is premultiplied by */
  565. /* > diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
  566. /* > that it solves the original system before equilibration. */
  567. /* > \endverbatim */
  568. /* Arguments: */
  569. /* ========== */
  570. /* > \param[in] FACT */
  571. /* > \verbatim */
  572. /* > FACT is CHARACTER*1 */
  573. /* > Specifies whether or not the factored form of the matrix A is */
  574. /* > supplied on entry, and if not, whether the matrix A should be */
  575. /* > equilibrated before it is factored. */
  576. /* > = 'F': On entry, AF and IPIV contain the factored form of A. */
  577. /* > If EQUED is not 'N', the matrix A has been */
  578. /* > equilibrated with scaling factors given by R and C. */
  579. /* > A, AF, and IPIV are not modified. */
  580. /* > = 'N': The matrix A will be copied to AF and factored. */
  581. /* > = 'E': The matrix A will be equilibrated if necessary, then */
  582. /* > copied to AF and factored. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] TRANS */
  586. /* > \verbatim */
  587. /* > TRANS is CHARACTER*1 */
  588. /* > Specifies the form of the system of equations: */
  589. /* > = 'N': A * X = B (No transpose) */
  590. /* > = 'T': A**T * X = B (Transpose) */
  591. /* > = 'C': A**H * X = B (Conjugate transpose) */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] N */
  595. /* > \verbatim */
  596. /* > N is INTEGER */
  597. /* > The number of linear equations, i.e., the order of the */
  598. /* > matrix A. N >= 0. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] NRHS */
  602. /* > \verbatim */
  603. /* > NRHS is INTEGER */
  604. /* > The number of right hand sides, i.e., the number of columns */
  605. /* > of the matrices B and X. NRHS >= 0. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in,out] A */
  609. /* > \verbatim */
  610. /* > A is COMPLEX array, dimension (LDA,N) */
  611. /* > On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is */
  612. /* > not 'N', then A must have been equilibrated by the scaling */
  613. /* > factors in R and/or C. A is not modified if FACT = 'F' or */
  614. /* > 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
  615. /* > */
  616. /* > On exit, if EQUED .ne. 'N', A is scaled as follows: */
  617. /* > EQUED = 'R': A := diag(R) * A */
  618. /* > EQUED = 'C': A := A * diag(C) */
  619. /* > EQUED = 'B': A := diag(R) * A * diag(C). */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] LDA */
  623. /* > \verbatim */
  624. /* > LDA is INTEGER */
  625. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in,out] AF */
  629. /* > \verbatim */
  630. /* > AF is COMPLEX array, dimension (LDAF,N) */
  631. /* > If FACT = 'F', then AF is an input argument and on entry */
  632. /* > contains the factors L and U from the factorization */
  633. /* > A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then */
  634. /* > AF is the factored form of the equilibrated matrix A. */
  635. /* > */
  636. /* > If FACT = 'N', then AF is an output argument and on exit */
  637. /* > returns the factors L and U from the factorization A = P*L*U */
  638. /* > of the original matrix A. */
  639. /* > */
  640. /* > If FACT = 'E', then AF is an output argument and on exit */
  641. /* > returns the factors L and U from the factorization A = P*L*U */
  642. /* > of the equilibrated matrix A (see the description of A for */
  643. /* > the form of the equilibrated matrix). */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[in] LDAF */
  647. /* > \verbatim */
  648. /* > LDAF is INTEGER */
  649. /* > The leading dimension of the array AF. LDAF >= f2cmax(1,N). */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[in,out] IPIV */
  653. /* > \verbatim */
