You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqr3.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c_n1 = -1;
  486. static logical c_true = TRUE_;
  487. static doublereal c_b17 = 0.;
  488. static doublereal c_b18 = 1.;
  489. static integer c__12 = 12;
  490. /* > \brief \b DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
  491. eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  492. */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download DLAQR3 + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr3.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr3.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr3.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  511. /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
  512. /* LDT, NV, WV, LDWV, WORK, LWORK ) */
  513. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  514. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  515. /* LOGICAL WANTT, WANTZ */
  516. /* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
  517. /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
  518. /* $ Z( LDZ, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > Aggressive early deflation: */
  525. /* > */
  526. /* > DLAQR3 accepts as input an upper Hessenberg matrix */
  527. /* > H and performs an orthogonal similarity transformation */
  528. /* > designed to detect and deflate fully converged eigenvalues from */
  529. /* > a trailing principal submatrix. On output H has been over- */
  530. /* > written by a new Hessenberg matrix that is a perturbation of */
  531. /* > an orthogonal similarity transformation of H. It is to be */
  532. /* > hoped that the final version of H has many zero subdiagonal */
  533. /* > entries. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] WANTT */
  538. /* > \verbatim */
  539. /* > WANTT is LOGICAL */
  540. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  541. /* > so that the quasi-triangular Schur factor may be */
  542. /* > computed (in cooperation with the calling subroutine). */
  543. /* > If .FALSE., then only enough of H is updated to preserve */
  544. /* > the eigenvalues. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] WANTZ */
  548. /* > \verbatim */
  549. /* > WANTZ is LOGICAL */
  550. /* > If .TRUE., then the orthogonal matrix Z is updated so */
  551. /* > so that the orthogonal Schur factor may be computed */
  552. /* > (in cooperation with the calling subroutine). */
  553. /* > If .FALSE., then Z is not referenced. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] N */
  557. /* > \verbatim */
  558. /* > N is INTEGER */
  559. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  560. /* > order of the orthogonal matrix Z. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] KTOP */
  564. /* > \verbatim */
  565. /* > KTOP is INTEGER */
  566. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  567. /* > KBOT and KTOP together determine an isolated block */
  568. /* > along the diagonal of the Hessenberg matrix. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] KBOT */
  572. /* > \verbatim */
  573. /* > KBOT is INTEGER */
  574. /* > It is assumed without a check that either */
  575. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  576. /* > determine an isolated block along the diagonal of the */
  577. /* > Hessenberg matrix. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] NW */
  581. /* > \verbatim */
  582. /* > NW is INTEGER */
  583. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] H */
  587. /* > \verbatim */
  588. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  589. /* > On input the initial N-by-N section of H stores the */
  590. /* > Hessenberg matrix undergoing aggressive early deflation. */
  591. /* > On output H has been transformed by an orthogonal */
  592. /* > similarity transformation, perturbed, and the returned */
  593. /* > to Hessenberg form that (it is to be hoped) has some */
  594. /* > zero subdiagonal entries. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDH */
  598. /* > \verbatim */
  599. /* > LDH is INTEGER */
  600. /* > Leading dimension of H just as declared in the calling */
  601. /* > subroutine. N <= LDH */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] ILOZ */
