You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgees.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static integer c__0 = 0;
  486. static integer c_n1 = -1;
  487. /* > \brief <b> DGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors f
  488. or GE matrices</b> */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DGEES + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgees.f
  495. "> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgees.f
  498. "> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgees.f
  501. "> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI, */
  507. /* VS, LDVS, WORK, LWORK, BWORK, INFO ) */
  508. /* CHARACTER JOBVS, SORT */
  509. /* INTEGER INFO, LDA, LDVS, LWORK, N, SDIM */
  510. /* LOGICAL BWORK( * ) */
  511. /* DOUBLE PRECISION A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), */
  512. /* $ WR( * ) */
  513. /* LOGICAL SELECT */
  514. /* EXTERNAL SELECT */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DGEES computes for an N-by-N real nonsymmetric matrix A, the */
  521. /* > eigenvalues, the real Schur form T, and, optionally, the matrix of */
  522. /* > Schur vectors Z. This gives the Schur factorization A = Z*T*(Z**T). */
  523. /* > */
  524. /* > Optionally, it also orders the eigenvalues on the diagonal of the */
  525. /* > real Schur form so that selected eigenvalues are at the top left. */
  526. /* > The leading columns of Z then form an orthonormal basis for the */
  527. /* > invariant subspace corresponding to the selected eigenvalues. */
  528. /* > */
  529. /* > A matrix is in real Schur form if it is upper quasi-triangular with */
  530. /* > 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the */
  531. /* > form */
  532. /* > [ a b ] */
  533. /* > [ c a ] */
  534. /* > */
  535. /* > where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] JOBVS */
  540. /* > \verbatim */
  541. /* > JOBVS is CHARACTER*1 */
  542. /* > = 'N': Schur vectors are not computed; */
  543. /* > = 'V': Schur vectors are computed. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SORT */
  547. /* > \verbatim */
  548. /* > SORT is CHARACTER*1 */
  549. /* > Specifies whether or not to order the eigenvalues on the */
  550. /* > diagonal of the Schur form. */
  551. /* > = 'N': Eigenvalues are not ordered; */
  552. /* > = 'S': Eigenvalues are ordered (see SELECT). */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] SELECT */
  556. /* > \verbatim */
  557. /* > SELECT is a LOGICAL FUNCTION of two DOUBLE PRECISION arguments */
  558. /* > SELECT must be declared EXTERNAL in the calling subroutine. */
  559. /* > If SORT = 'S', SELECT is used to select eigenvalues to sort */
  560. /* > to the top left of the Schur form. */
  561. /* > If SORT = 'N', SELECT is not referenced. */
  562. /* > An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if */
  563. /* > SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex */
  564. /* > conjugate pair of eigenvalues is selected, then both complex */
  565. /* > eigenvalues are selected. */
  566. /* > Note that a selected complex eigenvalue may no longer */
  567. /* > satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since */
  568. /* > ordering may change the value of complex eigenvalues */
  569. /* > (especially if the eigenvalue is ill-conditioned); in this */
  570. /* > case INFO is set to N+2 (see INFO below). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] N */
  574. /* > \verbatim */
  575. /* > N is INTEGER */
  576. /* > The order of the matrix A. N >= 0. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] A */
  580. /* > \verbatim */
  581. /* > A is DOUBLE PRECISION array, dimension (LDA,N) */
  582. /* > On entry, the N-by-N matrix A. */
  583. /* > On exit, A has been overwritten by its real Schur form T. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDA */
  587. /* > \verbatim */
  588. /* > LDA is INTEGER */
  589. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] SDIM */
  593. /* > \verbatim */
  594. /* > SDIM is INTEGER */
  595. /* > If SORT = 'N', SDIM = 0. */
  596. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  597. /* > for which SELECT is true. (Complex conjugate */
  598. /* > pairs for which SELECT is true for either */
  599. /* > eigenvalue count as 2.) */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] WR */
  603. /* > \verbatim */
  604. /* > WR is DOUBLE PRECISION array, dimension (N) */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] WI */
  608. /* > \verbatim */
  609. /* > WI is DOUBLE PRECISION array, dimension (N) */
  610. /* > WR and WI contain the real and imaginary parts, */
  611. /* > respectively, of the computed eigenvalues in the same order */
  612. /* > that they appear on the diagonal of the output Schur form T. */
  613. /* > Complex conjugate pairs of eigenvalues will appear */
  614. /* > consecutively with the eigenvalue having the positive */
  615. /* > imaginary part first. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[out] VS */
  619. /* > \verbatim */
  620. /* > VS is DOUBLE PRECISION array, dimension (LDVS,N) */
  621. /* > If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur */
  622. /* > vectors. */
  623. /* > If JOBVS = 'N', VS is not referenced. */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] LDVS */
  627. /* > \verbatim */
  628. /* > LDVS is INTEGER */
  629. /* > The leading dimension of the array VS. LDVS >= 1; if */
  630. /* > JOBVS = 'V', LDVS >= N. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] WORK */
  634. /* > \verbatim */
  635. /* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
  636. /* > On exit, if INFO = 0, WORK(1) contains the optimal LWORK. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LWORK */
  640. /* > \verbatim */
  641. /* > LWORK is INTEGER */
  642. /* > The dimension of the array WORK. LWORK >= f2cmax(1,3*N). */
  643. /* > For good performance, LWORK must generally be larger. */
  644. /* > */
  645. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  646. /* > only calculates the optimal size of the WORK array, returns */
  647. /* > this value as the first entry of the WORK array, and no error */
  648. /* > message related to LWORK is issued by XERBLA. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[out] BWORK */
  652. /* > \verbatim */
  653. /* > BWORK is LOGICAL array, dimension (N) */
  654. /* > Not referenced if SORT = 'N'. */
  655. /* > \endverbatim */
  656. /* > */
  657. /* > \param[out] INFO */
  658. /* > \verbatim */
  659. /* > INFO is INTEGER */
  660. /* > = 0: successful exit */
  661. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  662. /* > > 0: if INFO = i, and i is */
  663. /* > <= N: the QR algorithm failed to compute all the */
  664. /* > eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI */
  665. /* > contain those eigenvalues which have converged; if */
  666. /* > JOBVS = 'V', VS contains the matrix which reduces A */
  667. /* > to its partially converged Schur form. */
  668. /* > = N+1: the eigenvalues could not be reordered because some */
  669. /* > eigenvalues were too close to separate (the problem */
  670. /* > is very ill-conditioned); */
  671. /* > = N+2: after reordering, roundoff changed values of some */
  672. /* > complex eigenvalues so that leading eigenvalues in */
  673. /* > the Schur form no longer satisfy SELECT=.TRUE. This */
  674. /* > could also be caused by underflow due to scaling. */
  675. /* > \endverbatim */
  676. /* Authors: */
  677. /* ======== */
  678. /* > \author Univ. of Tennessee */
  679. /* > \author Univ. of California Berkeley */
  680. /* > \author Univ. of Colorado Denver */
  681. /* > \author NAG Ltd. */