  654. /* > IPIV is INTEGER array, dimension (N) */
  655. /* > If FACT = 'F', then IPIV is an input argument and on entry */
  656. /* > contains the pivot indices from the factorization A = P*L*U */
  657. /* > as computed by CGETRF; row i of the matrix was interchanged */
  658. /* > with row IPIV(i). */
  659. /* > */
  660. /* > If FACT = 'N', then IPIV is an output argument and on exit */
  661. /* > contains the pivot indices from the factorization A = P*L*U */
  662. /* > of the original matrix A. */
  663. /* > */
  664. /* > If FACT = 'E', then IPIV is an output argument and on exit */
  665. /* > contains the pivot indices from the factorization A = P*L*U */
  666. /* > of the equilibrated matrix A. */
  667. /* > \endverbatim */
  668. /* > */
  669. /* > \param[in,out] EQUED */
  670. /* > \verbatim */
  671. /* > EQUED is CHARACTER*1 */
  672. /* > Specifies the form of equilibration that was done. */
  673. /* > = 'N': No equilibration (always true if FACT = 'N'). */
  674. /* > = 'R': Row equilibration, i.e., A has been premultiplied by */
  675. /* > diag(R). */
  676. /* > = 'C': Column equilibration, i.e., A has been postmultiplied */
  677. /* > by diag(C). */
  678. /* > = 'B': Both row and column equilibration, i.e., A has been */
  679. /* > replaced by diag(R) * A * diag(C). */
  680. /* > EQUED is an input argument if FACT = 'F'; otherwise, it is an */
  681. /* > output argument. */
  682. /* > \endverbatim */
  683. /* > */
  684. /* > \param[in,out] R */
  685. /* > \verbatim */
  686. /* > R is REAL array, dimension (N) */
  687. /* > The row scale factors for A. If EQUED = 'R' or 'B', A is */
  688. /* > multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
  689. /* > is not accessed. R is an input argument if FACT = 'F'; */
  690. /* > otherwise, R is an output argument. If FACT = 'F' and */
  691. /* > EQUED = 'R' or 'B', each element of R must be positive. */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[in,out] C */
  695. /* > \verbatim */
  696. /* > C is REAL array, dimension (N) */
  697. /* > The column scale factors for A. If EQUED = 'C' or 'B', A is */
  698. /* > multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
  699. /* > is not accessed. C is an input argument if FACT = 'F'; */
  700. /* > otherwise, C is an output argument. If FACT = 'F' and */
  701. /* > EQUED = 'C' or 'B', each element of C must be positive. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[in,out] B */
  705. /* > \verbatim */
  706. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  707. /* > On entry, the N-by-NRHS right hand side matrix B. */
  708. /* > On exit, */
  709. /* > if EQUED = 'N', B is not modified; */
  710. /* > if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
  711. /* > diag(R)*B; */
  712. /* > if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
  713. /* > overwritten by diag(C)*B. */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[in] LDB */
  717. /* > \verbatim */
  718. /* > LDB is INTEGER */
  719. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  720. /* > \endverbatim */
  721. /* > */
  722. /* > \param[out] X */
  723. /* > \verbatim */
  724. /* > X is COMPLEX array, dimension (LDX,NRHS) */
  725. /* > If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X */
  726. /* > to the original system of equations. Note that A and B are */
  727. /* > modified on exit if EQUED .ne. 'N', and the solution to the */
  728. /* > equilibrated system is inv(diag(C))*X if TRANS = 'N' and */
  729. /* > EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' */
  730. /* > and EQUED = 'R' or 'B'. */
  731. /* > \endverbatim */
  732. /* > */
  733. /* > \param[in] LDX */
  734. /* > \verbatim */
  735. /* > LDX is INTEGER */
