You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cbdsqr.c 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static doublereal c_b15 = -.125;
  491. static integer c__1 = 1;
  492. static real c_b49 = 1.f;
  493. static real c_b72 = -1.f;
  494. /* > \brief \b CBDSQR */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download CBDSQR + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbdsqr.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbdsqr.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbdsqr.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
  513. /* LDU, C, LDC, RWORK, INFO ) */
  514. /* CHARACTER UPLO */
  515. /* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
  516. /* REAL D( * ), E( * ), RWORK( * ) */
  517. /* COMPLEX C( LDC, * ), U( LDU, * ), VT( LDVT, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CBDSQR computes the singular values and, optionally, the right and/or */
  524. /* > left singular vectors from the singular value decomposition (SVD) of */
  525. /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
  526. /* > zero-shift QR algorithm. The SVD of B has the form */
  527. /* > */
  528. /* > B = Q * S * P**H */
  529. /* > */
  530. /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
  531. /* > matrix of left singular vectors, and P is an orthogonal matrix of */
  532. /* > right singular vectors. If left singular vectors are requested, this */
  533. /* > subroutine actually returns U*Q instead of Q, and, if right singular */
  534. /* > vectors are requested, this subroutine returns P**H*VT instead of */
  535. /* > P**H, for given complex input matrices U and VT. When U and VT are */
  536. /* > the unitary matrices that reduce a general matrix A to bidiagonal */
  537. /* > form: A = U*B*VT, as computed by CGEBRD, then */
  538. /* > */
  539. /* > A = (U*Q) * S * (P**H*VT) */
  540. /* > */
  541. /* > is the SVD of A. Optionally, the subroutine may also compute Q**H*C */
  542. /* > for a given complex input matrix C. */
  543. /* > */
  544. /* > See "Computing Small Singular Values of Bidiagonal Matrices With */
  545. /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
  546. /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
  547. /* > no. 5, pp. 873-912, Sept 1990) and */
  548. /* > "Accurate singular values and differential qd algorithms," by */
  549. /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
  550. /* > Department, University of California at Berkeley, July 1992 */
  551. /* > for a detailed description of the algorithm. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] UPLO */
  556. /* > \verbatim */
  557. /* > UPLO is CHARACTER*1 */
  558. /* > = 'U': B is upper bidiagonal; */
  559. /* > = 'L': B is lower bidiagonal. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrix B. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] NCVT */
  569. /* > \verbatim */
  570. /* > NCVT is INTEGER */
  571. /* > The number of columns of the matrix VT. NCVT >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] NRU */
  575. /* > \verbatim */
  576. /* > NRU is INTEGER */
  577. /* > The number of rows of the matrix U. NRU >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] NCC */
  581. /* > \verbatim */
  582. /* > NCC is INTEGER */
  583. /* > The number of columns of the matrix C. NCC >= 0. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] D */
  587. /* > \verbatim */
  588. /* > D is REAL array, dimension (N) */
  589. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  590. /* > On exit, if INFO=0, the singular values of B in decreasing */
  591. /* > order. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] E */
  595. /* > \verbatim */
  596. /* > E is REAL array, dimension (N-1) */
  597. /* > On entry, the N-1 offdiagonal elements of the bidiagonal */
  598. /* > matrix B. */
  599. /* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
  600. /* > will contain the diagonal and superdiagonal elements of a */
