You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrsyl.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. /* > \brief \b CTRSYL */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download CTRSYL + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsyl.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsyl.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsyl.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  504. /* LDC, SCALE, INFO ) */
  505. /* CHARACTER TRANA, TRANB */
  506. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  507. /* REAL SCALE */
  508. /* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > CTRSYL solves the complex Sylvester matrix equation: */
  515. /* > */
  516. /* > op(A)*X + X*op(B) = scale*C or */
  517. /* > op(A)*X - X*op(B) = scale*C, */
  518. /* > */
  519. /* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
  520. /* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
  521. /* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
  522. /* > overflow in X. */
  523. /* > \endverbatim */
  524. /* Arguments: */
  525. /* ========== */
  526. /* > \param[in] TRANA */
  527. /* > \verbatim */
  528. /* > TRANA is CHARACTER*1 */
  529. /* > Specifies the option op(A): */
  530. /* > = 'N': op(A) = A (No transpose) */
  531. /* > = 'C': op(A) = A**H (Conjugate transpose) */
  532. /* > \endverbatim */
  533. /* > */
  534. /* > \param[in] TRANB */
  535. /* > \verbatim */
  536. /* > TRANB is CHARACTER*1 */
  537. /* > Specifies the option op(B): */
  538. /* > = 'N': op(B) = B (No transpose) */
  539. /* > = 'C': op(B) = B**H (Conjugate transpose) */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] ISGN */
  543. /* > \verbatim */
  544. /* > ISGN is INTEGER */
  545. /* > Specifies the sign in the equation: */
  546. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  547. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] M */
  551. /* > \verbatim */
  552. /* > M is INTEGER */
  553. /* > The order of the matrix A, and the number of rows in the */
  554. /* > matrices X and C. M >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] N */
  558. /* > \verbatim */
  559. /* > N is INTEGER */
  560. /* > The order of the matrix B, and the number of columns in the */
  561. /* > matrices X and C. N >= 0. */
  562. /* > \endverbatim */
  563. /* > */
  564. /* > \param[in] A */
  565. /* > \verbatim */
  566. /* > A is COMPLEX array, dimension (LDA,M) */
  567. /* > The upper triangular matrix A. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDA */
  571. /* > \verbatim */
  572. /* > LDA is INTEGER */
  573. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] B */
  577. /* > \verbatim */
  578. /* > B is COMPLEX array, dimension (LDB,N) */
  579. /* > The upper triangular matrix B. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] LDB */
  583. /* > \verbatim */
  584. /* > LDB is INTEGER */
  585. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] C */
  589. /* > \verbatim */
  590. /* > C is COMPLEX array, dimension (LDC,N) */
  591. /* > On entry, the M-by-N right hand side matrix C. */
  592. /* > On exit, C is overwritten by the solution matrix X. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDC */
  596. /* > \verbatim */
  597. /* > LDC is INTEGER */
  598. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[out] SCALE */
  602. /* > \verbatim */
  603. /* > SCALE is REAL */
  604. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] INFO */
  608. /* > \verbatim */
  609. /* > INFO is INTEGER */
  610. /* > = 0: successful exit */
  611. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  612. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  613. /* > values were used to solve the equation (but the matrices */
  614. /* > A and B are unchanged). */
  615. /* > \endverbatim */
  616. /* Authors: */
  617. /* ======== */
  618. /* > \author Univ. of Tennessee */
  619. /* > \author Univ. of California Berkeley */
  620. /* > \author Univ. of Colorado Denver */
  621. /* > \author NAG Ltd. */
  622. /* > \date December 2016 */
  623. /* > \ingroup complexSYcomputational */
  624. /* ===================================================================== */
