You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarfb.c 36 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b14 = 1.f;
  488. static real c_b25 = -1.f;
  489. /* > \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix. */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SLARFB + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
  508. /* T, LDT, C, LDC, WORK, LDWORK ) */
  509. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  510. /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
  511. /* REAL C( LDC, * ), T( LDT, * ), V( LDV, * ), */
  512. /* $ WORK( LDWORK, * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SLARFB applies a real block reflector H or its transpose H**T to a */
  519. /* > real m by n matrix C, from either the left or the right. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] SIDE */
  524. /* > \verbatim */
  525. /* > SIDE is CHARACTER*1 */
  526. /* > = 'L': apply H or H**T from the Left */
  527. /* > = 'R': apply H or H**T from the Right */
  528. /* > \endverbatim */
  529. /* > */
  530. /* > \param[in] TRANS */
  531. /* > \verbatim */
  532. /* > TRANS is CHARACTER*1 */
  533. /* > = 'N': apply H (No transpose) */
  534. /* > = 'T': apply H**T (Transpose) */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] DIRECT */
  538. /* > \verbatim */
  539. /* > DIRECT is CHARACTER*1 */
  540. /* > Indicates how H is formed from a product of elementary */
  541. /* > reflectors */
  542. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  543. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] STOREV */
  547. /* > \verbatim */
  548. /* > STOREV is CHARACTER*1 */
  549. /* > Indicates how the vectors which define the elementary */
  550. /* > reflectors are stored: */
  551. /* > = 'C': Columnwise */
  552. /* > = 'R': Rowwise */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] M */
  556. /* > \verbatim */
  557. /* > M is INTEGER */
  558. /* > The number of rows of the matrix C. */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] N */
  562. /* > \verbatim */
  563. /* > N is INTEGER */
  564. /* > The number of columns of the matrix C. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] K */
  568. /* > \verbatim */
  569. /* > K is INTEGER */
  570. /* > The order of the matrix T (= the number of elementary */
  571. /* > reflectors whose product defines the block reflector). */
  572. /* > If SIDE = 'L', M >= K >= 0; */
  573. /* > if SIDE = 'R', N >= K >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] V */
  577. /* > \verbatim */
  578. /* > V is REAL array, dimension */
  579. /* > (LDV,K) if STOREV = 'C' */
  580. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  581. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  582. /* > The matrix V. See Further Details. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDV */
  586. /* > \verbatim */
  587. /* > LDV is INTEGER */
  588. /* > The leading dimension of the array V. */
  589. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  590. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  591. /* > if STOREV = 'R', LDV >= K. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] T */
  595. /* > \verbatim */
  596. /* > T is REAL array, dimension (LDT,K) */
  597. /* > The triangular k by k matrix T in the representation of the */
  598. /* > block reflector. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in] LDT */
  602. /* > \verbatim */
  603. /* > LDT is INTEGER */
  604. /* > The leading dimension of the array T. LDT >= K. */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[in,out] C */
  608. /* > \verbatim */
  609. /* > C is REAL array, dimension (LDC,N) */
  610. /* > On entry, the m by n matrix C. */
  611. /* > On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LDC */
  615. /* > \verbatim */
  616. /* > LDC is INTEGER */
  617. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[out] WORK */
  621. /* > \verbatim */
  622. /* > WORK is REAL array, dimension (LDWORK,K) */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in] LDWORK */