  601. /* > bidiagonal matrix orthogonally equivalent to the one given */
  602. /* > as input. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] VT */
  606. /* > \verbatim */
  607. /* > VT is COMPLEX array, dimension (LDVT, NCVT) */
  608. /* > On entry, an N-by-NCVT matrix VT. */
  609. /* > On exit, VT is overwritten by P**H * VT. */
  610. /* > Not referenced if NCVT = 0. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDVT */
  614. /* > \verbatim */
  615. /* > LDVT is INTEGER */
  616. /* > The leading dimension of the array VT. */
  617. /* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] U */
  621. /* > \verbatim */
  622. /* > U is COMPLEX array, dimension (LDU, N) */
  623. /* > On entry, an NRU-by-N matrix U. */
  624. /* > On exit, U is overwritten by U * Q. */
  625. /* > Not referenced if NRU = 0. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDU */
  629. /* > \verbatim */
  630. /* > LDU is INTEGER */
  631. /* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in,out] C */
  635. /* > \verbatim */
  636. /* > C is COMPLEX array, dimension (LDC, NCC) */
  637. /* > On entry, an N-by-NCC matrix C. */
  638. /* > On exit, C is overwritten by Q**H * C. */
  639. /* > Not referenced if NCC = 0. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDC */
  643. /* > \verbatim */
  644. /* > LDC is INTEGER */
  645. /* > The leading dimension of the array C. */
  646. /* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] RWORK */
  650. /* > \verbatim */
  651. /* > RWORK is REAL array, dimension (4*N) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] INFO */
  655. /* > \verbatim */
  656. /* > INFO is INTEGER */
  657. /* > = 0: successful exit */
  658. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  659. /* > > 0: the algorithm did not converge; D and E contain the */
  660. /* > elements of a bidiagonal matrix which is orthogonally */
  661. /* > similar to the input matrix B; if INFO = i, i */
  662. /* > elements of E have not converged to zero. */
  663. /* > \endverbatim */
  664. /* > \par Internal Parameters: */
  665. /* ========================= */
  666. /* > */
  667. /* > \verbatim */
  668. /* > TOLMUL REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
  669. /* > TOLMUL controls the convergence criterion of the QR loop. */
  670. /* > If it is positive, TOLMUL*EPS is the desired relative */
  671. /* > precision in the computed singular values. */
  672. /* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
  673. /* > desired absolute accuracy in the computed singular */
  674. /* > values (corresponds to relative accuracy */
  675. /* > abs(TOLMUL*EPS) in the largest singular value. */
  676. /* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
  677. /* > between 10 (for fast convergence) and .1/EPS */
  678. /* > (for there to be some accuracy in the results). */
  679. /* > Default is to lose at either one eighth or 2 of the */
  680. /* > available decimal digits in each computed singular value */
  681. /* > (whichever is smaller). */
  682. /* > */
  683. /* > MAXITR INTEGER, default = 6 */
  684. /* > MAXITR controls the maximum number of passes of the */
  685. /* > algorithm through its inner loop. The algorithms stops */
  686. /* > (and so fails to converge) if the number of passes */
  687. /* > through the inner loop exceeds MAXITR*N**2. */
  688. /* > \endverbatim */
  689. /* Authors: */
  690. /* ======== */
  691. /* > \author Univ. of Tennessee */
  692. /* > \author Univ. of California Berkeley */
  693. /* > \author Univ. of Colorado Denver */
  694. /* > \author NAG Ltd. */
  695. /* > \date December 2016 */
  696. /* > \ingroup complexOTHERcomputational */
  697. /* ===================================================================== */
  698. /* Subroutine */ void cbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
  699. nru, integer *ncc, real *d__, real *e, complex *vt, integer *ldvt,
  700. complex *u, integer *ldu, complex *c__, integer *ldc, real *rwork,
  701. integer *info)
  702. {