  625. /* Subroutine */ void ctrsyl_(char *trana, char *tranb, integer *isgn, integer
  626. *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
  627. complex *c__, integer *ldc, real *scale, integer *info)
  628. {
  629. /* System generated locals */
  630. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  631. i__3, i__4;
  632. real r__1, r__2;
  633. complex q__1, q__2, q__3, q__4;
  634. /* Local variables */
  635. real smin;
  636. complex suml, sumr;
  637. integer j, k, l;
  638. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  639. *, complex *, integer *);
  640. extern logical lsame_(char *, char *);
  641. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  642. *, complex *, integer *);
  643. complex a11;
  644. real db;
  645. extern /* Subroutine */ void slabad_(real *, real *);
  646. extern real clange_(char *, integer *, integer *, complex *, integer *,
  647. real *);
  648. complex x11;
  649. extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
  650. real scaloc;
  651. extern real slamch_(char *);
  652. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  653. *);
  654. extern int xerbla_(char *, integer *, ftnlen);
  655. real bignum;
  656. logical notrna, notrnb;
  657. real smlnum, da11;
  658. complex vec;
  659. real dum[1], eps, sgn;
  660. /* -- LAPACK computational routine (version 3.7.0) -- */
  661. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  662. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  663. /* December 2016 */
  664. /* ===================================================================== */
  665. /* Decode and Test input parameters */
  666. /* Parameter adjustments */
  667. a_dim1 = *lda;
  668. a_offset = 1 + a_dim1 * 1;
  669. a -= a_offset;
  670. b_dim1 = *ldb;
  671. b_offset = 1 + b_dim1 * 1;
  672. b -= b_offset;
  673. c_dim1 = *ldc;
  674. c_offset = 1 + c_dim1 * 1;
  675. c__ -= c_offset;
  676. /* Function Body */
  677. notrna = lsame_(trana, "N");
  678. notrnb = lsame_(tranb, "N");
  679. *info = 0;
  680. if (! notrna && ! lsame_(trana, "C")) {
  681. *info = -1;
  682. } else if (! notrnb && ! lsame_(tranb, "C")) {
  683. *info = -2;
  684. } else if (*isgn != 1 && *isgn != -1) {
  685. *info = -3;
  686. } else if (*m < 0) {
  687. *info = -4;
  688. } else if (*n < 0) {
  689. *info = -5;
  690. } else if (*lda < f2cmax(1,*m)) {
  691. *info = -7;
  692. } else if (*ldb < f2cmax(1,*n)) {
  693. *info = -9;
  694. } else if (*ldc < f2cmax(1,*m)) {
  695. *info = -11;
  696. }
  697. if (*info != 0) {
  698. i__1 = -(*info);
  699. xerbla_("CTRSYL", &i__1, (ftnlen)6);
  700. return;
  701. }
  702. /* Quick return if possible */
  703. *scale = 1.f;
  704. if (*m == 0 || *n == 0) {
  705. return;
  706. }
  707. /* Set constants to control overflow */
  708. eps = slamch_("P");
  709. smlnum = slamch_("S");
  710. bignum = 1.f / smlnum;
  711. slabad_(&smlnum, &bignum);
  712. smlnum = smlnum * (real) (*m * *n) / eps;
  713. bignum = 1.f / smlnum;
  714. /* Computing MAX */
  715. r__1 = smlnum, r__2 = eps * clange_("M", m, m, &a[a_offset], lda, dum), r__1 = f2cmax(r__1,r__2), r__2 = eps * clange_("M", n, n,
  716. &b[b_offset], ldb, dum);
  717. smin = f2cmax(r__1,r__2);
  718. sgn = (real) (*isgn);
  719. if (notrna && notrnb) {
  720. /* Solve A*X + ISGN*X*B = scale*C. */
  721. /* The (K,L)th block of X is determined starting from */
  722. /* bottom-left corner column by column by */
  723. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  724. /* Where */
  725. /* M L-1 */
  726. /* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
  727. /* I=K+1 J=1 */
  728. i__1 = *n;
  729. for (l = 1; l <= i__1; ++l) {
  730. for (k = *m; k >= 1; --k) {
  731. i__2 = *m - k;
  732. /* Computing MIN */
  733. i__3 = k + 1;
  734. /* Computing MIN */
  735. i__4 = k + 1;
  736. cdotu_(&q__1, &i__2, &a[k + f2cmin(i__3,*m) * a_dim1], lda, &c__[
  737. f2cmin(i__4,*m) + l * c_dim1], &c__1);
  738. suml.r = q__1.r, suml.i = q__1.i;
  739. i__2 = l - 1;
  740. cdotu_(&q__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  741. , &c__1);
  742. sumr.r = q__1.r, sumr.i = q__1.i;
  743. i__2 = k + l * c_dim1;