  736. /* > The leading dimension of the array X. LDX >= f2cmax(1,N). */
  737. /* > \endverbatim */
  738. /* > */
  739. /* > \param[out] RCOND */
  740. /* > \verbatim */
  741. /* > RCOND is REAL */
  742. /* > The estimate of the reciprocal condition number of the matrix */
  743. /* > A after equilibration (if done). If RCOND is less than the */
  744. /* > machine precision (in particular, if RCOND = 0), the matrix */
  745. /* > is singular to working precision. This condition is */
  746. /* > indicated by a return code of INFO > 0. */
  747. /* > \endverbatim */
  748. /* > */
  749. /* > \param[out] FERR */
  750. /* > \verbatim */
  751. /* > FERR is REAL array, dimension (NRHS) */
  752. /* > The estimated forward error bound for each solution vector */
  753. /* > X(j) (the j-th column of the solution matrix X). */
  754. /* > If XTRUE is the true solution corresponding to X(j), FERR(j) */
  755. /* > is an estimated upper bound for the magnitude of the largest */
  756. /* > element in (X(j) - XTRUE) divided by the magnitude of the */
  757. /* > largest element in X(j). The estimate is as reliable as */
  758. /* > the estimate for RCOND, and is almost always a slight */
  759. /* > overestimate of the true error. */
  760. /* > \endverbatim */
  761. /* > */
  762. /* > \param[out] BERR */
  763. /* > \verbatim */
  764. /* > BERR is REAL array, dimension (NRHS) */
  765. /* > The componentwise relative backward error of each solution */
  766. /* > vector X(j) (i.e., the smallest relative change in */
  767. /* > any element of A or B that makes X(j) an exact solution). */
  768. /* > \endverbatim */
  769. /* > */
  770. /* > \param[out] WORK */
  771. /* > \verbatim */
  772. /* > WORK is COMPLEX array, dimension (2*N) */
  773. /* > \endverbatim */
  774. /* > */
  775. /* > \param[out] RWORK */
  776. /* > \verbatim */
  777. /* > RWORK is REAL array, dimension (2*N) */
  778. /* > On exit, RWORK(1) contains the reciprocal pivot growth */
  779. /* > factor norm(A)/norm(U). The "f2cmax absolute element" norm is */
  780. /* > used. If RWORK(1) is much less than 1, then the stability */
  781. /* > of the LU factorization of the (equilibrated) matrix A */
  782. /* > could be poor. This also means that the solution X, condition */
  783. /* > estimator RCOND, and forward error bound FERR could be */
  784. /* > unreliable. If factorization fails with 0<INFO<=N, then */
  785. /* > RWORK(1) contains the reciprocal pivot growth factor for the */
  786. /* > leading INFO columns of A. */
  787. /* > \endverbatim */
  788. /* > */
  789. /* > \param[out] INFO */
  790. /* > \verbatim */
  791. /* > INFO is INTEGER */
  792. /* > = 0: successful exit */
  793. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  794. /* > > 0: if INFO = i, and i is */
  795. /* > <= N: U(i,i) is exactly zero. The factorization has */
  796. /* > been completed, but the factor U is exactly */
  797. /* > singular, so the solution and error bounds */
  798. /* > could not be computed. RCOND = 0 is returned. */
  799. /* > = N+1: U is nonsingular, but RCOND is less than machine */
  800. /* > precision, meaning that the matrix is singular */
  801. /* > to working precision. Nevertheless, the */
  802. /* > solution and error bounds are computed because */
  803. /* > there are a number of situations where the */
  804. /* > computed solution can be more accurate than the */
  805. /* > value of RCOND would suggest. */
  806. /* > \endverbatim */
  807. /* Authors: */
  808. /* ======== */
  809. /* > \author Univ. of Tennessee */
  810. /* > \author Univ. of California Berkeley */
  811. /* > \author Univ. of Colorado Denver */
  812. /* > \author NAG Ltd. */
  813. /* > \date April 2012 */
