You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssyevr.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__10 = 10;
  487. static integer c__1 = 1;
  488. static integer c__2 = 2;
  489. static integer c__3 = 3;
  490. static integer c__4 = 4;
  491. static integer c_n1 = -1;
  492. /* > \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat
  493. rices</b> */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download SSYEVR + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
  512. /* ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, */
  513. /* IWORK, LIWORK, INFO ) */
  514. /* CHARACTER JOBZ, RANGE, UPLO */
  515. /* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N */
  516. /* REAL ABSTOL, VL, VU */
  517. /* INTEGER ISUPPZ( * ), IWORK( * ) */
  518. /* REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > SSYEVR computes selected eigenvalues and, optionally, eigenvectors */
  525. /* > of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
  526. /* > selected by specifying either a range of values or a range of */
  527. /* > indices for the desired eigenvalues. */
  528. /* > */
  529. /* > SSYEVR first reduces the matrix A to tridiagonal form T with a call */
  530. /* > to SSYTRD. Then, whenever possible, SSYEVR calls SSTEMR to compute */
  531. /* > the eigenspectrum using Relatively Robust Representations. SSTEMR */
  532. /* > computes eigenvalues by the dqds algorithm, while orthogonal */
  533. /* > eigenvectors are computed from various "good" L D L^T representations */
  534. /* > (also known as Relatively Robust Representations). Gram-Schmidt */
  535. /* > orthogonalization is avoided as far as possible. More specifically, */
  536. /* > the various steps of the algorithm are as follows. */
  537. /* > */
  538. /* > For each unreduced block (submatrix) of T, */
  539. /* > (a) Compute T - sigma I = L D L^T, so that L and D */
  540. /* > define all the wanted eigenvalues to high relative accuracy. */
  541. /* > This means that small relative changes in the entries of D and L */
  542. /* > cause only small relative changes in the eigenvalues and */
  543. /* > eigenvectors. The standard (unfactored) representation of the */
  544. /* > tridiagonal matrix T does not have this property in general. */
  545. /* > (b) Compute the eigenvalues to suitable accuracy. */
  546. /* > If the eigenvectors are desired, the algorithm attains full */
  547. /* > accuracy of the computed eigenvalues only right before */
  548. /* > the corresponding vectors have to be computed, see steps c) and d). */
  549. /* > (c) For each cluster of close eigenvalues, select a new */
  550. /* > shift close to the cluster, find a new factorization, and refine */
  551. /* > the shifted eigenvalues to suitable accuracy. */
  552. /* > (d) For each eigenvalue with a large enough relative separation compute */
  553. /* > the corresponding eigenvector by forming a rank revealing twisted */
  554. /* > factorization. Go back to (c) for any clusters that remain. */
  555. /* > */
  556. /* > The desired accuracy of the output can be specified by the input */
  557. /* > parameter ABSTOL. */
  558. /* > */
  559. /* > For more details, see SSTEMR's documentation and: */
  560. /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
  561. /* > to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
  562. /* > Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
  563. /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
  564. /* > Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
  565. /* > 2004. Also LAPACK Working Note 154. */
  566. /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
  567. /* > tridiagonal eigenvalue/eigenvector problem", */
  568. /* > Computer Science Division Technical Report No. UCB/CSD-97-971, */