  703. /* System generated locals */
  704. integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  705. i__2;
  706. real r__1, r__2, r__3, r__4;
  707. doublereal d__1;
  708. /* Local variables */
  709. real abse;
  710. integer idir;
  711. real abss;
  712. integer oldm;
  713. real cosl;
  714. integer isub, iter;
  715. real unfl, sinl, cosr, smin, smax, sinr;
  716. extern /* Subroutine */ void slas2_(real *, real *, real *, real *, real *)
  717. ;
  718. real f, g, h__;
  719. integer i__, j, m;
  720. real r__;
  721. extern logical lsame_(char *, char *);
  722. real oldcs;
  723. extern /* Subroutine */ void clasr_(char *, char *, char *, integer *,
  724. integer *, real *, real *, complex *, integer *);
  725. integer oldll;
  726. real shift, sigmn, oldsn;
  727. extern /* Subroutine */ void cswap_(integer *, complex *, integer *,
  728. complex *, integer *);
  729. integer maxit;
  730. real sminl, sigmx;
  731. logical lower;
  732. extern /* Subroutine */ void csrot_(integer *, complex *, integer *,
  733. complex *, integer *, real *, real *), slasq1_(integer *, real *,
  734. real *, real *, integer *), slasv2_(real *, real *, real *, real *
  735. , real *, real *, real *, real *, real *);
  736. real cs;
  737. integer ll;
  738. real sn, mu;
  739. extern real slamch_(char *);
  740. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  741. *);
  742. extern int xerbla_(char *, integer *, ftnlen);
  743. real sminoa;
  744. extern /* Subroutine */ void slartg_(real *, real *, real *, real *, real *
  745. );
  746. real thresh;
  747. logical rotate;
  748. integer nm1;
  749. real tolmul;
  750. integer nm12, nm13, lll;
  751. real eps, sll, tol;
  752. /* -- LAPACK computational routine (version 3.7.0) -- */
  753. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  754. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  755. /* December 2016 */
  756. /* ===================================================================== */
  757. /* Test the input parameters. */
  758. /* Parameter adjustments */
  759. --d__;
  760. --e;
  761. vt_dim1 = *ldvt;
  762. vt_offset = 1 + vt_dim1 * 1;
  763. vt -= vt_offset;
  764. u_dim1 = *ldu;
  765. u_offset = 1 + u_dim1 * 1;
  766. u -= u_offset;
  767. c_dim1 = *ldc;
  768. c_offset = 1 + c_dim1 * 1;
  769. c__ -= c_offset;
  770. --rwork;
  771. /* Function Body */
  772. *info = 0;
  773. lower = lsame_(uplo, "L");
  774. if (! lsame_(uplo, "U") && ! lower) {
  775. *info = -1;
  776. } else if (*n < 0) {
  777. *info = -2;
  778. } else if (*ncvt < 0) {
  779. *info = -3;
  780. } else if (*nru < 0) {
  781. *info = -4;
  782. } else if (*ncc < 0) {
  783. *info = -5;
  784. } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
  785. *info = -9;
  786. } else if (*ldu < f2cmax(1,*nru)) {
  787. *info = -11;
  788. } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
  789. *info = -13;
  790. }
  791. if (*info != 0) {
  792. i__1 = -(*info);
  793. xerbla_("CBDSQR", &i__1, (ftnlen)6);
  794. return;
  795. }
  796. if (*n == 0) {
  797. return;
  798. }
  799. if (*n == 1) {
  800. goto L160;
  801. }
  802. /* ROTATE is true if any singular vectors desired, false otherwise */
  803. rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
  804. /* If no singular vectors desired, use qd algorithm */
  805. if (! rotate) {
  806. slasq1_(n, &d__[1], &e[1], &rwork[1], info);
  807. /* If INFO equals 2, dqds didn't finish, try to finish */
  808. if (*info != 2) {
  809. return;
  810. }
  811. *info = 0;
  812. }
  813. nm1 = *n - 1;
  814. nm12 = nm1 + nm1;
  815. nm13 = nm12 + nm1;
  816. idir = 0;
  817. /* Get machine constants */
  818. eps = slamch_("Epsilon");
  819. unfl = slamch_("Safe minimum");
  820. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  821. /* by applying Givens rotations on the left */
  822. if (lower) {
  823. i__1 = *n - 1;
  824. for (i__ = 1; i__ <= i__1; ++i__) {
  825. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  826. d__[i__] = r__;