  682. /* > \date December 2016 */
  683. /* > \ingroup doubleGEeigen */
  684. /* ===================================================================== */
  685. /* Subroutine */ void dgees_(char *jobvs, char *sort, L_fp select, integer *n,
  686. doublereal *a, integer *lda, integer *sdim, doublereal *wr,
  687. doublereal *wi, doublereal *vs, integer *ldvs, doublereal *work,
  688. integer *lwork, logical *bwork, integer *info)
  689. {
  690. /* System generated locals */
  691. integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2, i__3;
  692. /* Local variables */
  693. integer ibal;
  694. doublereal anrm;
  695. integer idum[1], ierr, itau, iwrk, inxt, i__;
  696. doublereal s;
  697. integer icond, ieval;
  698. extern logical lsame_(char *, char *);
  699. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  700. doublereal *, integer *), dswap_(integer *, doublereal *, integer
  701. *, doublereal *, integer *);
  702. logical cursl;
  703. integer i1, i2;
  704. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *), dgebak_(
  705. char *, char *, integer *, integer *, integer *, doublereal *,
  706. integer *, doublereal *, integer *, integer *),
  707. dgebal_(char *, integer *, doublereal *, integer *, integer *,
  708. integer *, doublereal *, integer *);
  709. logical lst2sl, scalea;
  710. integer ip;
  711. doublereal cscale;
  712. extern doublereal dlamch_(char *), dlange_(char *, integer *,
  713. integer *, doublereal *, integer *, doublereal *);
  714. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  715. doublereal *, integer *, doublereal *, doublereal *, integer *,
  716. integer *), dlascl_(char *, integer *, integer *, doublereal *,
  717. doublereal *, integer *, integer *, doublereal *, integer *,
  718. integer *), dlacpy_(char *, integer *, integer *,
  719. doublereal *, integer *, doublereal *, integer *);
  720. extern int xerbla_(char *, integer *, ftnlen);
  721. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  722. integer *, integer *, ftnlen, ftnlen);
  723. doublereal bignum;
  724. extern /* Subroutine */ void dorghr_(integer *, integer *, integer *,
  725. doublereal *, integer *, doublereal *, doublereal *, integer *,
  726. integer *), dhseqr_(char *, char *, integer *, integer *, integer
  727. *, doublereal *, integer *, doublereal *, doublereal *,
  728. doublereal *, integer *, doublereal *, integer *, integer *), dtrsen_(char *, char *, logical *, integer *,
  729. doublereal *, integer *, doublereal *, integer *, doublereal *,
  730. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  731. integer *, integer *, integer *, integer *);
  732. logical lastsl;
  733. integer minwrk, maxwrk;
  734. doublereal smlnum;
  735. integer hswork;
  736. logical wantst, lquery, wantvs;
  737. integer ihi, ilo;
  738. doublereal dum[1], eps, sep;
  739. /* -- LAPACK driver routine (version 3.7.0) -- */
  740. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  741. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  742. /* December 2016 */
  743. /* ===================================================================== */
  744. /* Test the input arguments */
  745. /* Parameter adjustments */
  746. a_dim1 = *lda;
  747. a_offset = 1 + a_dim1 * 1;
  748. a -= a_offset;
  749. --wr;
  750. --wi;
  751. vs_dim1 = *ldvs;
  752. vs_offset = 1 + vs_dim1 * 1;
  753. vs -= vs_offset;
  754. --work;
  755. --bwork;
  756. /* Function Body */
  757. *info = 0;
  758. lquery = *lwork == -1;
  759. wantvs = lsame_(jobvs, "V");
  760. wantst = lsame_(sort, "S");
  761. if (! wantvs && ! lsame_(jobvs, "N")) {
  762. *info = -1;
  763. } else if (! wantst && ! lsame_(sort, "N")) {
  764. *info = -2;
  765. } else if (*n < 0) {
  766. *info = -4;
  767. } else if (*lda < f2cmax(1,*n)) {
  768. *info = -6;
  769. } else if (*ldvs < 1 || wantvs && *ldvs < *n) {