  605. /* > \verbatim */
  606. /* > ILOZ is INTEGER */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] IHIZ */
  610. /* > \verbatim */
  611. /* > IHIZ is INTEGER */
  612. /* > Specify the rows of Z to which transformations must be */
  613. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in,out] Z */
  617. /* > \verbatim */
  618. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  619. /* > IF WANTZ is .TRUE., then on output, the orthogonal */
  620. /* > similarity transformation mentioned above has been */
  621. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  622. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] LDZ */
  626. /* > \verbatim */
  627. /* > LDZ is INTEGER */
  628. /* > The leading dimension of Z just as declared in the */
  629. /* > calling subroutine. 1 <= LDZ. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] NS */
  633. /* > \verbatim */
  634. /* > NS is INTEGER */
  635. /* > The number of unconverged (ie approximate) eigenvalues */
  636. /* > returned in SR and SI that may be used as shifts by the */
  637. /* > calling subroutine. */
  638. /* > \endverbatim */
  639. /* > */
  640. /* > \param[out] ND */
  641. /* > \verbatim */
  642. /* > ND is INTEGER */
  643. /* > The number of converged eigenvalues uncovered by this */
  644. /* > subroutine. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] SR */
  648. /* > \verbatim */
  649. /* > SR is DOUBLE PRECISION array, dimension (KBOT) */
  650. /* > \endverbatim */
  651. /* > */
  652. /* > \param[out] SI */
  653. /* > \verbatim */
  654. /* > SI is DOUBLE PRECISION array, dimension (KBOT) */
  655. /* > On output, the real and imaginary parts of approximate */
  656. /* > eigenvalues that may be used for shifts are stored in */
  657. /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
  658. /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
  659. /* > The real and imaginary parts of converged eigenvalues */
  660. /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
  661. /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
  662. /* > \endverbatim */
  663. /* > */
  664. /* > \param[out] V */
  665. /* > \verbatim */
  666. /* > V is DOUBLE PRECISION array, dimension (LDV,NW) */
  667. /* > An NW-by-NW work array. */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[in] LDV */
  671. /* > \verbatim */
  672. /* > LDV is INTEGER */
  673. /* > The leading dimension of V just as declared in the */
  674. /* > calling subroutine. NW <= LDV */
  675. /* > \endverbatim */
  676. /* > */
  677. /* > \param[in] NH */
  678. /* > \verbatim */
  679. /* > NH is INTEGER */
  680. /* > The number of columns of T. NH >= NW. */
  681. /* > \endverbatim */
  682. /* > */
  683. /* > \param[out] T */
  684. /* > \verbatim */
  685. /* > T is DOUBLE PRECISION array, dimension (LDT,NW) */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[in] LDT */
  689. /* > \verbatim */
  690. /* > LDT is INTEGER */
  691. /* > The leading dimension of T just as declared in the */
  692. /* > calling subroutine. NW <= LDT */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[in] NV */
  696. /* > \verbatim */
  697. /* > NV is INTEGER */
  698. /* > The number of rows of work array WV available for */
  699. /* > workspace. NV >= NW. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] WV */
  703. /* > \verbatim */
  704. /* > WV is DOUBLE PRECISION array, dimension (LDWV,NW) */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[in] LDWV */
  708. /* > \verbatim */
  709. /* > LDWV is INTEGER */
  710. /* > The leading dimension of W just as declared in the */
  711. /* > calling subroutine. NW <= LDV */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[out] WORK */
  715. /* > \verbatim */
  716. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  717. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  718. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[in] LWORK */
  722. /* > \verbatim */
  723. /* > LWORK is INTEGER */
  724. /* > The dimension of the work array WORK. LWORK = 2*NW */
  725. /* > suffices, but greater efficiency may result from larger */
  726. /* > values of LWORK. */
  727. /* > */
  728. /* > If LWORK = -1, then a workspace query is assumed; DLAQR3 */