  814. /* > \ingroup complexGEsolve */
  815. /* ===================================================================== */
  816. /* Subroutine */ void cgesvx_(char *fact, char *trans, integer *n, integer *
  817. nrhs, complex *a, integer *lda, complex *af, integer *ldaf, integer *
  818. ipiv, char *equed, real *r__, real *c__, complex *b, integer *ldb,
  819. complex *x, integer *ldx, real *rcond, real *ferr, real *berr,
  820. complex *work, real *rwork, integer *info)
  821. {
  822. /* System generated locals */
  823. integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
  824. x_offset, i__1, i__2, i__3, i__4, i__5;
  825. real r__1, r__2;
  826. complex q__1;
  827. /* Local variables */
  828. real amax;
  829. char norm[1];
  830. integer i__, j;
  831. extern logical lsame_(char *, char *);
  832. real rcmin, rcmax, anorm;
  833. logical equil;
  834. extern real clange_(char *, integer *, integer *, complex *, integer *,
  835. real *);
  836. extern /* Subroutine */ void claqge_(integer *, integer *, complex *,
  837. integer *, real *, real *, real *, real *, real *, char *)
  838. , cgecon_(char *, integer *, complex *, integer *, real *, real *,
  839. complex *, real *, integer *);
  840. real colcnd;
  841. extern real slamch_(char *);
  842. extern /* Subroutine */ void cgeequ_(integer *, integer *, complex *,
  843. integer *, real *, real *, real *, real *, real *, integer *);
  844. logical nofact;
  845. extern /* Subroutine */ void cgerfs_(char *, integer *, integer *, complex
  846. *, integer *, complex *, integer *, integer *, complex *, integer
  847. *, complex *, integer *, real *, real *, complex *, real *,
  848. integer *);
  849. extern int cgetrf_(integer *, integer *, complex *,
  850. integer *, integer *, integer *);
  851. extern void clacpy_(char *, integer *,
  852. integer *, complex *, integer *, complex *, integer *);
  853. extern int xerbla_(char *, integer *, ftnlen);
  854. real bignum;
  855. extern real clantr_(char *, char *, char *, integer *, integer *, complex
  856. *, integer *, real *);
  857. integer infequ;
  858. logical colequ;
  859. extern /* Subroutine */ int cgetrs_(char *, integer *, integer *, complex
  860. *, integer *, integer *, complex *, integer *, integer *);
  861. real rowcnd;
  862. logical notran;
  863. real smlnum;
  864. logical rowequ;
  865. real rpvgrw;
  866. /* -- LAPACK driver routine (version 3.7.0) -- */
  867. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  868. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  869. /* April 2012 */
  870. /* ===================================================================== */
  871. /* Parameter adjustments */
  872. a_dim1 = *lda;
  873. a_offset = 1 + a_dim1 * 1;
  874. a -= a_offset;
  875. af_dim1 = *ldaf;
  876. af_offset = 1 + af_dim1 * 1;
  877. af -= af_offset;
  878. --ipiv;
  879. --r__;
  880. --c__;
  881. b_dim1 = *ldb;
  882. b_offset = 1 + b_dim1 * 1;
  883. b -= b_offset;
  884. x_dim1 = *ldx;
  885. x_offset = 1 + x_dim1 * 1;
  886. x -= x_offset;
  887. --ferr;
  888. --berr;
  889. --work;
  890. --rwork;
  891. /* Function Body */
  892. *info = 0;
  893. nofact = lsame_(fact, "N");
  894. equil = lsame_(fact, "E");
  895. notran = lsame_(trans, "N");
  896. if (nofact || equil) {
  897. *(unsigned char *)equed = 'N';
  898. rowequ = FALSE_;
  899. colequ = FALSE_;
  900. } else {
  901. rowequ = lsame_(equed, "R") || lsame_(equed,
  902. "B");
  903. colequ = lsame_(equed, "C") || lsame_(equed,
  904. "B");
  905. smlnum = slamch_("Safe minimum");
  906. bignum = 1.f / smlnum;
  907. }
  908. /* Test the input parameters. */
  909. if (! nofact && ! equil && ! lsame_(fact, "F")) {
  910. *info = -1;
  911. } else if (! notran && ! lsame_(trans, "T") && !