  569. /* > UC Berkeley, May 1997. */
  570. /* > */
  571. /* > */
  572. /* > Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested */
  573. /* > on machines which conform to the ieee-754 floating point standard. */
  574. /* > SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and */
  575. /* > when partial spectrum requests are made. */
  576. /* > */
  577. /* > Normal execution of SSTEMR may create NaNs and infinities and */
  578. /* > hence may abort due to a floating point exception in environments */
  579. /* > which do not handle NaNs and infinities in the ieee standard default */
  580. /* > manner. */
  581. /* > \endverbatim */
  582. /* Arguments: */
  583. /* ========== */
  584. /* > \param[in] JOBZ */
  585. /* > \verbatim */
  586. /* > JOBZ is CHARACTER*1 */
  587. /* > = 'N': Compute eigenvalues only; */
  588. /* > = 'V': Compute eigenvalues and eigenvectors. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] RANGE */
  592. /* > \verbatim */
  593. /* > RANGE is CHARACTER*1 */
  594. /* > = 'A': all eigenvalues will be found. */
  595. /* > = 'V': all eigenvalues in the half-open interval (VL,VU] */
  596. /* > will be found. */
  597. /* > = 'I': the IL-th through IU-th eigenvalues will be found. */
  598. /* > For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
  599. /* > SSTEIN are called */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in] UPLO */
  603. /* > \verbatim */
  604. /* > UPLO is CHARACTER*1 */
  605. /* > = 'U': Upper triangle of A is stored; */
  606. /* > = 'L': Lower triangle of A is stored. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] N */
  610. /* > \verbatim */
  611. /* > N is INTEGER */
  612. /* > The order of the matrix A. N >= 0. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] A */
  616. /* > \verbatim */
  617. /* > A is REAL array, dimension (LDA, N) */
  618. /* > On entry, the symmetric matrix A. If UPLO = 'U', the */
  619. /* > leading N-by-N upper triangular part of A contains the */
  620. /* > upper triangular part of the matrix A. If UPLO = 'L', */
  621. /* > the leading N-by-N lower triangular part of A contains */
  622. /* > the lower triangular part of the matrix A. */
  623. /* > On exit, the lower triangle (if UPLO='L') or the upper */
  624. /* > triangle (if UPLO='U') of A, including the diagonal, is */
  625. /* > destroyed. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDA */
  629. /* > \verbatim */
  630. /* > LDA is INTEGER */
  631. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] VL */
  635. /* > \verbatim */
  636. /* > VL is REAL */
  637. /* > If RANGE='V', the lower bound of the interval to */
  638. /* > be searched for eigenvalues. VL < VU. */
  639. /* > Not referenced if RANGE = 'A' or 'I'. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] VU */
  643. /* > \verbatim */
  644. /* > VU is REAL */
  645. /* > If RANGE='V', the upper bound of the interval to */
  646. /* > be searched for eigenvalues. VL < VU. */
  647. /* > Not referenced if RANGE = 'A' or 'I'. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[in] IL */
  651. /* > \verbatim */
  652. /* > IL is INTEGER */
  653. /* > If RANGE='I', the index of the */
  654. /* > smallest eigenvalue to be returned. */
  655. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  656. /* > Not referenced if RANGE = 'A' or 'V'. */
  657. /* > \endverbatim */
  658. /* > */
  659. /* > \param[in] IU */
  660. /* > \verbatim */
  661. /* > IU is INTEGER */
  662. /* > If RANGE='I', the index of the */
  663. /* > largest eigenvalue to be returned. */
  664. /* > 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
  665. /* > Not referenced if RANGE = 'A' or 'V'. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] ABSTOL */
  669. /* > \verbatim */
  670. /* > ABSTOL is REAL */