  729. /* > only estimates the optimal workspace size for the given */
  730. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  731. /* > in WORK(1). No error message related to LWORK is issued */
  732. /* > by XERBLA. Neither H nor Z are accessed. */
  733. /* > \endverbatim */
  734. /* Authors: */
  735. /* ======== */
  736. /* > \author Univ. of Tennessee */
  737. /* > \author Univ. of California Berkeley */
  738. /* > \author Univ. of Colorado Denver */
  739. /* > \author NAG Ltd. */
  740. /* > \date June 2016 */
  741. /* > \ingroup doubleOTHERauxiliary */
  742. /* > \par Contributors: */
  743. /* ================== */
  744. /* > */
  745. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  746. /* > University of Kansas, USA */
  747. /* > */
  748. /* ===================================================================== */
  749. /* Subroutine */ void dlaqr3_(logical *wantt, logical *wantz, integer *n,
  750. integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer *
  751. ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz,
  752. integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal *
  753. v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer *
  754. nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork)
  755. {
  756. /* System generated locals */
  757. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  758. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  759. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  760. /* Local variables */
  761. doublereal beta;
  762. integer kend, kcol, info, nmin, ifst, ilst, ltop, krow, i__, j, k;
  763. doublereal s;
  764. extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
  765. doublereal *, integer *, doublereal *, doublereal *, integer *,
  766. doublereal *), dgemm_(char *, char *, integer *, integer *
  767. , integer *, doublereal *, doublereal *, integer *, doublereal *,
  768. integer *, doublereal *, doublereal *, integer *);
  769. logical bulge;
  770. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  771. doublereal *, integer *);
  772. integer infqr, kwtop;
  773. extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
  774. doublereal *, doublereal *, doublereal *, doublereal *,
  775. doublereal *, doublereal *, doublereal *, doublereal *), dlaqr4_(
  776. logical *, logical *, integer *, integer *, integer *, doublereal
  777. *, integer *, doublereal *, doublereal *, integer *, integer *,
  778. doublereal *, integer *, doublereal *, integer *, integer *);
  779. doublereal aa, bb, cc;
  780. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  781. doublereal dd, cs;
  782. extern doublereal dlamch_(char *);
  783. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  784. doublereal *, integer *, doublereal *, doublereal *, integer *,
  785. integer *), dlarfg_(integer *, doublereal *, doublereal *,
  786. integer *, doublereal *);
  787. doublereal sn;
  788. integer jw;
  789. extern /* Subroutine */ void dlahqr_(logical *, logical *, integer *,
  790. integer *, integer *, doublereal *, integer *, doublereal *,
  791. doublereal *, integer *, integer *, doublereal *, integer *,
  792. integer *), dlacpy_(char *, integer *, integer *, doublereal *,
  793. integer *, doublereal *, integer *);
  794. doublereal safmin, safmax;
  795. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  796. integer *, integer *, ftnlen, ftnlen);
  797. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  798. doublereal *, doublereal *, doublereal *, integer *),
  799. dtrexc_(char *, integer *, doublereal *, integer *, doublereal *,
  800. integer *, integer *, integer *, doublereal *, integer *),
  801. dormhr_(char *, char *, integer *, integer *, integer *, integer
  802. *, doublereal *, integer *, doublereal *, doublereal *, integer *,
  803. doublereal *, integer *, integer *);
  804. logical sorted;
  805. doublereal smlnum;
  806. integer lwkopt;
  807. doublereal evi, evk, foo;
  808. integer kln;
  809. doublereal tau, ulp;
  810. integer lwk1, lwk2, lwk3;
  811. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  812. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  813. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  814. /* June 2016 */
  815. /* ================================================================ */