  827. e[i__] = sn * d__[i__ + 1];
  828. d__[i__ + 1] = cs * d__[i__ + 1];
  829. rwork[i__] = cs;
  830. rwork[nm1 + i__] = sn;
  831. /* L10: */
  832. }
  833. /* Update singular vectors if desired */
  834. if (*nru > 0) {
  835. clasr_("R", "V", "F", nru, n, &rwork[1], &rwork[*n], &u[u_offset],
  836. ldu);
  837. }
  838. if (*ncc > 0) {
  839. clasr_("L", "V", "F", n, ncc, &rwork[1], &rwork[*n], &c__[
  840. c_offset], ldc);
  841. }
  842. }
  843. /* Compute singular values to relative accuracy TOL */
  844. /* (By setting TOL to be negative, algorithm will compute */
  845. /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
  846. /* Computing MAX */
  847. /* Computing MIN */
  848. d__1 = (doublereal) eps;
  849. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
  850. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  851. tolmul = f2cmax(r__1,r__2);
  852. tol = tolmul * eps;
  853. /* Compute approximate maximum, minimum singular values */
  854. smax = 0.f;
  855. i__1 = *n;
  856. for (i__ = 1; i__ <= i__1; ++i__) {
  857. /* Computing MAX */
  858. r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
  859. smax = f2cmax(r__2,r__3);
  860. /* L20: */
  861. }
  862. i__1 = *n - 1;
  863. for (i__ = 1; i__ <= i__1; ++i__) {
  864. /* Computing MAX */
  865. r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
  866. smax = f2cmax(r__2,r__3);
  867. /* L30: */
  868. }
  869. sminl = 0.f;
  870. if (tol >= 0.f) {
  871. /* Relative accuracy desired */
  872. sminoa = abs(d__[1]);
  873. if (sminoa == 0.f) {
  874. goto L50;
  875. }
  876. mu = sminoa;
  877. i__1 = *n;
  878. for (i__ = 2; i__ <= i__1; ++i__) {
  879. mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
  880. , abs(r__1))));
  881. sminoa = f2cmin(sminoa,mu);
  882. if (sminoa == 0.f) {
  883. goto L50;
  884. }
  885. /* L40: */
  886. }
  887. L50:
  888. sminoa /= sqrt((real) (*n));
  889. /* Computing MAX */
  890. r__1 = tol * sminoa, r__2 = *n * 6 * *n * unfl;
  891. thresh = f2cmax(r__1,r__2);
  892. } else {
  893. /* Absolute accuracy desired */
  894. /* Computing MAX */
  895. r__1 = abs(tol) * smax, r__2 = *n * 6 * *n * unfl;
  896. thresh = f2cmax(r__1,r__2);
  897. }
  898. /* Prepare for main iteration loop for the singular values */
  899. /* (MAXIT is the maximum number of passes through the inner */
  900. /* loop permitted before nonconvergence signalled.) */
  901. maxit = *n * 6 * *n;
  902. iter = 0;
  903. oldll = -1;
  904. oldm = -1;
  905. /* M points to last element of unconverged part of matrix */
  906. m = *n;
  907. /* Begin main iteration loop */
  908. L60:
  909. /* Check for convergence or exceeding iteration count */
  910. if (m <= 1) {
  911. goto L160;
  912. }
  913. if (iter > maxit) {
  914. goto L200;
  915. }
  916. /* Find diagonal block of matrix to work on */
  917. if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
  918. d__[m] = 0.f;
  919. }
  920. smax = (r__1 = d__[m], abs(r__1));
  921. smin = smax;
  922. i__1 = m - 1;
  923. for (lll = 1; lll <= i__1; ++lll) {
  924. ll = m - lll;
  925. abss = (r__1 = d__[ll], abs(r__1));
  926. abse = (r__1 = e[ll], abs(r__1));
  927. if (tol < 0.f && abss <= thresh) {
  928. d__[ll] = 0.f;
  929. }
  930. if (abse <= thresh) {
  931. goto L80;
  932. }
  933. smin = f2cmin(smin,abss);
  934. /* Computing MAX */
  935. r__1 = f2cmax(smax,abss);
  936. smax = f2cmax(r__1,abse);
  937. /* L70: */
  938. }
  939. ll = 0;
  940. goto L90;
  941. L80:
  942. e[ll] = 0.f;
  943. /* Matrix splits since E(LL) = 0 */
  944. if (ll == m - 1) {
  945. /* Convergence of bottom singular value, return to top of loop */
  946. --m;
  947. goto L60;
  948. }
  949. L90:
  950. ++ll;
  951. /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
  952. if (ll == m - 1) {
  953. /* 2 by 2 block, handle separately */
  954. slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
  955. &sinl, &cosl);
  956. d__[m - 1] = sigmx;
  957. e[m - 1] = 0.f;
  958. d__[m] = sigmn;