  912. lsame_(trans, "C")) {
  913. *info = -2;
  914. } else if (*n < 0) {
  915. *info = -3;
  916. } else if (*nrhs < 0) {
  917. *info = -4;
  918. } else if (*lda < f2cmax(1,*n)) {
  919. *info = -6;
  920. } else if (*ldaf < f2cmax(1,*n)) {
  921. *info = -8;
  922. } else if (lsame_(fact, "F") && ! (rowequ || colequ
  923. || lsame_(equed, "N"))) {
  924. *info = -10;
  925. } else {
  926. if (rowequ) {
  927. rcmin = bignum;
  928. rcmax = 0.f;
  929. i__1 = *n;
  930. for (j = 1; j <= i__1; ++j) {
  931. /* Computing MIN */
  932. r__1 = rcmin, r__2 = r__[j];
  933. rcmin = f2cmin(r__1,r__2);
  934. /* Computing MAX */
  935. r__1 = rcmax, r__2 = r__[j];
  936. rcmax = f2cmax(r__1,r__2);
  937. /* L10: */
  938. }
  939. if (rcmin <= 0.f) {
  940. *info = -11;
  941. } else if (*n > 0) {
  942. rowcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  943. } else {
  944. rowcnd = 1.f;
  945. }
  946. }
  947. if (colequ && *info == 0) {
  948. rcmin = bignum;
  949. rcmax = 0.f;
  950. i__1 = *n;
  951. for (j = 1; j <= i__1; ++j) {
  952. /* Computing MIN */
  953. r__1 = rcmin, r__2 = c__[j];
  954. rcmin = f2cmin(r__1,r__2);
  955. /* Computing MAX */
  956. r__1 = rcmax, r__2 = c__[j];
  957. rcmax = f2cmax(r__1,r__2);
  958. /* L20: */
  959. }
  960. if (rcmin <= 0.f) {
  961. *info = -12;
  962. } else if (*n > 0) {
  963. colcnd = f2cmax(rcmin,smlnum) / f2cmin(rcmax,bignum);
  964. } else {
  965. colcnd = 1.f;
  966. }
  967. }
  968. if (*info == 0) {
  969. if (*ldb < f2cmax(1,*n)) {
  970. *info = -14;
  971. } else if (*ldx < f2cmax(1,*n)) {
  972. *info = -16;
  973. }
  974. }
  975. }
  976. if (*info != 0) {
  977. i__1 = -(*info);
  978. xerbla_("CGESVX", &i__1, (ftnlen)6);
  979. return;
  980. }
  981. if (equil) {
  982. /* Compute row and column scalings to equilibrate the matrix A. */
  983. cgeequ_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &colcnd, &
  984. amax, &infequ);
  985. if (infequ == 0) {
  986. /* Equilibrate the matrix. */
  987. claqge_(n, n, &a[a_offset], lda, &r__[1], &c__[1], &rowcnd, &
  988. colcnd, &amax, equed);
  989. rowequ = lsame_(equed, "R") || lsame_(equed,
  990. "B");
  991. colequ = lsame_(equed, "C") || lsame_(equed,
  992. "B");
  993. }
  994. }
  995. /* Scale the right hand side. */
  996. if (notran) {
  997. if (rowequ) {
  998. i__1 = *nrhs;
  999. for (j = 1; j <= i__1; ++j) {
  1000. i__2 = *n;
  1001. for (i__ = 1; i__ <= i__2; ++i__) {
  1002. i__3 = i__ + j * b_dim1;
  1003. i__4 = i__;
  1004. i__5 = i__ + j * b_dim1;
  1005. q__1.r = r__[i__4] * b[i__5].r, q__1.i = r__[i__4] * b[
  1006. i__5].i;
  1007. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1008. /* L30: */
  1009. }
  1010. /* L40: */
  1011. }
  1012. }
  1013. } else if (colequ) {
  1014. i__1 = *nrhs;
  1015. for (j = 1; j <= i__1; ++j) {
  1016. i__2 = *n;
  1017. for (i__ = 1; i__ <= i__2; ++i__) {
  1018. i__3 = i__ + j * b_dim1;
  1019. i__4 = i__;
  1020. i__5 = i__ + j * b_dim1;
  1021. q__1.r = c__[i__4] * b[i__5].r, q__1.i = c__[i__4] * b[i__5]
  1022. .i;
  1023. b[i__3].r = q__1.r, b[i__3].i = q__1.i;
  1024. /* L50: */
  1025. }
  1026. /* L60: */
  1027. }
  1028. }
  1029. if (nofact || equil) {
  1030. /* Compute the LU factorization of A. */
  1031. clacpy_("Full", n, n, &a[a_offset], lda, &af[af_offset], ldaf);
