You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stgex2.c 40 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__4 = 4;
  485. static real c_b5 = 0.f;
  486. static integer c__1 = 1;
  487. static integer c__2 = 2;
  488. static real c_b42 = 1.f;
  489. static real c_b48 = -1.f;
  490. static integer c__0 = 0;
  491. /* > \brief \b STGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogon
  492. al equivalence transformation. */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download STGEX2 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgex2.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgex2.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgex2.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
  511. /* LDZ, J1, N1, N2, WORK, LWORK, INFO ) */
  512. /* LOGICAL WANTQ, WANTZ */
  513. /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 */
  514. /* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  515. /* $ WORK( * ), Z( LDZ, * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
  522. /* > of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
  523. /* > (A, B) by an orthogonal equivalence transformation. */
  524. /* > */
  525. /* > (A, B) must be in generalized real Schur canonical form (as returned */
  526. /* > by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
  527. /* > diagonal blocks. B is upper triangular. */
  528. /* > */
  529. /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
  530. /* > updated. */
  531. /* > */
  532. /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
  533. /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
  534. /* > */
  535. /* > \endverbatim */
  536. /* Arguments: */
  537. /* ========== */
  538. /* > \param[in] WANTQ */
  539. /* > \verbatim */
  540. /* > WANTQ is LOGICAL */
  541. /* > .TRUE. : update the left transformation matrix Q; */
  542. /* > .FALSE.: do not update Q. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] WANTZ */
  546. /* > \verbatim */
  547. /* > WANTZ is LOGICAL */
  548. /* > .TRUE. : update the right transformation matrix Z; */
  549. /* > .FALSE.: do not update Z. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] N */
  553. /* > \verbatim */
  554. /* > N is INTEGER */
  555. /* > The order of the matrices A and B. N >= 0. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in,out] A */
  559. /* > \verbatim */
  560. /* > A is REAL array, dimension (LDA,N) */
  561. /* > On entry, the matrix A in the pair (A, B). */
  562. /* > On exit, the updated matrix A. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] LDA */
  566. /* > \verbatim */
  567. /* > LDA is INTEGER */
  568. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in,out] B */
  572. /* > \verbatim */
  573. /* > B is REAL array, dimension (LDB,N) */
  574. /* > On entry, the matrix B in the pair (A, B). */
  575. /* > On exit, the updated matrix B. */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] LDB */
  579. /* > \verbatim */
  580. /* > LDB is INTEGER */
  581. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in,out] Q */
  585. /* > \verbatim */
  586. /* > Q is REAL array, dimension (LDQ,N) */
  587. /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
  588. /* > On exit, the updated matrix Q. */
  589. /* > Not referenced if WANTQ = .FALSE.. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in] LDQ */
  593. /* > \verbatim */
  594. /* > LDQ is INTEGER */
  595. /* > The leading dimension of the array Q. LDQ >= 1. */
  596. /* > If WANTQ = .TRUE., LDQ >= N. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in,out] Z */
  600. /* > \verbatim */
  601. /* > Z is REAL array, dimension (LDZ,N) */
  602. /* > On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
  603. /* > On exit, the updated matrix Z. */
  604. /* > Not referenced if WANTZ = .FALSE.. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in] LDZ */
  608. /* > \verbatim */
  609. /* > LDZ is INTEGER */
  610. /* > The leading dimension of the array Z. LDZ >= 1. */
  611. /* > If WANTZ = .TRUE., LDZ >= N. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] J1 */
  615. /* > \verbatim */
  616. /* > J1 is INTEGER */
  617. /* > The index to the first block (A11, B11). 1 <= J1 <= N. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] N1 */
  621. /* > \verbatim */
  622. /* > N1 is INTEGER */
  623. /* > The order of the first block (A11, B11). N1 = 0, 1 or 2. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] N2 */
  627. /* > \verbatim */
  628. /* > N2 is INTEGER */
  629. /* > The order of the second block (A22, B22). N2 = 0, 1 or 2. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] WORK */
  633. /* > \verbatim */
  634. /* > WORK is REAL array, dimension (MAX(1,LWORK)). */
  635. /* > \endverbatim */
  636. /* > */
  637. /* > \param[in] LWORK */
  638. /* > \verbatim */
  639. /* > LWORK is INTEGER */
  640. /* > The dimension of the array WORK. */
  641. /* > LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
  642. /* > \endverbatim */
  643. /* > */
  644. /* > \param[out] INFO */
  645. /* > \verbatim */
  646. /* > INFO is INTEGER */
  647. /* > =0: Successful exit */