  744. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  745. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  746. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  747. vec.r = q__1.r, vec.i = q__1.i;
  748. scaloc = 1.f;
  749. i__2 = k + k * a_dim1;
  750. i__3 = l + l * b_dim1;
  751. q__2.r = sgn * b[i__3].r, q__2.i = sgn * b[i__3].i;
  752. q__1.r = a[i__2].r + q__2.r, q__1.i = a[i__2].i + q__2.i;
  753. a11.r = q__1.r, a11.i = q__1.i;
  754. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  755. r__2));
  756. if (da11 <= smin) {
  757. a11.r = smin, a11.i = 0.f;
  758. da11 = smin;
  759. *info = 1;
  760. }
  761. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  762. r__2));
  763. if (da11 < 1.f && db > 1.f) {
  764. if (db > bignum * da11) {
  765. scaloc = 1.f / db;
  766. }
  767. }
  768. q__3.r = scaloc, q__3.i = 0.f;
  769. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  770. q__3.i + vec.i * q__3.r;
  771. cladiv_(&q__1, &q__2, &a11);
  772. x11.r = q__1.r, x11.i = q__1.i;
  773. if (scaloc != 1.f) {
  774. i__2 = *n;
  775. for (j = 1; j <= i__2; ++j) {
  776. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  777. /* L10: */
  778. }
  779. *scale *= scaloc;
  780. }
  781. i__2 = k + l * c_dim1;
  782. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  783. /* L20: */
  784. }
  785. /* L30: */
  786. }
  787. } else if (! notrna && notrnb) {
  788. /* Solve A**H *X + ISGN*X*B = scale*C. */
  789. /* The (K,L)th block of X is determined starting from */
  790. /* upper-left corner column by column by */
  791. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  792. /* Where */
  793. /* K-1 L-1 */
  794. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
  795. /* I=1 J=1 */
  796. i__1 = *n;
  797. for (l = 1; l <= i__1; ++l) {
  798. i__2 = *m;
  799. for (k = 1; k <= i__2; ++k) {
  800. i__3 = k - 1;
  801. cdotc_(&q__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
  802. c_dim1 + 1], &c__1);
  803. suml.r = q__1.r, suml.i = q__1.i;
  804. i__3 = l - 1;
  805. cdotu_(&q__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  806. , &c__1);
  807. sumr.r = q__1.r, sumr.i = q__1.i;
  808. i__3 = k + l * c_dim1;
  809. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  810. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  811. q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i;
  812. vec.r = q__1.r, vec.i = q__1.i;
  813. scaloc = 1.f;
  814. r_cnjg(&q__2, &a[k + k * a_dim1]);
  815. i__3 = l + l * b_dim1;
  816. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  817. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  818. a11.r = q__1.r, a11.i = q__1.i;
  819. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  820. r__2));
  821. if (da11 <= smin) {
  822. a11.r = smin, a11.i = 0.f;
  823. da11 = smin;
  824. *info = 1;
  825. }
  826. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  827. r__2));
  828. if (da11 < 1.f && db > 1.f) {
  829. if (db > bignum * da11) {
  830. scaloc = 1.f / db;
  831. }
  832. }
  833. q__3.r = scaloc, q__3.i = 0.f;
  834. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  835. q__3.i + vec.i * q__3.r;
  836. cladiv_(&q__1, &q__2, &a11);
  837. x11.r = q__1.r, x11.i = q__1.i;
  838. if (scaloc != 1.f) {
  839. i__3 = *n;
  840. for (j = 1; j <= i__3; ++j) {
  841. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  842. /* L40: */
  843. }
  844. *scale *= scaloc;
  845. }
  846. i__3 = k + l * c_dim1;
  847. c__[i__3].r = x11.r, c__[i__3].i = x11.i;
  848. /* L50: */
  849. }
  850. /* L60: */
  851. }
  852. } else if (! notrna && ! notrnb) {
  853. /* Solve A**H*X + ISGN*X*B**H = C. */
  854. /* The (K,L)th block of X is determined starting from */
  855. /* upper-right corner column by column by */
  856. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  857. /* Where */
  858. /* K-1 */
  859. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + */
  860. /* I=1 */
  861. /* N */
  862. /* ISGN*SUM [X(K,J)*B**H(L,J)]. */
  863. /* J=L+1 */
  864. for (l = *n; l >= 1; --l) {
  865. i__1 = *m;
  866. for (k = 1; k <= i__1; ++k) {
  867. i__2 = k - 1;
  868. cdotc_(&q__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
  869. c_dim1 + 1], &c__1);
  870. suml.r = q__1.r, suml.i = q__1.i;
  871. i__2 = *n - l;