  959. /* Compute singular vectors, if desired */
  960. if (*ncvt > 0) {
  961. csrot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
  962. cosr, &sinr);
  963. }
  964. if (*nru > 0) {
  965. csrot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
  966. c__1, &cosl, &sinl);
  967. }
  968. if (*ncc > 0) {
  969. csrot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
  970. cosl, &sinl);
  971. }
  972. m += -2;
  973. goto L60;
  974. }
  975. /* If working on new submatrix, choose shift direction */
  976. /* (from larger end diagonal element towards smaller) */
  977. if (ll > oldm || m < oldll) {
  978. if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
  979. /* Chase bulge from top (big end) to bottom (small end) */
  980. idir = 1;
  981. } else {
  982. /* Chase bulge from bottom (big end) to top (small end) */
  983. idir = 2;
  984. }
  985. }
  986. /* Apply convergence tests */
  987. if (idir == 1) {
  988. /* Run convergence test in forward direction */
  989. /* First apply standard test to bottom of matrix */
  990. if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
  991. r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
  992. {
  993. e[m - 1] = 0.f;
  994. goto L60;
  995. }
  996. if (tol >= 0.f) {
  997. /* If relative accuracy desired, */
  998. /* apply convergence criterion forward */
  999. mu = (r__1 = d__[ll], abs(r__1));
  1000. sminl = mu;
  1001. i__1 = m - 1;
  1002. for (lll = ll; lll <= i__1; ++lll) {
  1003. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1004. e[lll] = 0.f;
  1005. goto L60;
  1006. }
  1007. mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
  1008. lll], abs(r__1))));
  1009. sminl = f2cmin(sminl,mu);
  1010. /* L100: */
  1011. }
  1012. }
  1013. } else {
  1014. /* Run convergence test in backward direction */
  1015. /* First apply standard test to top of matrix */
  1016. if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
  1017. ) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
  1018. e[ll] = 0.f;
  1019. goto L60;
  1020. }
  1021. if (tol >= 0.f) {
  1022. /* If relative accuracy desired, */
  1023. /* apply convergence criterion backward */
  1024. mu = (r__1 = d__[m], abs(r__1));
  1025. sminl = mu;
  1026. i__1 = ll;
  1027. for (lll = m - 1; lll >= i__1; --lll) {
  1028. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1029. e[lll] = 0.f;
  1030. goto L60;
  1031. }
  1032. mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
  1033. , abs(r__1))));
  1034. sminl = f2cmin(sminl,mu);
  1035. /* L110: */
  1036. }
  1037. }
  1038. }
  1039. oldll = ll;
  1040. oldm = m;
  1041. /* Compute shift. First, test if shifting would ruin relative */
  1042. /* accuracy, and if so set the shift to zero. */
  1043. /* Computing MAX */
  1044. r__1 = eps, r__2 = tol * .01f;
  1045. if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
  1046. /* Use a zero shift to avoid loss of relative accuracy */
  1047. shift = 0.f;
  1048. } else {
  1049. /* Compute the shift from 2-by-2 block at end of matrix */
  1050. if (idir == 1) {
  1051. sll = (r__1 = d__[ll], abs(r__1));
  1052. slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
  1053. } else {
  1054. sll = (r__1 = d__[m], abs(r__1));
  1055. slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
  1056. }
  1057. /* Test if shift negligible, and if so set to zero */
  1058. if (sll > 0.f) {
  1059. /* Computing 2nd power */
  1060. r__1 = shift / sll;
  1061. if (r__1 * r__1 < eps) {
  1062. shift = 0.f;
  1063. }
  1064. }
  1065. }
  1066. /* Increment iteration count */
  1067. iter = iter + m - ll;
  1068. /* If SHIFT = 0, do simplified QR iteration */
  1069. if (shift == 0.f) {
  1070. if (idir == 1) {
  1071. /* Chase bulge from top to bottom */
  1072. /* Save cosines and sines for later singular vector updates */
  1073. cs = 1.f;
  1074. oldcs = 1.f;
  1075. i__1 = m - 1;
  1076. for (i__ = ll; i__ <= i__1; ++i__) {
  1077. r__1 = d__[i__] * cs;
  1078. slartg_(&r__1, &e[i__], &cs, &sn, &r__);