  648. /* > >0: If INFO = 1, the transformed matrix (A, B) would be */
  649. /* > too far from generalized Schur form; the blocks are */
  650. /* > not swapped and (A, B) and (Q, Z) are unchanged. */
  651. /* > The problem of swapping is too ill-conditioned. */
  652. /* > <0: If INFO = -16: LWORK is too small. Appropriate value */
  653. /* > for LWORK is returned in WORK(1). */
  654. /* > \endverbatim */
  655. /* Authors: */
  656. /* ======== */
  657. /* > \author Univ. of Tennessee */
  658. /* > \author Univ. of California Berkeley */
  659. /* > \author Univ. of Colorado Denver */
  660. /* > \author NAG Ltd. */
  661. /* > \date June 2017 */
  662. /* > \ingroup realGEauxiliary */
  663. /* > \par Further Details: */
  664. /* ===================== */
  665. /* > */
  666. /* > In the current code both weak and strong stability tests are */
  667. /* > performed. The user can omit the strong stability test by changing */
  668. /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
  669. /* > details. */
  670. /* > \par Contributors: */
  671. /* ================== */
  672. /* > */
  673. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  674. /* > Umea University, S-901 87 Umea, Sweden. */
  675. /* > \par References: */
  676. /* ================ */
  677. /* > */
  678. /* > \verbatim */
  679. /* > */
  680. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  681. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  682. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  683. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  684. /* > */
  685. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  686. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  687. /* > Estimation: Theory, Algorithms and Software, */
  688. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  689. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  690. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* ===================================================================== */
  694. /* Subroutine */ void stgex2_(logical *wantq, logical *wantz, integer *n, real
  695. *a, integer *lda, real *b, integer *ldb, real *q, integer *ldq, real *
  696. z__, integer *ldz, integer *j1, integer *n1, integer *n2, real *work,
  697. integer *lwork, integer *info)
  698. {
  699. /* System generated locals */
  700. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  701. z_offset, i__1, i__2;
  702. real r__1;
  703. /* Local variables */
  704. logical weak;
  705. real ddum;
  706. integer idum;
  707. real taul[4], dsum, taur[4], scpy[16] /* was [4][4] */, tcpy[16]
  708. /* was [4][4] */;
  709. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  710. integer *, real *, real *);
  711. real f, g;
  712. integer i__, m;
  713. real s[16] /* was [4][4] */, t[16] /* was [4][4] */, scale, bqra21,
  714. brqa21;
  715. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  716. real licop[16] /* was [4][4] */;
  717. integer linfo;
  718. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  719. integer *, real *, real *, integer *, real *, integer *, real *,
  720. real *, integer *);
  721. real ircop[16] /* was [4][4] */, dnorm;
  722. integer iwork[4];
  723. extern /* Subroutine */ void slagv2_(real *, integer *, real *, integer *,
  724. real *, real *, real *, real *, real *, real *, real *), sgeqr2_(
  725. integer *, integer *, real *, integer *, real *, real *, integer *
  726. ), sgerq2_(integer *, integer *, real *, integer *, real *, real *
  727. , integer *);
  728. real be[2], ai[2];
  729. extern /* Subroutine */ void sorg2r_(integer *, integer *, integer *, real
  730. *, integer *, real *, real *, integer *), sorgr2_(integer *,
  731. integer *, integer *, real *, integer *, real *, real *, integer *
  732. );
  733. real ar[2], sa, sb, li[16] /* was [4][4] */;
  734. extern /* Subroutine */ void sorm2r_(char *, char *, integer *, integer *,
  735. integer *, real *, integer *, real *, real *, integer *, real *,
  736. integer *), sormr2_(char *, char *, integer *,
  737. integer *, integer *, real *, integer *, real *, real *, integer *
  738. , real *, integer *);
  739. real dscale, ir[16] /* was [4][4] */;
  740. extern /* Subroutine */ void stgsy2_(char *, integer *, integer *, integer
  741. *, real *, integer *, real *, integer *, real *, integer *, real *
  742. , integer *, real *, integer *, real *, integer *, real *, real *,
  743. real *, integer *, integer *, integer *);
  744. real ss;
  745. extern real slamch_(char *);
  746. real ws;
  747. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  748. integer *, real *, integer *), slartg_(real *, real *,
  749. real *, real *, real *);
  750. real thresh;
  751. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  752. real *, real *, integer *), slassq_(integer *, real *,
  753. integer *, real *, real *);
  754. real smlnum;
  755. logical strong;
  756. real eps;
  757. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  758. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  759. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  760. /* June 2017 */
  761. /* ===================================================================== */