  626. /* > \verbatim */
  627. /* > LDWORK is INTEGER */
  628. /* > The leading dimension of the array WORK. */
  629. /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */
  630. /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */
  631. /* > \endverbatim */
  632. /* Authors: */
  633. /* ======== */
  634. /* > \author Univ. of Tennessee */
  635. /* > \author Univ. of California Berkeley */
  636. /* > \author Univ. of Colorado Denver */
  637. /* > \author NAG Ltd. */
  638. /* > \date June 2013 */
  639. /* > \ingroup realOTHERauxiliary */
  640. /* > \par Further Details: */
  641. /* ===================== */
  642. /* > */
  643. /* > \verbatim */
  644. /* > */
  645. /* > The shape of the matrix V and the storage of the vectors which define */
  646. /* > the H(i) is best illustrated by the following example with n = 5 and */
  647. /* > k = 3. The elements equal to 1 are not stored; the corresponding */
  648. /* > array elements are modified but restored on exit. The rest of the */
  649. /* > array is not used. */
  650. /* > */
  651. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  652. /* > */
  653. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  654. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  655. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  656. /* > ( v1 v2 v3 ) */
  657. /* > ( v1 v2 v3 ) */
  658. /* > */
  659. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  660. /* > */
  661. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  662. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  663. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  664. /* > ( 1 v3 ) */
  665. /* > ( 1 ) */
  666. /* > \endverbatim */
  667. /* > */
  668. /* ===================================================================== */
  669. /* Subroutine */ void slarfb_(char *side, char *trans, char *direct, char *
  670. storev, integer *m, integer *n, integer *k, real *v, integer *ldv,
  671. real *t, integer *ldt, real *c__, integer *ldc, real *work, integer *
  672. ldwork)
  673. {
  674. /* System generated locals */
  675. integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
  676. work_offset, i__1, i__2;
  677. /* Local variables */
  678. integer i__, j;
  679. extern logical lsame_(char *, char *);
  680. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  681. integer *, real *, real *, integer *, real *, integer *, real *,
  682. real *, integer *), scopy_(integer *, real *,
  683. integer *, real *, integer *), strmm_(char *, char *, char *,
  684. char *, integer *, integer *, real *, real *, integer *, real *,
  685. integer *);
  686. char transt[1];
  687. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  688. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  689. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  690. /* June 2013 */
  691. /* ===================================================================== */
  692. /* Quick return if possible */
  693. /* Parameter adjustments */
  694. v_dim1 = *ldv;
  695. v_offset = 1 + v_dim1 * 1;
  696. v -= v_offset;
  697. t_dim1 = *ldt;
  698. t_offset = 1 + t_dim1 * 1;
  699. t -= t_offset;
  700. c_dim1 = *ldc;
  701. c_offset = 1 + c_dim1 * 1;
  702. c__ -= c_offset;
  703. work_dim1 = *ldwork;
  704. work_offset = 1 + work_dim1 * 1;
  705. work -= work_offset;
  706. /* Function Body */
  707. if (*m <= 0 || *n <= 0) {
  708. return;
  709. }
  710. if (lsame_(trans, "N")) {
  711. *(unsigned char *)transt = 'T';
  712. } else {
  713. *(unsigned char *)transt = 'N';
  714. }
  715. if (lsame_(storev, "C")) {
  716. if (lsame_(direct, "F")) {
  717. /* Let V = ( V1 ) (first K rows) */
  718. /* ( V2 ) */
  719. /* where V1 is unit lower triangular. */
  720. if (lsame_(side, "L")) {
  721. /* Form H * C or H**T * C where C = ( C1 ) */
  722. /* ( C2 ) */
  723. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  724. /* W := C1**T */
  725. i__1 = *k;
  726. for (j = 1; j <= i__1; ++j) {
  727. scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  728. &c__1);