  671. /* > The absolute error tolerance for the eigenvalues. */
  672. /* > An approximate eigenvalue is accepted as converged */
  673. /* > when it is determined to lie in an interval [a,b] */
  674. /* > of width less than or equal to */
  675. /* > */
  676. /* > ABSTOL + EPS * f2cmax( |a|,|b| ) , */
  677. /* > */
  678. /* > where EPS is the machine precision. If ABSTOL is less than */
  679. /* > or equal to zero, then EPS*|T| will be used in its place, */
  680. /* > where |T| is the 1-norm of the tridiagonal matrix obtained */
  681. /* > by reducing A to tridiagonal form. */
  682. /* > */
  683. /* > See "Computing Small Singular Values of Bidiagonal Matrices */
  684. /* > with Guaranteed High Relative Accuracy," by Demmel and */
  685. /* > Kahan, LAPACK Working Note #3. */
  686. /* > */
  687. /* > If high relative accuracy is important, set ABSTOL to */
  688. /* > SLAMCH( 'Safe minimum' ). Doing so will guarantee that */
  689. /* > eigenvalues are computed to high relative accuracy when */
  690. /* > possible in future releases. The current code does not */
  691. /* > make any guarantees about high relative accuracy, but */
  692. /* > future releases will. See J. Barlow and J. Demmel, */
  693. /* > "Computing Accurate Eigensystems of Scaled Diagonally */
  694. /* > Dominant Matrices", LAPACK Working Note #7, for a discussion */
  695. /* > of which matrices define their eigenvalues to high relative */
  696. /* > accuracy. */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] M */
  700. /* > \verbatim */
  701. /* > M is INTEGER */
  702. /* > The total number of eigenvalues found. 0 <= M <= N. */
  703. /* > If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] W */
  707. /* > \verbatim */
  708. /* > W is REAL array, dimension (N) */
  709. /* > The first M elements contain the selected eigenvalues in */
  710. /* > ascending order. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] Z */
  714. /* > \verbatim */
  715. /* > Z is REAL array, dimension (LDZ, f2cmax(1,M)) */
  716. /* > If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
  717. /* > contain the orthonormal eigenvectors of the matrix A */
  718. /* > corresponding to the selected eigenvalues, with the i-th */
  719. /* > column of Z holding the eigenvector associated with W(i). */
  720. /* > If JOBZ = 'N', then Z is not referenced. */
  721. /* > Note: the user must ensure that at least f2cmax(1,M) columns are */
  722. /* > supplied in the array Z; if RANGE = 'V', the exact value of M */
  723. /* > is not known in advance and an upper bound must be used. */
  724. /* > Supplying N columns is always safe. */
  725. /* > \endverbatim */
  726. /* > */
  727. /* > \param[in] LDZ */
  728. /* > \verbatim */
  729. /* > LDZ is INTEGER */
  730. /* > The leading dimension of the array Z. LDZ >= 1, and if */
  731. /* > JOBZ = 'V', LDZ >= f2cmax(1,N). */
  732. /* > \endverbatim */
  733. /* > */
  734. /* > \param[out] ISUPPZ */
  735. /* > \verbatim */
  736. /* > ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
  737. /* > The support of the eigenvectors in Z, i.e., the indices */
  738. /* > indicating the nonzero elements in Z. The i-th eigenvector */
  739. /* > is nonzero only in elements ISUPPZ( 2*i-1 ) through */
  740. /* > ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal */
  741. /* > matrix). The support of the eigenvectors of A is typically */
  742. /* > 1:N because of the orthogonal transformations applied by SORMTR. */
  743. /* > Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
  744. /* > \endverbatim */
  745. /* > */
  746. /* > \param[out] WORK */
  747. /* > \verbatim */
  748. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  749. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  750. /* > \endverbatim */