  1079. if (i__ > ll) {
  1080. e[i__ - 1] = oldsn * r__;
  1081. }
  1082. r__1 = oldcs * r__;
  1083. r__2 = d__[i__ + 1] * sn;
  1084. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1085. rwork[i__ - ll + 1] = cs;
  1086. rwork[i__ - ll + 1 + nm1] = sn;
  1087. rwork[i__ - ll + 1 + nm12] = oldcs;
  1088. rwork[i__ - ll + 1 + nm13] = oldsn;
  1089. /* L120: */
  1090. }
  1091. h__ = d__[m] * cs;
  1092. d__[m] = h__ * oldcs;
  1093. e[m - 1] = h__ * oldsn;
  1094. /* Update singular vectors */
  1095. if (*ncvt > 0) {
  1096. i__1 = m - ll + 1;
  1097. clasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1098. ll + vt_dim1], ldvt);
  1099. }
  1100. if (*nru > 0) {
  1101. i__1 = m - ll + 1;
  1102. clasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1103. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1104. }
  1105. if (*ncc > 0) {
  1106. i__1 = m - ll + 1;
  1107. clasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1108. nm13 + 1], &c__[ll + c_dim1], ldc);
  1109. }
  1110. /* Test convergence */
  1111. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1112. e[m - 1] = 0.f;
  1113. }
  1114. } else {
  1115. /* Chase bulge from bottom to top */
  1116. /* Save cosines and sines for later singular vector updates */
  1117. cs = 1.f;
  1118. oldcs = 1.f;
  1119. i__1 = ll + 1;
  1120. for (i__ = m; i__ >= i__1; --i__) {
  1121. r__1 = d__[i__] * cs;
  1122. slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
  1123. if (i__ < m) {
  1124. e[i__] = oldsn * r__;
  1125. }
  1126. r__1 = oldcs * r__;
  1127. r__2 = d__[i__ - 1] * sn;
  1128. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1129. rwork[i__ - ll] = cs;
  1130. rwork[i__ - ll + nm1] = -sn;
  1131. rwork[i__ - ll + nm12] = oldcs;
  1132. rwork[i__ - ll + nm13] = -oldsn;
  1133. /* L130: */
  1134. }
  1135. h__ = d__[ll] * cs;
  1136. d__[ll] = h__ * oldcs;
  1137. e[ll] = h__ * oldsn;
  1138. /* Update singular vectors */
  1139. if (*ncvt > 0) {
  1140. i__1 = m - ll + 1;
  1141. clasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1142. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1143. }
  1144. if (*nru > 0) {
  1145. i__1 = m - ll + 1;
  1146. clasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1147. ll * u_dim1 + 1], ldu);
  1148. }
  1149. if (*ncc > 0) {
  1150. i__1 = m - ll + 1;
  1151. clasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1152. ll + c_dim1], ldc);
  1153. }
  1154. /* Test convergence */
  1155. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1156. e[ll] = 0.f;
  1157. }
  1158. }
  1159. } else {
  1160. /* Use nonzero shift */
  1161. if (idir == 1) {
  1162. /* Chase bulge from top to bottom */
  1163. /* Save cosines and sines for later singular vector updates */
  1164. f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
  1165. ll]) + shift / d__[ll]);
  1166. g = e[ll];
  1167. i__1 = m - 1;
  1168. for (i__ = ll; i__ <= i__1; ++i__) {
  1169. slartg_(&f, &g, &cosr, &sinr, &r__);
  1170. if (i__ > ll) {
  1171. e[i__ - 1] = r__;
  1172. }
  1173. f = cosr * d__[i__] + sinr * e[i__];
  1174. e[i__] = cosr * e[i__] - sinr * d__[i__];
  1175. g = sinr * d__[i__ + 1];
  1176. d__[i__ + 1] = cosr * d__[i__ + 1];
  1177. slartg_(&f, &g, &cosl, &sinl, &r__);
  1178. d__[i__] = r__;
  1179. f = cosl * e[i__] + sinl * d__[i__ + 1];
  1180. d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
  1181. if (i__ < m - 1) {
  1182. g = sinl * e[i__ + 1];
  1183. e[i__ + 1] = cosl * e[i__ + 1];
  1184. }
  1185. rwork[i__ - ll + 1] = cosr;
  1186. rwork[i__ - ll + 1 + nm1] = sinr;
  1187. rwork[i__ - ll + 1 + nm12] = cosl;
  1188. rwork[i__ - ll + 1 + nm13] = sinl;
  1189. /* L140: */
  1190. }
  1191. e[m - 1] = f;
  1192. /* Update singular vectors */
  1193. if (*ncvt > 0) {
  1194. i__1 = m - ll + 1;
  1195. clasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1196. ll + vt_dim1], ldvt);
  1197. }
  1198. if (*nru > 0) {
  1199. i__1 = m - ll + 1;
  1200. clasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1201. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1202. }