  816. /* ==== Estimate optimal workspace. ==== */
  817. /* Parameter adjustments */
  818. h_dim1 = *ldh;
  819. h_offset = 1 + h_dim1 * 1;
  820. h__ -= h_offset;
  821. z_dim1 = *ldz;
  822. z_offset = 1 + z_dim1 * 1;
  823. z__ -= z_offset;
  824. --sr;
  825. --si;
  826. v_dim1 = *ldv;
  827. v_offset = 1 + v_dim1 * 1;
  828. v -= v_offset;
  829. t_dim1 = *ldt;
  830. t_offset = 1 + t_dim1 * 1;
  831. t -= t_offset;
  832. wv_dim1 = *ldwv;
  833. wv_offset = 1 + wv_dim1 * 1;
  834. wv -= wv_offset;
  835. --work;
  836. /* Function Body */
  837. /* Computing MIN */
  838. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  839. jw = f2cmin(i__1,i__2);
  840. if (jw <= 2) {
  841. lwkopt = 1;
  842. } else {
  843. /* ==== Workspace query call to DGEHRD ==== */
  844. i__1 = jw - 1;
  845. dgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  846. c_n1, &info);
  847. lwk1 = (integer) work[1];
  848. /* ==== Workspace query call to DORMHR ==== */
  849. i__1 = jw - 1;
  850. dormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  851. &v[v_offset], ldv, &work[1], &c_n1, &info);
  852. lwk2 = (integer) work[1];
  853. /* ==== Workspace query call to DLAQR4 ==== */
  854. dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1],
  855. &si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &
  856. infqr);
  857. lwk3 = (integer) work[1];
  858. /* ==== Optimal workspace ==== */
  859. /* Computing MAX */
  860. i__1 = jw + f2cmax(lwk1,lwk2);
  861. lwkopt = f2cmax(i__1,lwk3);
  862. }
  863. /* ==== Quick return in case of workspace query. ==== */
  864. if (*lwork == -1) {
  865. work[1] = (doublereal) lwkopt;
  866. return;
  867. }
  868. /* ==== Nothing to do ... */
  869. /* ... for an empty active block ... ==== */
  870. *ns = 0;
  871. *nd = 0;
  872. work[1] = 1.;
  873. if (*ktop > *kbot) {
  874. return;
  875. }
  876. /* ... nor for an empty deflation window. ==== */
  877. if (*nw < 1) {
  878. return;
  879. }
  880. /* ==== Machine constants ==== */
  881. safmin = dlamch_("SAFE MINIMUM");
  882. safmax = 1. / safmin;
  883. dlabad_(&safmin, &safmax);
  884. ulp = dlamch_("PRECISION");
  885. smlnum = safmin * ((doublereal) (*n) / ulp);
  886. /* ==== Setup deflation window ==== */
  887. /* Computing MIN */
  888. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  889. jw = f2cmin(i__1,i__2);
  890. kwtop = *kbot - jw + 1;
  891. if (kwtop == *ktop) {
  892. s = 0.;
  893. } else {
  894. s = h__[kwtop + (kwtop - 1) * h_dim1];
  895. }
  896. if (*kbot == kwtop) {
  897. /* ==== 1-by-1 deflation window: not much to do ==== */
  898. sr[kwtop] = h__[kwtop + kwtop * h_dim1];
  899. si[kwtop] = 0.;
  900. *ns = 1;
  901. *nd = 0;
  902. /* Computing MAX */
  903. d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs(
  904. d__1));
  905. if (abs(s) <= f2cmax(d__2,d__3)) {
  906. *ns = 0;
  907. *nd = 1;
  908. if (kwtop > *ktop) {
  909. h__[kwtop + (kwtop - 1) * h_dim1] = 0.;
  910. }
  911. }
  912. work[1] = 1.;
  913. return;
  914. }
  915. /* ==== Convert to spike-triangular form. (In case of a */
  916. /* . rare QR failure, this routine continues to do */
  917. /* . aggressive early deflation using that part of */
  918. /* . the deflation window that converged using INFQR */
  919. /* . here and there to keep track.) ==== */
  920. dlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  921. ldt);
  922. i__1 = jw - 1;
  923. i__2 = *ldh + 1;
  924. i__3 = *ldt + 1;
  925. dcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  926. i__3);
  927. dlaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);
  928. nmin = ilaenv_(&c__12, "DLAQR3", "SV", &jw, &c__1, &jw, lwork, (ftnlen)6,
  929. (ftnlen)2);
  930. if (jw > nmin) {
  931. dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
  932. kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1],
  933. lwork, &infqr);
  934. } else {
  935. dlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
  936. kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  937. }
  938. /* ==== DTREXC needs a clean margin near the diagonal ==== */
  939. i__1 = jw - 3;
  940. for (j = 1; j <= i__1; ++j) {
  941. t[j + 2 + j * t_dim1] = 0.;
  942. t[j + 3 + j * t_dim1] = 0.;
  943. /* L10: */
  944. }