  1032. cgetrf_(n, n, &af[af_offset], ldaf, &ipiv[1], info);
  1033. /* Return if INFO is non-zero. */
  1034. if (*info > 0) {
  1035. /* Compute the reciprocal pivot growth factor of the */
  1036. /* leading rank-deficient INFO columns of A. */
  1037. rpvgrw = clantr_("M", "U", "N", info, info, &af[af_offset], ldaf,
  1038. &rwork[1]);
  1039. if (rpvgrw == 0.f) {
  1040. rpvgrw = 1.f;
  1041. } else {
  1042. rpvgrw = clange_("M", n, info, &a[a_offset], lda, &rwork[1]) / rpvgrw;
  1043. }
  1044. rwork[1] = rpvgrw;
  1045. *rcond = 0.f;
  1046. return;
  1047. }
  1048. }
  1049. /* Compute the norm of the matrix A and the */
  1050. /* reciprocal pivot growth factor RPVGRW. */
  1051. if (notran) {
  1052. *(unsigned char *)norm = '1';
  1053. } else {
  1054. *(unsigned char *)norm = 'I';
  1055. }
  1056. anorm = clange_(norm, n, n, &a[a_offset], lda, &rwork[1]);
  1057. rpvgrw = clantr_("M", "U", "N", n, n, &af[af_offset], ldaf, &rwork[1]);
  1058. if (rpvgrw == 0.f) {
  1059. rpvgrw = 1.f;
  1060. } else {
  1061. rpvgrw = clange_("M", n, n, &a[a_offset], lda, &rwork[1]) /
  1062. rpvgrw;
  1063. }
  1064. /* Compute the reciprocal of the condition number of A. */
  1065. cgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &rwork[1],
  1066. info);
  1067. /* Compute the solution matrix X. */
  1068. clacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
  1069. cgetrs_(trans, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
  1070. info);
  1071. /* Use iterative refinement to improve the computed solution and */
  1072. /* compute error bounds and backward error estimates for it. */
  1073. cgerfs_(trans, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &ipiv[1],
  1074. &b[b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[
  1075. 1], &rwork[1], info);
  1076. /* Transform the solution matrix X to a solution of the original */
  1077. /* system. */
  1078. if (notran) {
  1079. if (colequ) {
  1080. i__1 = *nrhs;
  1081. for (j = 1; j <= i__1; ++j) {
  1082. i__2 = *n;
  1083. for (i__ = 1; i__ <= i__2; ++i__) {
  1084. i__3 = i__ + j * x_dim1;
  1085. i__4 = i__;
  1086. i__5 = i__ + j * x_dim1;
  1087. q__1.r = c__[i__4] * x[i__5].r, q__1.i = c__[i__4] * x[
  1088. i__5].i;
  1089. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1090. /* L70: */
  1091. }
  1092. /* L80: */
  1093. }
  1094. i__1 = *nrhs;
  1095. for (j = 1; j <= i__1; ++j) {
  1096. ferr[j] /= colcnd;
  1097. /* L90: */
  1098. }
  1099. }
  1100. } else if (rowequ) {
  1101. i__1 = *nrhs;
  1102. for (j = 1; j <= i__1; ++j) {
  1103. i__2 = *n;
  1104. for (i__ = 1; i__ <= i__2; ++i__) {
  1105. i__3 = i__ + j * x_dim1;
  1106. i__4 = i__;
  1107. i__5 = i__ + j * x_dim1;
  1108. q__1.r = r__[i__4] * x[i__5].r, q__1.i = r__[i__4] * x[i__5]
  1109. .i;
  1110. x[i__3].r = q__1.r, x[i__3].i = q__1.i;
  1111. /* L100: */
  1112. }
  1113. /* L110: */
  1114. }
  1115. i__1 = *nrhs;
  1116. for (j = 1; j <= i__1; ++j) {
  1117. ferr[j] /= rowcnd;
  1118. /* L120: */
  1119. }
  1120. }
  1121. /* Set INFO = N+1 if the matrix is singular to working precision. */
  1122. if (*rcond < slamch_("Epsilon")) {
  1123. *info = *n + 1;
  1124. }
  1125. rwork[1] = rpvgrw;
  1126. return;
  1127. /* End of CGESVX */
  1128. } /* cgesvx_ */