  1203. if (*ncc > 0) {
  1204. i__1 = m - ll + 1;
  1205. clasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1206. nm13 + 1], &c__[ll + c_dim1], ldc);
  1207. }
  1208. /* Test convergence */
  1209. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1210. e[m - 1] = 0.f;
  1211. }
  1212. } else {
  1213. /* Chase bulge from bottom to top */
  1214. /* Save cosines and sines for later singular vector updates */
  1215. f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
  1216. ) + shift / d__[m]);
  1217. g = e[m - 1];
  1218. i__1 = ll + 1;
  1219. for (i__ = m; i__ >= i__1; --i__) {
  1220. slartg_(&f, &g, &cosr, &sinr, &r__);
  1221. if (i__ < m) {
  1222. e[i__] = r__;
  1223. }
  1224. f = cosr * d__[i__] + sinr * e[i__ - 1];
  1225. e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
  1226. g = sinr * d__[i__ - 1];
  1227. d__[i__ - 1] = cosr * d__[i__ - 1];
  1228. slartg_(&f, &g, &cosl, &sinl, &r__);
  1229. d__[i__] = r__;
  1230. f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
  1231. d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
  1232. if (i__ > ll + 1) {
  1233. g = sinl * e[i__ - 2];
  1234. e[i__ - 2] = cosl * e[i__ - 2];
  1235. }
  1236. rwork[i__ - ll] = cosr;
  1237. rwork[i__ - ll + nm1] = -sinr;
  1238. rwork[i__ - ll + nm12] = cosl;
  1239. rwork[i__ - ll + nm13] = -sinl;
  1240. /* L150: */
  1241. }
  1242. e[ll] = f;
  1243. /* Test convergence */
  1244. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1245. e[ll] = 0.f;
  1246. }
  1247. /* Update singular vectors if desired */
  1248. if (*ncvt > 0) {
  1249. i__1 = m - ll + 1;
  1250. clasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1251. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1252. }
  1253. if (*nru > 0) {
  1254. i__1 = m - ll + 1;
  1255. clasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1256. ll * u_dim1 + 1], ldu);
  1257. }
  1258. if (*ncc > 0) {
  1259. i__1 = m - ll + 1;
  1260. clasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1261. ll + c_dim1], ldc);
  1262. }
  1263. }
  1264. }
  1265. /* QR iteration finished, go back and check convergence */
  1266. goto L60;
  1267. /* All singular values converged, so make them positive */
  1268. L160:
  1269. i__1 = *n;
  1270. for (i__ = 1; i__ <= i__1; ++i__) {
  1271. if (d__[i__] < 0.f) {
  1272. d__[i__] = -d__[i__];
  1273. /* Change sign of singular vectors, if desired */
  1274. if (*ncvt > 0) {
  1275. csscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
  1276. }
  1277. }
  1278. /* L170: */
  1279. }
  1280. /* Sort the singular values into decreasing order (insertion sort on */
  1281. /* singular values, but only one transposition per singular vector) */
  1282. i__1 = *n - 1;
  1283. for (i__ = 1; i__ <= i__1; ++i__) {
  1284. /* Scan for smallest D(I) */
  1285. isub = 1;
  1286. smin = d__[1];
  1287. i__2 = *n + 1 - i__;
  1288. for (j = 2; j <= i__2; ++j) {
  1289. if (d__[j] <= smin) {
  1290. isub = j;
  1291. smin = d__[j];
  1292. }
  1293. /* L180: */
  1294. }
  1295. if (isub != *n + 1 - i__) {
  1296. /* Swap singular values and vectors */
  1297. d__[isub] = d__[*n + 1 - i__];
  1298. d__[*n + 1 - i__] = smin;
  1299. if (*ncvt > 0) {
  1300. cswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
  1301. vt_dim1], ldvt);
  1302. }
  1303. if (*nru > 0) {
  1304. cswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
  1305. u_dim1 + 1], &c__1);
  1306. }
  1307. if (*ncc > 0) {
  1308. cswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
  1309. c_dim1], ldc);
  1310. }
  1311. }
  1312. /* L190: */
  1313. }
  1314. goto L220;
  1315. /* Maximum number of iterations exceeded, failure to converge */
  1316. L200:
  1317. *info = 0;
  1318. i__1 = *n - 1;
  1319. for (i__ = 1; i__ <= i__1; ++i__) {
  1320. if (e[i__] != 0.f) {
  1321. ++(*info);
  1322. }
  1323. /* L210: */
  1324. }
  1325. L220:
  1326. return;
  1327. /* End of CBDSQR */
  1328. } /* cbdsqr_ */