  945. if (jw > 2) {
  946. t[jw + (jw - 2) * t_dim1] = 0.;
  947. }
  948. /* ==== Deflation detection loop ==== */
  949. *ns = jw;
  950. ilst = infqr + 1;
  951. L20:
  952. if (ilst <= *ns) {
  953. if (*ns == 1) {
  954. bulge = FALSE_;
  955. } else {
  956. bulge = t[*ns + (*ns - 1) * t_dim1] != 0.;
  957. }
  958. /* ==== Small spike tip test for deflation ==== */
  959. if (! bulge) {
  960. /* ==== Real eigenvalue ==== */
  961. foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1));
  962. if (foo == 0.) {
  963. foo = abs(s);
  964. }
  965. /* Computing MAX */
  966. d__2 = smlnum, d__3 = ulp * foo;
  967. if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= f2cmax(d__2,d__3))
  968. {
  969. /* ==== Deflatable ==== */
  970. --(*ns);
  971. } else {
  972. /* ==== Undeflatable. Move it up out of the way. */
  973. /* . (DTREXC can not fail in this case.) ==== */
  974. ifst = *ns;
  975. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  976. &ilst, &work[1], &info);
  977. ++ilst;
  978. }
  979. } else {
  980. /* ==== Complex conjugate pair ==== */
  981. foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[*
  982. ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[*
  983. ns - 1 + *ns * t_dim1], abs(d__2)));
  984. if (foo == 0.) {
  985. foo = abs(s);
  986. }
  987. /* Computing MAX */
  988. d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 =
  989. s * v[(*ns - 1) * v_dim1 + 1], abs(d__2));
  990. /* Computing MAX */
  991. d__5 = smlnum, d__6 = ulp * foo;
  992. if (f2cmax(d__3,d__4) <= f2cmax(d__5,d__6)) {
  993. /* ==== Deflatable ==== */
  994. *ns += -2;
  995. } else {
  996. /* ==== Undeflatable. Move them up out of the way. */
  997. /* . Fortunately, DTREXC does the right thing with */
  998. /* . ILST in case of a rare exchange failure. ==== */
  999. ifst = *ns;
  1000. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1001. &ilst, &work[1], &info);
  1002. ilst += 2;
  1003. }
  1004. }
  1005. /* ==== End deflation detection loop ==== */
  1006. goto L20;
  1007. }
  1008. /* ==== Return to Hessenberg form ==== */
  1009. if (*ns == 0) {
  1010. s = 0.;
  1011. }
  1012. if (*ns < jw) {
  1013. /* ==== sorting diagonal blocks of T improves accuracy for */
  1014. /* . graded matrices. Bubble sort deals well with */
  1015. /* . exchange failures. ==== */
  1016. sorted = FALSE_;
  1017. i__ = *ns + 1;
  1018. L30:
  1019. if (sorted) {
  1020. goto L50;
  1021. }
  1022. sorted = TRUE_;
  1023. kend = i__ - 1;
  1024. i__ = infqr + 1;
  1025. if (i__ == *ns) {
  1026. k = i__ + 1;
  1027. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1028. k = i__ + 1;
  1029. } else {
  1030. k = i__ + 2;
  1031. }
  1032. L40:
  1033. if (k <= kend) {
  1034. if (k == i__ + 1) {
  1035. evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1));
  1036. } else {
  1037. evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 =
  1038. t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 =
  1039. t[i__ + (i__ + 1) * t_dim1], abs(d__2)));
  1040. }
  1041. if (k == kend) {
  1042. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1043. } else if (t[k + 1 + k * t_dim1] == 0.) {
  1044. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1045. } else {
  1046. evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[
  1047. k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k +
  1048. (k + 1) * t_dim1], abs(d__2)));
  1049. }
  1050. if (evi >= evk) {
  1051. i__ = k;
  1052. } else {
  1053. sorted = FALSE_;
  1054. ifst = i__;
  1055. ilst = k;
  1056. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1057. &ilst, &work[1], &info);
  1058. if (info == 0) {
  1059. i__ = ilst;
  1060. } else {
  1061. i__ = k;
  1062. }
  1063. }
  1064. if (i__ == kend) {
  1065. k = i__ + 1;
  1066. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1067. k = i__ + 1;
  1068. } else {
  1069. k = i__ + 2;
  1070. }
  1071. goto L40;
  1072. }
  1073. goto L30;
  1074. L50:
  1075. ;
  1076. }
  1077. /* ==== Restore shift/eigenvalue array from T ==== */
  1078. i__ = jw;
  1079. L60:
  1080. if (i__ >= infqr + 1) {
  1081. if (i__ == infqr + 1) {
  1082. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1083. si[kwtop + i__ - 1] = 0.;
  1084. --i__;
  1085. } else if (t[i__ + (i__ - 1) * t_dim1] == 0.) {