  751. /* > */
  752. /* > \param[in] LWORK */
  753. /* > \verbatim */
  754. /* > LWORK is INTEGER */
  755. /* > The dimension of the array WORK. LWORK >= f2cmax(1,26*N). */
  756. /* > For optimal efficiency, LWORK >= (NB+6)*N, */
  757. /* > where NB is the f2cmax of the blocksize for SSYTRD and SORMTR */
  758. /* > returned by ILAENV. */
  759. /* > */
  760. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  761. /* > only calculates the optimal sizes of the WORK and IWORK */
  762. /* > arrays, returns these values as the first entries of the WORK */
  763. /* > and IWORK arrays, and no error message related to LWORK or */
  764. /* > LIWORK is issued by XERBLA. */
  765. /* > \endverbatim */
  766. /* > */
  767. /* > \param[out] IWORK */
  768. /* > \verbatim */
  769. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  770. /* > On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
  771. /* > \endverbatim */
  772. /* > */
  773. /* > \param[in] LIWORK */
  774. /* > \verbatim */
  775. /* > LIWORK is INTEGER */
  776. /* > The dimension of the array IWORK. LIWORK >= f2cmax(1,10*N). */
  777. /* > */
  778. /* > If LIWORK = -1, then a workspace query is assumed; the */
  779. /* > routine only calculates the optimal sizes of the WORK and */
  780. /* > IWORK arrays, returns these values as the first entries of */
  781. /* > the WORK and IWORK arrays, and no error message related to */
  782. /* > LWORK or LIWORK is issued by XERBLA. */
  783. /* > \endverbatim */
  784. /* > */
  785. /* > \param[out] INFO */
  786. /* > \verbatim */
  787. /* > INFO is INTEGER */
  788. /* > = 0: successful exit */
  789. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  790. /* > > 0: Internal error */
  791. /* > \endverbatim */
  792. /* Authors: */
  793. /* ======== */
  794. /* > \author Univ. of Tennessee */
  795. /* > \author Univ. of California Berkeley */
  796. /* > \author Univ. of Colorado Denver */
  797. /* > \author NAG Ltd. */
  798. /* > \date June 2016 */
  799. /* > \ingroup realSYeigen */
  800. /* > \par Contributors: */
  801. /* ================== */
  802. /* > */
  803. /* > Inderjit Dhillon, IBM Almaden, USA \n */
  804. /* > Osni Marques, LBNL/NERSC, USA \n */
  805. /* > Ken Stanley, Computer Science Division, University of */
  806. /* > California at Berkeley, USA \n */
  807. /* > Jason Riedy, Computer Science Division, University of */
  808. /* > California at Berkeley, USA \n */
  809. /* > */
  810. /* ===================================================================== */
  811. /* Subroutine */ void ssyevr_(char *jobz, char *range, char *uplo, integer *n,
  812. real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu,
  813. real *abstol, integer *m, real *w, real *z__, integer *ldz, integer *
  814. isuppz, real *work, integer *lwork, integer *iwork, integer *liwork,
  815. integer *info)
  816. {
  817. /* System generated locals */
  818. integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
  819. real r__1, r__2;
  820. /* Local variables */
  821. integer indd, inde;
  822. real anrm;
  823. integer imax;
  824. real rmin, rmax;
  825. logical test;
  826. integer i__, j, inddd, indee;
  827. real sigma;
  828. extern logical lsame_(char *, char *);
  829. integer iinfo;
  830. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  831. char order[1];
  832. integer indwk, lwmin;
  833. logical lower;
  834. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  835. integer *), sswap_(integer *, real *, integer *, real *, integer *
  836. );
  837. logical wantz;
  838. integer nb, jj;
  839. logical alleig, indeig;
  840. integer iscale, ieeeok, indibl, indifl;
  841. logical valeig;
  842. extern real slamch_(char *);
  843. real safmin;