  729. /* L10: */
  730. }
  731. /* W := W * V1 */
  732. strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  733. &v[v_offset], ldv, &work[work_offset], ldwork);
  734. if (*m > *k) {
  735. /* W := W + C2**T * V2 */
  736. i__1 = *m - *k;
  737. sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  738. c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + v_dim1],
  739. ldv, &c_b14, &work[work_offset], ldwork);
  740. }
  741. /* W := W * T**T or W * T */
  742. strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  743. t_offset], ldt, &work[work_offset], ldwork);
  744. /* C := C - V * W**T */
  745. if (*m > *k) {
  746. /* C2 := C2 - V2 * W**T */
  747. i__1 = *m - *k;
  748. sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  749. v[*k + 1 + v_dim1], ldv, &work[work_offset],
  750. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  751. }
  752. /* W := W * V1**T */
  753. strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  754. v[v_offset], ldv, &work[work_offset], ldwork);
  755. /* C1 := C1 - W**T */
  756. i__1 = *k;
  757. for (j = 1; j <= i__1; ++j) {
  758. i__2 = *n;
  759. for (i__ = 1; i__ <= i__2; ++i__) {
  760. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  761. /* L20: */
  762. }
  763. /* L30: */
  764. }
  765. } else if (lsame_(side, "R")) {
  766. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  767. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  768. /* W := C1 */
  769. i__1 = *k;
  770. for (j = 1; j <= i__1; ++j) {
  771. scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  772. work_dim1 + 1], &c__1);
  773. /* L40: */
  774. }
  775. /* W := W * V1 */
  776. strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  777. &v[v_offset], ldv, &work[work_offset], ldwork);
  778. if (*n > *k) {
  779. /* W := W + C2 * V2 */
  780. i__1 = *n - *k;
  781. sgemm_("No transpose", "No transpose", m, k, &i__1, &
  782. c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k +
  783. 1 + v_dim1], ldv, &c_b14, &work[work_offset],
  784. ldwork);
  785. }
  786. /* W := W * T or W * T**T */
  787. strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  788. t_offset], ldt, &work[work_offset], ldwork);
  789. /* C := C - W * V**T */
  790. if (*n > *k) {
  791. /* C2 := C2 - W * V2**T */
  792. i__1 = *n - *k;
  793. sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  794. work[work_offset], ldwork, &v[*k + 1 + v_dim1],
  795. ldv, &c_b14, &c__[(*k + 1) * c_dim1 + 1], ldc);
  796. }
  797. /* W := W * V1**T */
  798. strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  799. v[v_offset], ldv, &work[work_offset], ldwork);
  800. /* C1 := C1 - W */
  801. i__1 = *k;
  802. for (j = 1; j <= i__1; ++j) {
  803. i__2 = *m;
  804. for (i__ = 1; i__ <= i__2; ++i__) {
  805. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  806. /* L50: */
  807. }
  808. /* L60: */
  809. }
  810. }
  811. } else {
  812. /* Let V = ( V1 ) */
  813. /* ( V2 ) (last K rows) */
  814. /* where V2 is unit upper triangular. */
  815. if (lsame_(side, "L")) {
  816. /* Form H * C or H**T * C where C = ( C1 ) */
  817. /* ( C2 ) */
  818. /* W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK) */
  819. /* W := C2**T */
  820. i__1 = *k;
  821. for (j = 1; j <= i__1; ++j) {
  822. scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  823. work_dim1 + 1], &c__1);
  824. /* L70: */
  825. }
  826. /* W := W * V2 */
  827. strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  828. &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  829. ldwork);
  830. if (*m > *k) {
  831. /* W := W + C1**T * V1 */
  832. i__1 = *m - *k;
  833. sgemm_("Transpose", "No transpose", n, k, &i__1, &c_b14, &
  834. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  835. work[work_offset], ldwork);
  836. }
  837. /* W := W * T**T or W * T */
  838. strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  839. t_offset], ldt, &work[work_offset], ldwork);
  840. /* C := C - V * W**T */
  841. if (*m > *k) {
  842. /* C1 := C1 - V1 * W**T */