  762. /* Replaced various illegal calls to SCOPY by calls to SLASET, or by DO */
  763. /* loops. Sven Hammarling, 1/5/02. */
  764. /* Parameter adjustments */
  765. a_dim1 = *lda;
  766. a_offset = 1 + a_dim1 * 1;
  767. a -= a_offset;
  768. b_dim1 = *ldb;
  769. b_offset = 1 + b_dim1 * 1;
  770. b -= b_offset;
  771. q_dim1 = *ldq;
  772. q_offset = 1 + q_dim1 * 1;
  773. q -= q_offset;
  774. z_dim1 = *ldz;
  775. z_offset = 1 + z_dim1 * 1;
  776. z__ -= z_offset;
  777. --work;
  778. /* Function Body */
  779. *info = 0;
  780. /* Quick return if possible */
  781. if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
  782. return;
  783. }
  784. if (*n1 > *n || *j1 + *n1 > *n) {
  785. return;
  786. }
  787. m = *n1 + *n2;
  788. /* Computing MAX */
  789. i__1 = *n * m, i__2 = m * m << 1;
  790. if (*lwork < f2cmax(i__1,i__2)) {
  791. *info = -16;
  792. /* Computing MAX */
  793. i__1 = *n * m, i__2 = m * m << 1;
  794. work[1] = (real) f2cmax(i__1,i__2);
  795. return;
  796. }
  797. weak = FALSE_;
  798. strong = FALSE_;
  799. /* Make a local copy of selected block */
  800. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
  801. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
  802. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
  803. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
  804. /* Compute threshold for testing acceptance of swapping. */
  805. eps = slamch_("P");
  806. smlnum = slamch_("S") / eps;
  807. dscale = 0.f;
  808. dsum = 1.f;
  809. slacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
  810. i__1 = m * m;
  811. slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  812. slacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
  813. i__1 = m * m;
  814. slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  815. dnorm = dscale * sqrt(dsum);
  816. /* THRES has been changed from */
  817. /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
  818. /* to */
  819. /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
  820. /* on 04/01/10. */
  821. /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
  822. /* Jim Demmel and Guillaume Revy. See forum post 1783. */
  823. /* Computing MAX */
  824. r__1 = eps * 20.f * dnorm;
  825. thresh = f2cmax(r__1,smlnum);
  826. if (m == 2) {
  827. /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
  828. /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
  829. /* using Givens rotations and perform the swap tentatively. */
  830. f = s[5] * t[0] - t[5] * s[0];
  831. g = s[5] * t[4] - t[5] * s[4];
  832. sb = abs(t[5]);
  833. sa = abs(s[5]);
  834. slartg_(&f, &g, &ir[4], ir, &ddum);
  835. ir[1] = -ir[4];
  836. ir[5] = ir[0];
  837. srot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
  838. srot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
  839. if (sa >= sb) {
  840. slartg_(s, &s[1], li, &li[1], &ddum);
  841. } else {
  842. slartg_(t, &t[1], li, &li[1], &ddum);
  843. }
  844. srot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
  845. srot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
  846. li[5] = li[0];
  847. li[4] = -li[1];
  848. /* Weak stability test: */
  849. /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
  850. ws = abs(s[1]) + abs(t[1]);
  851. weak = ws <= thresh;
  852. if (! weak) {
  853. goto L70;
  854. }
  855. if (TRUE_) {
  856. /* Strong stability test: */
  857. /* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A, B))) */
  858. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  859. + 1], &m);
  860. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  861. work[1], &m);
  862. sgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  863. c_b42, &work[m * m + 1], &m);
  864. dscale = 0.f;
  865. dsum = 1.f;
  866. i__1 = m * m;
  867. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  868. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  869. + 1], &m);
  870. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  871. work[1], &m);
  872. sgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  873. c_b42, &work[m * m + 1], &m);
  874. i__1 = m * m;
  875. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  876. ss = dscale * sqrt(dsum);
  877. strong = ss <= thresh;
  878. if (! strong) {
  879. goto L70;
  880. }
  881. }
  882. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  883. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  884. i__1 = *j1 + 1;
  885. srot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
  886. &c__1, ir, &ir[1]);
  887. i__1 = *j1 + 1;
  888. srot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
  889. &c__1, ir, &ir[1]);
  890. i__1 = *n - *j1 + 1;
  891. srot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
  892. lda, li, &li[1]);
  893. i__1 = *n - *j1 + 1;
  894. srot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
  895. ldb, li, &li[1]);
  896. /* Set N1-by-N2 (2,1) - blocks to ZERO. */
  897. a[*j1 + 1 + *j1 * a_dim1] = 0.f;
  898. b[*j1 + 1 + *j1 * b_dim1] = 0.f;
  899. /* Accumulate transformations into Q and Z if requested. */
  900. if (*wantz) {
  901. srot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