  770. *info = -11;
  771. }
  772. /* Compute workspace */
  773. /* (Note: Comments in the code beginning "Workspace:" describe the */
  774. /* minimal amount of workspace needed at that point in the code, */
  775. /* as well as the preferred amount for good performance. */
  776. /* NB refers to the optimal block size for the immediately */
  777. /* following subroutine, as returned by ILAENV. */
  778. /* HSWORK refers to the workspace preferred by DHSEQR, as */
  779. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  780. /* the worst case.) */
  781. if (*info == 0) {
  782. if (*n == 0) {
  783. minwrk = 1;
  784. maxwrk = 1;
  785. } else {
  786. maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1,
  787. n, &c__0, (ftnlen)6, (ftnlen)1);
  788. minwrk = *n * 3;
  789. dhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[1]
  790. , &vs[vs_offset], ldvs, &work[1], &c_n1, &ieval);
  791. hswork = (integer) work[1];
  792. if (! wantvs) {
  793. /* Computing MAX */
  794. i__1 = maxwrk, i__2 = *n + hswork;
  795. maxwrk = f2cmax(i__1,i__2);
  796. } else {
  797. /* Computing MAX */
  798. i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
  799. "DORGHR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)
  800. 1);
  801. maxwrk = f2cmax(i__1,i__2);
  802. /* Computing MAX */
  803. i__1 = maxwrk, i__2 = *n + hswork;
  804. maxwrk = f2cmax(i__1,i__2);
  805. }
  806. }
  807. work[1] = (doublereal) maxwrk;
  808. if (*lwork < minwrk && ! lquery) {
  809. *info = -13;
  810. }
  811. }
  812. if (*info != 0) {
  813. i__1 = -(*info);
  814. xerbla_("DGEES ", &i__1, (ftnlen)6);
  815. return;
  816. } else if (lquery) {
  817. return;
  818. }
  819. /* Quick return if possible */
  820. if (*n == 0) {
  821. *sdim = 0;
  822. return;
  823. }
  824. /* Get machine constants */
  825. eps = dlamch_("P");
  826. smlnum = dlamch_("S");
  827. bignum = 1. / smlnum;
  828. dlabad_(&smlnum, &bignum);
  829. smlnum = sqrt(smlnum) / eps;
  830. bignum = 1. / smlnum;
  831. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  832. anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
  833. scalea = FALSE_;
  834. if (anrm > 0. && anrm < smlnum) {
  835. scalea = TRUE_;
  836. cscale = smlnum;
  837. } else if (anrm > bignum) {
  838. scalea = TRUE_;
  839. cscale = bignum;
  840. }
  841. if (scalea) {
  842. dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  843. ierr);
  844. }
  845. /* Permute the matrix to make it more nearly triangular */
  846. /* (Workspace: need N) */
  847. ibal = 1;
  848. dgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
  849. /* Reduce to upper Hessenberg form */
  850. /* (Workspace: need 3*N, prefer 2*N+N*NB) */
  851. itau = *n + ibal;
  852. iwrk = *n + itau;
  853. i__1 = *lwork - iwrk + 1;
  854. dgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
  855. &ierr);
  856. if (wantvs) {
  857. /* Copy Householder vectors to VS */
  858. dlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs)
  859. ;
  860. /* Generate orthogonal matrix in VS */
  861. /* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
  862. i__1 = *lwork - iwrk + 1;
  863. dorghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk],
  864. &i__1, &ierr);
  865. }
  866. *sdim = 0;
  867. /* Perform QR iteration, accumulating Schur vectors in VS if desired */
  868. /* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
  869. iwrk = itau;
  870. i__1 = *lwork - iwrk + 1;
  871. dhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &vs[
  872. vs_offset], ldvs, &work[iwrk], &i__1, &ieval);
  873. if (ieval > 0) {
  874. *info = ieval;
  875. }
  876. /* Sort eigenvalues if desired */
  877. if (wantst && *info == 0) {
  878. if (scalea) {
  879. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wr[1], n, &
  880. ierr);
  881. dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &wi[1], n, &