  844. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  845. integer *, integer *, ftnlen, ftnlen);
  846. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  847. real abstll, bignum;
  848. integer indtau, indisp, indiwo, indwkn, liwmin;
  849. logical tryrac;
  850. extern /* Subroutine */ void sstein_(integer *, real *, real *, integer *,
  851. real *, integer *, integer *, real *, integer *, real *, integer *
  852. , integer *, integer *), ssterf_(integer *, real *, real *,
  853. integer *);
  854. integer llwrkn, llwork, nsplit;
  855. real smlnum;
  856. extern real slansy_(char *, char *, integer *, real *, integer *, real *);
  857. extern /* Subroutine */ void sstebz_(char *, char *, integer *, real *,
  858. real *, integer *, integer *, real *, real *, real *, integer *,
  859. integer *, real *, integer *, integer *, real *, integer *,
  860. integer *), sstemr_(char *, char *, integer *,
  861. real *, real *, real *, real *, integer *, integer *, integer *,
  862. real *, real *, integer *, integer *, integer *, logical *, real *
  863. , integer *, integer *, integer *, integer *);
  864. integer lwkopt;
  865. logical lquery;
  866. extern /* Subroutine */ void sormtr_(char *, char *, char *, integer *,
  867. integer *, real *, integer *, real *, real *, integer *, real *,
  868. integer *, integer *), ssytrd_(char *,
  869. integer *, real *, integer *, real *, real *, real *, real *,
  870. integer *, integer *);
  871. real eps, vll, vuu, tmp1;
  872. /* -- LAPACK driver routine (version 3.7.0) -- */
  873. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  874. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  875. /* June 2016 */
  876. /* ===================================================================== */
  877. /* Test the input parameters. */
  878. /* Parameter adjustments */
  879. a_dim1 = *lda;
  880. a_offset = 1 + a_dim1 * 1;
  881. a -= a_offset;
  882. --w;
  883. z_dim1 = *ldz;
  884. z_offset = 1 + z_dim1 * 1;
  885. z__ -= z_offset;
  886. --isuppz;
  887. --work;
  888. --iwork;
  889. /* Function Body */
  890. ieeeok = ilaenv_(&c__10, "SSYEVR", "N", &c__1, &c__2, &c__3, &c__4, (
  891. ftnlen)6, (ftnlen)1);
  892. lower = lsame_(uplo, "L");
  893. wantz = lsame_(jobz, "V");
  894. alleig = lsame_(range, "A");
  895. valeig = lsame_(range, "V");
  896. indeig = lsame_(range, "I");
  897. lquery = *lwork == -1 || *liwork == -1;
  898. /* Computing MAX */
  899. i__1 = 1, i__2 = *n * 26;
  900. lwmin = f2cmax(i__1,i__2);
  901. /* Computing MAX */
  902. i__1 = 1, i__2 = *n * 10;
  903. liwmin = f2cmax(i__1,i__2);
  904. *info = 0;
  905. if (! (wantz || lsame_(jobz, "N"))) {
  906. *info = -1;
  907. } else if (! (alleig || valeig || indeig)) {
  908. *info = -2;
  909. } else if (! (lower || lsame_(uplo, "U"))) {
  910. *info = -3;
  911. } else if (*n < 0) {
  912. *info = -4;
  913. } else if (*lda < f2cmax(1,*n)) {
  914. *info = -6;
  915. } else {
  916. if (valeig) {
  917. if (*n > 0 && *vu <= *vl) {
  918. *info = -8;
  919. }
  920. } else if (indeig) {
  921. if (*il < 1 || *il > f2cmax(1,*n)) {
  922. *info = -9;
  923. } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
  924. *info = -10;
  925. }
  926. }
  927. }
  928. if (*info == 0) {
  929. if (*ldz < 1 || wantz && *ldz < *n) {
  930. *info = -15;
  931. }
  932. }
  933. if (*info == 0) {
  934. nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
  935. (ftnlen)1);
  936. /* Computing MAX */
  937. i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, &
  938. c_n1, (ftnlen)6, (ftnlen)1);
  939. nb = f2cmax(i__1,i__2);
  940. /* Computing MAX */
  941. i__1 = (nb + 1) * *n;
  942. lwkopt = f2cmax(i__1,lwmin);
  943. work[1] = (real) lwkopt;
  944. iwork[1] = liwmin;
  945. if (*lwork < lwmin && ! lquery) {
  946. *info = -18;
  947. } else if (*liwork < liwmin && ! lquery) {