  902. 1], &c__1, ir, &ir[1]);
  903. }
  904. if (*wantq) {
  905. srot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
  906. &c__1, li, &li[1]);
  907. }
  908. /* Exit with INFO = 0 if swap was successfully performed. */
  909. return;
  910. } else {
  911. /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
  912. /* and 2-by-2 blocks. */
  913. /* Solve the generalized Sylvester equation */
  914. /* S11 * R - L * S22 = SCALE * S12 */
  915. /* T11 * R - L * T22 = SCALE * T12 */
  916. /* for R and L. Solutions in LI and IR. */
  917. slacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
  918. slacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
  919. *n1 + 1 << 2) - 5], &c__4);
  920. stgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
  921. , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
  922. t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
  923. dsum, &dscale, iwork, &idum, &linfo);
  924. /* Compute orthogonal matrix QL: */
  925. /* QL**T * LI = [ TL ] */
  926. /* [ 0 ] */
  927. /* where */
  928. /* LI = [ -L ] */
  929. /* [ SCALE * identity(N2) ] */
  930. i__1 = *n2;
  931. for (i__ = 1; i__ <= i__1; ++i__) {
  932. sscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
  933. li[*n1 + i__ + (i__ << 2) - 5] = scale;
  934. /* L10: */
  935. }
  936. sgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
  937. if (linfo != 0) {
  938. goto L70;
  939. }
  940. sorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
  941. if (linfo != 0) {
  942. goto L70;
  943. }
  944. /* Compute orthogonal matrix RQ: */
  945. /* IR * RQ**T = [ 0 TR], */
  946. /* where IR = [ SCALE * identity(N1), R ] */
  947. i__1 = *n1;
  948. for (i__ = 1; i__ <= i__1; ++i__) {
  949. ir[*n2 + i__ + (i__ << 2) - 5] = scale;
  950. /* L20: */
  951. }
  952. sgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
  953. if (linfo != 0) {
  954. goto L70;
  955. }
  956. sorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
  957. if (linfo != 0) {
  958. goto L70;
  959. }
  960. /* Perform the swapping tentatively: */
  961. sgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  962. work[1], &m);
  963. sgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  964. s, &c__4);
  965. sgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  966. work[1], &m);
  967. sgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  968. t, &c__4);
  969. slacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
  970. slacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
  971. slacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
  972. slacpy_("F", &m, &m, li, &c__4, licop, &c__4);
  973. /* Triangularize the B-part by an RQ factorization. */
  974. /* Apply transformation (from left) to A-part, giving S. */
  975. sgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
  976. if (linfo != 0) {
  977. goto L70;
  978. }
  979. sormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
  980. linfo);
  981. if (linfo != 0) {
  982. goto L70;
  983. }
  984. sormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
  985. linfo);
  986. if (linfo != 0) {
  987. goto L70;
  988. }
  989. /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
  990. dscale = 0.f;
  991. dsum = 1.f;
  992. i__1 = *n2;
  993. for (i__ = 1; i__ <= i__1; ++i__) {
  994. slassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
  995. /* L30: */
  996. }
  997. brqa21 = dscale * sqrt(dsum);
  998. /* Triangularize the B-part by a QR factorization. */
  999. /* Apply transformation (from right) to A-part, giving S. */
  1000. sgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
  1001. if (linfo != 0) {
  1002. goto L70;
  1003. }
  1004. sorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
  1005. , info);
  1006. sorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
  1007. 1], info);
  1008. if (linfo != 0) {
  1009. goto L70;
  1010. }
  1011. /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
  1012. dscale = 0.f;
  1013. dsum = 1.f;
  1014. i__1 = *n2;
  1015. for (i__ = 1; i__ <= i__1; ++i__) {
  1016. slassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
  1017. dsum);
  1018. /* L40: */
  1019. }
  1020. bqra21 = dscale * sqrt(dsum);
  1021. /* Decide which method to use. */
  1022. /* Weak stability test: */
  1023. /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
  1024. if (bqra21 <= brqa21 && bqra21 <= thresh) {
  1025. slacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
  1026. slacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
  1027. slacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
  1028. slacpy_("F", &m, &m, licop, &c__4, li, &c__4);
  1029. } else if (brqa21 >= thresh) {
  1030. goto L70;
  1031. }
  1032. /* Set lower triangle of B-part to zero */
  1033. i__1 = m - 1;
  1034. i__2 = m - 1;
  1035. slaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
  1036. if (TRUE_) {
  1037. /* Strong stability test: */
  1038. /* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) */
  1039. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  1040. + 1], &m);
  1041. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  1042. work[1], &m);