  882. ierr);
  883. }
  884. i__1 = *n;
  885. for (i__ = 1; i__ <= i__1; ++i__) {
  886. bwork[i__] = (*select)(&wr[i__], &wi[i__]);
  887. /* L10: */
  888. }
  889. /* Reorder eigenvalues and transform Schur vectors */
  890. /* (Workspace: none needed) */
  891. i__1 = *lwork - iwrk + 1;
  892. dtrsen_("N", jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset],
  893. ldvs, &wr[1], &wi[1], sdim, &s, &sep, &work[iwrk], &i__1,
  894. idum, &c__1, &icond);
  895. if (icond > 0) {
  896. *info = *n + icond;
  897. }
  898. }
  899. if (wantvs) {
  900. /* Undo balancing */
  901. /* (Workspace: need N) */
  902. dgebak_("P", "R", n, &ilo, &ihi, &work[ibal], n, &vs[vs_offset], ldvs,
  903. &ierr);
  904. }
  905. if (scalea) {
  906. /* Undo scaling for the Schur form of A */
  907. dlascl_("H", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, &
  908. ierr);
  909. i__1 = *lda + 1;
  910. dcopy_(n, &a[a_offset], &i__1, &wr[1], &c__1);
  911. if (cscale == smlnum) {
  912. /* If scaling back towards underflow, adjust WI if an */
  913. /* offdiagonal element of a 2-by-2 block in the Schur form */
  914. /* underflows. */
  915. if (ieval > 0) {
  916. i1 = ieval + 1;
  917. i2 = ihi - 1;
  918. i__1 = ilo - 1;
  919. /* Computing MAX */
  920. i__3 = ilo - 1;
  921. i__2 = f2cmax(i__3,1);
  922. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[
  923. 1], &i__2, &ierr);
  924. } else if (wantst) {
  925. i1 = 1;
  926. i2 = *n - 1;
  927. } else {
  928. i1 = ilo;
  929. i2 = ihi - 1;
  930. }
  931. inxt = i1 - 1;
  932. i__1 = i2;
  933. for (i__ = i1; i__ <= i__1; ++i__) {
  934. if (i__ < inxt) {
  935. goto L20;
  936. }
  937. if (wi[i__] == 0.) {
  938. inxt = i__ + 1;
  939. } else {
  940. if (a[i__ + 1 + i__ * a_dim1] == 0.) {
  941. wi[i__] = 0.;
  942. wi[i__ + 1] = 0.;
  943. } else if (a[i__ + 1 + i__ * a_dim1] != 0. && a[i__ + (
  944. i__ + 1) * a_dim1] == 0.) {
  945. wi[i__] = 0.;
  946. wi[i__ + 1] = 0.;
  947. if (i__ > 1) {
  948. i__2 = i__ - 1;
  949. dswap_(&i__2, &a[i__ * a_dim1 + 1], &c__1, &a[(
  950. i__ + 1) * a_dim1 + 1], &c__1);
  951. }
  952. if (*n > i__ + 1) {
  953. i__2 = *n - i__ - 1;
  954. dswap_(&i__2, &a[i__ + (i__ + 2) * a_dim1], lda, &
  955. a[i__ + 1 + (i__ + 2) * a_dim1], lda);
  956. }
  957. if (wantvs) {
  958. dswap_(n, &vs[i__ * vs_dim1 + 1], &c__1, &vs[(i__
  959. + 1) * vs_dim1 + 1], &c__1);
  960. }
  961. a[i__ + (i__ + 1) * a_dim1] = a[i__ + 1 + i__ *
  962. a_dim1];
  963. a[i__ + 1 + i__ * a_dim1] = 0.;
  964. }
  965. inxt = i__ + 2;
  966. }
  967. L20:
  968. ;
  969. }
  970. }
  971. /* Undo scaling for the imaginary part of the eigenvalues */
  972. i__1 = *n - ieval;
  973. /* Computing MAX */
  974. i__3 = *n - ieval;
  975. i__2 = f2cmax(i__3,1);
  976. dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[ieval +
  977. 1], &i__2, &ierr);
  978. }
  979. if (wantst && *info == 0) {
  980. /* Check if reordering successful */
  981. lastsl = TRUE_;
  982. lst2sl = TRUE_;
  983. *sdim = 0;
  984. ip = 0;
  985. i__1 = *n;
  986. for (i__ = 1; i__ <= i__1; ++i__) {
  987. cursl = (*select)(&wr[i__], &wi[i__]);
  988. if (wi[i__] == 0.) {
  989. if (cursl) {
  990. ++(*sdim);
  991. }
  992. ip = 0;
  993. if (cursl && ! lastsl) {
  994. *info = *n + 2;
  995. }
  996. } else {
  997. if (ip == 1) {
  998. /* Last eigenvalue of conjugate pair */
  999. cursl = cursl || lastsl;
  1000. lastsl = cursl;
  1001. if (cursl) {
  1002. *sdim += 2;
  1003. }
  1004. ip = -1;
  1005. if (cursl && ! lst2sl) {
  1006. *info = *n + 2;
  1007. }
  1008. } else {
  1009. /* First eigenvalue of conjugate pair */
  1010. ip = 1;
  1011. }
  1012. }
  1013. lst2sl = lastsl;
  1014. lastsl = cursl;
  1015. /* L30: */
  1016. }
  1017. }
  1018. work[1] = (doublereal) maxwrk;
  1019. return;
  1020. /* End of DGEES */
  1021. } /* dgees_ */