  1086. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1087. si[kwtop + i__ - 1] = 0.;
  1088. --i__;
  1089. } else {
  1090. aa = t[i__ - 1 + (i__ - 1) * t_dim1];
  1091. cc = t[i__ + (i__ - 1) * t_dim1];
  1092. bb = t[i__ - 1 + i__ * t_dim1];
  1093. dd = t[i__ + i__ * t_dim1];
  1094. dlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
  1095. - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
  1096. sn);
  1097. i__ += -2;
  1098. }
  1099. goto L60;
  1100. }
  1101. if (*ns < jw || s == 0.) {
  1102. if (*ns > 1 && s != 0.) {
  1103. /* ==== Reflect spike back into lower triangle ==== */
  1104. dcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1105. beta = work[1];
  1106. dlarfg_(ns, &beta, &work[2], &c__1, &tau);
  1107. work[1] = 1.;
  1108. i__1 = jw - 2;
  1109. i__2 = jw - 2;
  1110. dlaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);
  1111. dlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1112. work[jw + 1]);
  1113. dlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1114. work[jw + 1]);
  1115. dlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1116. work[jw + 1]);
  1117. i__1 = *lwork - jw;
  1118. dgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1119. , &i__1, &info);
  1120. }
  1121. /* ==== Copy updated reduced window into place ==== */
  1122. if (kwtop > 1) {
  1123. h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
  1124. }
  1125. dlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1126. , ldh);
  1127. i__1 = jw - 1;
  1128. i__2 = *ldt + 1;
  1129. i__3 = *ldh + 1;
  1130. dcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1131. &i__3);
  1132. /* ==== Accumulate orthogonal matrix in order update */
  1133. /* . H and Z, if requested. ==== */
  1134. if (*ns > 1 && s != 0.) {
  1135. i__1 = *lwork - jw;
  1136. dormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1137. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1138. }
  1139. /* ==== Update vertical slab in H ==== */
  1140. if (*wantt) {
  1141. ltop = 1;
  1142. } else {
  1143. ltop = *ktop;
  1144. }
  1145. i__1 = kwtop - 1;
  1146. i__2 = *nv;
  1147. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1148. i__2) {
  1149. /* Computing MIN */
  1150. i__3 = *nv, i__4 = kwtop - krow;
  1151. kln = f2cmin(i__3,i__4);
  1152. dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop *
  1153. h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset],
  1154. ldwv);
  1155. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1156. h_dim1], ldh);
  1157. /* L70: */
  1158. }
  1159. /* ==== Update horizontal slab in H ==== */
  1160. if (*wantt) {
  1161. i__2 = *n;
  1162. i__1 = *nh;
  1163. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1164. kcol += i__1) {
  1165. /* Computing MIN */
  1166. i__3 = *nh, i__4 = *n - kcol + 1;
  1167. kln = f2cmin(i__3,i__4);
  1168. dgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &
  1169. h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset],
  1170. ldt);
  1171. dlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1172. h_dim1], ldh);
  1173. /* L80: */
  1174. }
  1175. }
  1176. /* ==== Update vertical slab in Z ==== */
  1177. if (*wantz) {
  1178. i__1 = *ihiz;
  1179. i__2 = *nv;
  1180. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1181. i__2) {
  1182. /* Computing MIN */
  1183. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1184. kln = f2cmin(i__3,i__4);
  1185. dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop *
  1186. z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[
  1187. wv_offset], ldwv);
  1188. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1189. kwtop * z_dim1], ldz);
  1190. /* L90: */
  1191. }
  1192. }
  1193. }
  1194. /* ==== Return the number of deflations ... ==== */
  1195. *nd = jw - *ns;
  1196. /* ==== ... and the number of shifts. (Subtracting */
  1197. /* . INFQR from the spike length takes care */
  1198. /* . of the case of a rare QR failure while */
  1199. /* . calculating eigenvalues of the deflation */
  1200. /* . window.) ==== */
  1201. *ns -= infqr;
  1202. /* ==== Return optimal workspace. ==== */
  1203. work[1] = (doublereal) lwkopt;
  1204. /* ==== End of DLAQR3 ==== */
  1205. return;
  1206. } /* dlaqr3_ */