  948. *info = -20;
  949. }
  950. }
  951. if (*info != 0) {
  952. i__1 = -(*info);
  953. xerbla_("SSYEVR", &i__1, (ftnlen)6);
  954. return;
  955. } else if (lquery) {
  956. return;
  957. }
  958. /* Quick return if possible */
  959. *m = 0;
  960. if (*n == 0) {
  961. work[1] = 1.f;
  962. return;
  963. }
  964. if (*n == 1) {
  965. work[1] = 26.f;
  966. if (alleig || indeig) {
  967. *m = 1;
  968. w[1] = a[a_dim1 + 1];
  969. } else {
  970. if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
  971. *m = 1;
  972. w[1] = a[a_dim1 + 1];
  973. }
  974. }
  975. if (wantz) {
  976. z__[z_dim1 + 1] = 1.f;
  977. isuppz[1] = 1;
  978. isuppz[2] = 1;
  979. }
  980. return;
  981. }
  982. /* Get machine constants. */
  983. safmin = slamch_("Safe minimum");
  984. eps = slamch_("Precision");
  985. smlnum = safmin / eps;
  986. bignum = 1.f / smlnum;
  987. rmin = sqrt(smlnum);
  988. /* Computing MIN */
  989. r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
  990. rmax = f2cmin(r__1,r__2);
  991. /* Scale matrix to allowable range, if necessary. */
  992. iscale = 0;
  993. abstll = *abstol;
  994. if (valeig) {
  995. vll = *vl;
  996. vuu = *vu;
  997. }
  998. anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
  999. if (anrm > 0.f && anrm < rmin) {
  1000. iscale = 1;
  1001. sigma = rmin / anrm;
  1002. } else if (anrm > rmax) {
  1003. iscale = 1;
  1004. sigma = rmax / anrm;
  1005. }
  1006. if (iscale == 1) {
  1007. if (lower) {
  1008. i__1 = *n;
  1009. for (j = 1; j <= i__1; ++j) {
  1010. i__2 = *n - j + 1;
  1011. sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
  1012. /* L10: */
  1013. }
  1014. } else {
  1015. i__1 = *n;
  1016. for (j = 1; j <= i__1; ++j) {
  1017. sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
  1018. /* L20: */
  1019. }
  1020. }
  1021. if (*abstol > 0.f) {
  1022. abstll = *abstol * sigma;
  1023. }
  1024. if (valeig) {
  1025. vll = *vl * sigma;
  1026. vuu = *vu * sigma;
  1027. }
  1028. }
  1029. /* Initialize indices into workspaces. Note: The IWORK indices are */
  1030. /* used only if SSTERF or SSTEMR fail. */
  1031. /* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
  1032. /* elementary reflectors used in SSYTRD. */
  1033. indtau = 1;
  1034. /* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
  1035. indd = indtau + *n;
  1036. /* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
  1037. /* tridiagonal matrix from SSYTRD. */
  1038. inde = indd + *n;
  1039. /* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
  1040. /* -written by SSTEMR (the SSTERF path copies the diagonal to W). */
  1041. inddd = inde + *n;
  1042. /* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
  1043. /* -written while computing the eigenvalues in SSTERF and SSTEMR. */
  1044. indee = inddd + *n;
  1045. /* INDWK is the starting offset of the left-over workspace, and */
  1046. /* LLWORK is the remaining workspace size. */
  1047. indwk = indee + *n;
  1048. llwork = *lwork - indwk + 1;
  1049. /* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
  1050. /* stores the block indices of each of the M<=N eigenvalues. */
  1051. indibl = 1;
  1052. /* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
  1053. /* stores the starting and finishing indices of each block. */
  1054. indisp = indibl + *n;
  1055. /* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
  1056. /* that corresponding to eigenvectors that fail to converge in */
  1057. /* SSTEIN. This information is discarded; if any fail, the driver */
  1058. /* returns INFO > 0. */
  1059. indifl = indisp + *n;
  1060. /* INDIWO is the offset of the remaining integer workspace. */
  1061. indiwo = indifl + *n;
  1062. /* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