  1043. sgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1044. c_b42, &work[m * m + 1], &m);
  1045. dscale = 0.f;
  1046. dsum = 1.f;
  1047. i__1 = m * m;
  1048. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1049. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  1050. + 1], &m);
  1051. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  1052. work[1], &m);
  1053. sgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1054. c_b42, &work[m * m + 1], &m);
  1055. i__1 = m * m;
  1056. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1057. ss = dscale * sqrt(dsum);
  1058. strong = ss <= thresh;
  1059. if (! strong) {
  1060. goto L70;
  1061. }
  1062. }
  1063. /* If the swap is accepted ("weakly" and "strongly"), apply the */
  1064. /* transformations and set N1-by-N2 (2,1)-block to zero. */
  1065. slaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
  1066. /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
  1067. slacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
  1068. ;
  1069. slacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
  1070. ;
  1071. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
  1072. /* Standardize existing 2-by-2 blocks. */
  1073. slaset_("Full", &m, &m, &c_b5, &c_b5, &work[1], &m);
  1074. work[1] = 1.f;
  1075. t[0] = 1.f;
  1076. idum = *lwork - m * m - 2;
  1077. if (*n2 > 1) {
  1078. slagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
  1079. ar, ai, be, &work[1], &work[2], t, &t[1]);
  1080. work[m + 1] = -work[2];
  1081. work[m + 2] = work[1];
  1082. t[*n2 + (*n2 << 2) - 5] = t[0];
  1083. t[4] = -t[1];
  1084. }
  1085. work[m * m] = 1.f;
  1086. t[m + (m << 2) - 5] = 1.f;
  1087. if (*n1 > 1) {
  1088. slagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
  1089. (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
  1090. &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
  1091. n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
  1092. work[m * m] = work[*n2 * m + *n2 + 1];
  1093. work[m * m - 1] = -work[*n2 * m + *n2 + 2];
  1094. t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
  1095. t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
  1096. }
  1097. sgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
  1098. n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
  1099. slacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
  1100. a_dim1], lda);
  1101. sgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
  1102. n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
  1103. slacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
  1104. b_dim1], ldb);
  1105. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
  1106. work[m * m + 1], &m);
  1107. slacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
  1108. sgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
  1109. lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1110. n2);
  1111. slacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
  1112. lda);
  1113. sgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
  1114. ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1115. n2);
  1116. slacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
  1117. ldb);
  1118. sgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
  1119. work[1], &m);
  1120. slacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
  1121. /* Accumulate transformations into Q and Z if requested. */
  1122. if (*wantq) {
  1123. sgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
  1124. &c__4, &c_b5, &work[1], n);
  1125. slacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
  1126. }
  1127. if (*wantz) {
  1128. sgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
  1129. ir, &c__4, &c_b5, &work[1], n);
  1130. slacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
  1131. }
  1132. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  1133. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  1134. i__ = *j1 + m;
  1135. if (i__ <= *n) {
  1136. i__1 = *n - i__ + 1;
  1137. sgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
  1138. a_dim1], lda, &c_b5, &work[1], &m);
  1139. i__1 = *n - i__ + 1;
  1140. slacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
  1141. lda);
  1142. i__1 = *n - i__ + 1;
  1143. sgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
  1144. b_dim1], ldb, &c_b5, &work[1], &m);
  1145. i__1 = *n - i__ + 1;
  1146. slacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
  1147. ldb);
  1148. }
  1149. i__ = *j1 - 1;
  1150. if (i__ > 0) {
  1151. sgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
  1152. ir, &c__4, &c_b5, &work[1], &i__);
  1153. slacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
  1154. lda);
  1155. sgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
  1156. ir, &c__4, &c_b5, &work[1], &i__);
  1157. slacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
  1158. ldb);
  1159. }
  1160. /* Exit with INFO = 0 if swap was successfully performed. */
  1161. return;
  1162. }
  1163. /* Exit with INFO = 1 if swap was rejected. */
  1164. L70:
  1165. *info = 1;
  1166. return;
  1167. /* End of STGEX2 */
  1168. } /* stgex2_ */