  872. /* Computing MIN */
  873. i__3 = l + 1;
  874. /* Computing MIN */
  875. i__4 = l + 1;
  876. cdotc_(&q__1, &i__2, &c__[k + f2cmin(i__3,*n) * c_dim1], ldc, &b[
  877. l + f2cmin(i__4,*n) * b_dim1], ldb);
  878. sumr.r = q__1.r, sumr.i = q__1.i;
  879. i__2 = k + l * c_dim1;
  880. r_cnjg(&q__4, &sumr);
  881. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  882. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  883. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  884. vec.r = q__1.r, vec.i = q__1.i;
  885. scaloc = 1.f;
  886. i__2 = k + k * a_dim1;
  887. i__3 = l + l * b_dim1;
  888. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  889. q__2.r = a[i__2].r + q__3.r, q__2.i = a[i__2].i + q__3.i;
  890. r_cnjg(&q__1, &q__2);
  891. a11.r = q__1.r, a11.i = q__1.i;
  892. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  893. r__2));
  894. if (da11 <= smin) {
  895. a11.r = smin, a11.i = 0.f;
  896. da11 = smin;
  897. *info = 1;
  898. }
  899. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  900. r__2));
  901. if (da11 < 1.f && db > 1.f) {
  902. if (db > bignum * da11) {
  903. scaloc = 1.f / db;
  904. }
  905. }
  906. q__3.r = scaloc, q__3.i = 0.f;
  907. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  908. q__3.i + vec.i * q__3.r;
  909. cladiv_(&q__1, &q__2, &a11);
  910. x11.r = q__1.r, x11.i = q__1.i;
  911. if (scaloc != 1.f) {
  912. i__2 = *n;
  913. for (j = 1; j <= i__2; ++j) {
  914. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  915. /* L70: */
  916. }
  917. *scale *= scaloc;
  918. }
  919. i__2 = k + l * c_dim1;
  920. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  921. /* L80: */
  922. }
  923. /* L90: */
  924. }
  925. } else if (notrna && ! notrnb) {
  926. /* Solve A*X + ISGN*X*B**H = C. */
  927. /* The (K,L)th block of X is determined starting from */
  928. /* bottom-left corner column by column by */
  929. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  930. /* Where */
  931. /* M N */
  932. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] */
  933. /* I=K+1 J=L+1 */
  934. for (l = *n; l >= 1; --l) {
  935. for (k = *m; k >= 1; --k) {
  936. i__1 = *m - k;
  937. /* Computing MIN */
  938. i__2 = k + 1;
  939. /* Computing MIN */
  940. i__3 = k + 1;
  941. cdotu_(&q__1, &i__1, &a[k + f2cmin(i__2,*m) * a_dim1], lda, &c__[
  942. f2cmin(i__3,*m) + l * c_dim1], &c__1);
  943. suml.r = q__1.r, suml.i = q__1.i;
  944. i__1 = *n - l;
  945. /* Computing MIN */
  946. i__2 = l + 1;
  947. /* Computing MIN */
  948. i__3 = l + 1;
  949. cdotc_(&q__1, &i__1, &c__[k + f2cmin(i__2,*n) * c_dim1], ldc, &b[
  950. l + f2cmin(i__3,*n) * b_dim1], ldb);
  951. sumr.r = q__1.r, sumr.i = q__1.i;
  952. i__1 = k + l * c_dim1;
  953. r_cnjg(&q__4, &sumr);
  954. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  955. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  956. q__1.r = c__[i__1].r - q__2.r, q__1.i = c__[i__1].i - q__2.i;
  957. vec.r = q__1.r, vec.i = q__1.i;
  958. scaloc = 1.f;
  959. i__1 = k + k * a_dim1;
  960. r_cnjg(&q__3, &b[l + l * b_dim1]);
  961. q__2.r = sgn * q__3.r, q__2.i = sgn * q__3.i;
  962. q__1.r = a[i__1].r + q__2.r, q__1.i = a[i__1].i + q__2.i;
  963. a11.r = q__1.r, a11.i = q__1.i;
  964. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  965. r__2));
  966. if (da11 <= smin) {
  967. a11.r = smin, a11.i = 0.f;
  968. da11 = smin;
  969. *info = 1;
  970. }
  971. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  972. r__2));
  973. if (da11 < 1.f && db > 1.f) {
  974. if (db > bignum * da11) {
  975. scaloc = 1.f / db;
  976. }
  977. }
  978. q__3.r = scaloc, q__3.i = 0.f;
  979. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  980. q__3.i + vec.i * q__3.r;
  981. cladiv_(&q__1, &q__2, &a11);
  982. x11.r = q__1.r, x11.i = q__1.i;
  983. if (scaloc != 1.f) {
  984. i__1 = *n;
  985. for (j = 1; j <= i__1; ++j) {
  986. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  987. /* L100: */
  988. }
  989. *scale *= scaloc;
  990. }
  991. i__1 = k + l * c_dim1;
  992. c__[i__1].r = x11.r, c__[i__1].i = x11.i;
  993. /* L110: */
  994. }
  995. /* L120: */
  996. }
  997. }
  998. return;
  999. /* End of CTRSYL */
  1000. } /* ctrsyl_ */