  1063. ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
  1064. indtau], &work[indwk], &llwork, &iinfo);
  1065. /* If all eigenvalues are desired */
  1066. /* then call SSTERF or SSTEMR and SORMTR. */
  1067. test = FALSE_;
  1068. if (indeig) {
  1069. if (*il == 1 && *iu == *n) {
  1070. test = TRUE_;
  1071. }
  1072. }
  1073. if ((alleig || test) && ieeeok == 1) {
  1074. if (! wantz) {
  1075. scopy_(n, &work[indd], &c__1, &w[1], &c__1);
  1076. i__1 = *n - 1;
  1077. scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  1078. ssterf_(n, &w[1], &work[indee], info);
  1079. } else {
  1080. i__1 = *n - 1;
  1081. scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
  1082. scopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
  1083. if (*abstol <= *n * 2.f * eps) {
  1084. tryrac = TRUE_;
  1085. } else {
  1086. tryrac = FALSE_;
  1087. }
  1088. sstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu,
  1089. m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
  1090. work[indwk], lwork, &iwork[1], liwork, info);
  1091. /* Apply orthogonal matrix used in reduction to tridiagonal */
  1092. /* form to eigenvectors returned by SSTEMR. */
  1093. if (wantz && *info == 0) {
  1094. indwkn = inde;
  1095. llwrkn = *lwork - indwkn + 1;
  1096. sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
  1097. , &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
  1098. }
  1099. }
  1100. if (*info == 0) {
  1101. /* Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are */
  1102. /* undefined. */
  1103. *m = *n;
  1104. goto L30;
  1105. }
  1106. *info = 0;
  1107. }
  1108. /* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
  1109. /* Also call SSTEBZ and SSTEIN if SSTEMR fails. */
  1110. if (wantz) {
  1111. *(unsigned char *)order = 'B';
  1112. } else {
  1113. *(unsigned char *)order = 'E';
  1114. }
  1115. sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
  1116. inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
  1117. indwk], &iwork[indiwo], info);
  1118. if (wantz) {
  1119. sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
  1120. indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
  1121. iwork[indifl], info);
  1122. /* Apply orthogonal matrix used in reduction to tridiagonal */
  1123. /* form to eigenvectors returned by SSTEIN. */
  1124. indwkn = inde;
  1125. llwrkn = *lwork - indwkn + 1;
  1126. sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
  1127. z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
  1128. }
  1129. /* If matrix was scaled, then rescale eigenvalues appropriately. */
  1130. /* Jump here if SSTEMR/SSTEIN succeeded. */
  1131. L30:
  1132. if (iscale == 1) {
  1133. if (*info == 0) {
  1134. imax = *m;
  1135. } else {
  1136. imax = *info - 1;
  1137. }
  1138. r__1 = 1.f / sigma;
  1139. sscal_(&imax, &r__1, &w[1], &c__1);
  1140. }
  1141. /* If eigenvalues are not in order, then sort them, along with */
  1142. /* eigenvectors. Note: We do not sort the IFAIL portion of IWORK. */
  1143. /* It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do */
  1144. /* not return this detailed information to the user. */
  1145. if (wantz) {
  1146. i__1 = *m - 1;
  1147. for (j = 1; j <= i__1; ++j) {
  1148. i__ = 0;
  1149. tmp1 = w[j];
  1150. i__2 = *m;
  1151. for (jj = j + 1; jj <= i__2; ++jj) {
  1152. if (w[jj] < tmp1) {
  1153. i__ = jj;
  1154. tmp1 = w[jj];
  1155. }
  1156. /* L40: */
  1157. }
  1158. if (i__ != 0) {
  1159. w[i__] = w[j];
  1160. w[j] = tmp1;
  1161. sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
  1162. &c__1);
  1163. }
  1164. /* L50: */
  1165. }
  1166. }
  1167. /* Set WORK(1) to optimal workspace size. */
  1168. work[1] = (real) lwkopt;
  1169. iwork[1] = liwmin;
  1170. return;
  1171. /* End of SSYEVR */
  1172. } /* ssyevr_ */