  843. i__1 = *m - *k;
  844. sgemm_("No transpose", "Transpose", &i__1, n, k, &c_b25, &
  845. v[v_offset], ldv, &work[work_offset], ldwork, &
  846. c_b14, &c__[c_offset], ldc)
  847. ;
  848. }
  849. /* W := W * V2**T */
  850. strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  851. v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  852. ldwork);
  853. /* C2 := C2 - W**T */
  854. i__1 = *k;
  855. for (j = 1; j <= i__1; ++j) {
  856. i__2 = *n;
  857. for (i__ = 1; i__ <= i__2; ++i__) {
  858. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  859. work_dim1];
  860. /* L80: */
  861. }
  862. /* L90: */
  863. }
  864. } else if (lsame_(side, "R")) {
  865. /* Form C * H or C * H' where C = ( C1 C2 ) */
  866. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  867. /* W := C2 */
  868. i__1 = *k;
  869. for (j = 1; j <= i__1; ++j) {
  870. scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  871. j * work_dim1 + 1], &c__1);
  872. /* L100: */
  873. }
  874. /* W := W * V2 */
  875. strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  876. &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  877. ldwork);
  878. if (*n > *k) {
  879. /* W := W + C1 * V1 */
  880. i__1 = *n - *k;
  881. sgemm_("No transpose", "No transpose", m, k, &i__1, &
  882. c_b14, &c__[c_offset], ldc, &v[v_offset], ldv, &
  883. c_b14, &work[work_offset], ldwork);
  884. }
  885. /* W := W * T or W * T**T */
  886. strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  887. t_offset], ldt, &work[work_offset], ldwork);
  888. /* C := C - W * V**T */
  889. if (*n > *k) {
  890. /* C1 := C1 - W * V1**T */
  891. i__1 = *n - *k;
  892. sgemm_("No transpose", "Transpose", m, &i__1, k, &c_b25, &
  893. work[work_offset], ldwork, &v[v_offset], ldv, &
  894. c_b14, &c__[c_offset], ldc)
  895. ;
  896. }
  897. /* W := W * V2**T */
  898. strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  899. v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  900. ldwork);
  901. /* C2 := C2 - W */
  902. i__1 = *k;
  903. for (j = 1; j <= i__1; ++j) {
  904. i__2 = *m;
  905. for (i__ = 1; i__ <= i__2; ++i__) {
  906. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  907. work_dim1];
  908. /* L110: */
  909. }
  910. /* L120: */
  911. }
  912. }
  913. }
  914. } else if (lsame_(storev, "R")) {
  915. if (lsame_(direct, "F")) {
  916. /* Let V = ( V1 V2 ) (V1: first K columns) */
  917. /* where V1 is unit upper triangular. */
  918. if (lsame_(side, "L")) {
  919. /* Form H * C or H**T * C where C = ( C1 ) */
  920. /* ( C2 ) */
  921. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  922. /* W := C1**T */
  923. i__1 = *k;
  924. for (j = 1; j <= i__1; ++j) {
  925. scopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  926. &c__1);
  927. /* L130: */
  928. }
  929. /* W := W * V1**T */
  930. strmm_("Right", "Upper", "Transpose", "Unit", n, k, &c_b14, &
  931. v[v_offset], ldv, &work[work_offset], ldwork);
  932. if (*m > *k) {
  933. /* W := W + C2**T * V2**T */
  934. i__1 = *m - *k;
  935. sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  936. c__[*k + 1 + c_dim1], ldc, &v[(*k + 1) * v_dim1 +
  937. 1], ldv, &c_b14, &work[work_offset], ldwork);
  938. }
  939. /* W := W * T**T or W * T */
  940. strmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b14, &t[
  941. t_offset], ldt, &work[work_offset], ldwork);
  942. /* C := C - V**T * W**T */
  943. if (*m > *k) {
  944. /* C2 := C2 - V2**T * W**T */
  945. i__1 = *m - *k;
  946. sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[(
  947. *k + 1) * v_dim1 + 1], ldv, &work[work_offset],
  948. ldwork, &c_b14, &c__[*k + 1 + c_dim1], ldc);
  949. }
  950. /* W := W * V1 */
  951. strmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b14,
  952. &v[v_offset], ldv, &work[work_offset], ldwork);
  953. /* C1 := C1 - W**T */
  954. i__1 = *k;
  955. for (j = 1; j <= i__1; ++j) {
  956. i__2 = *n;
  957. for (i__ = 1; i__ <= i__2; ++i__) {
  958. c__[j + i__ * c_dim1] -= work[i__ + j * work_dim1];
  959. /* L140: */
  960. }
  961. /* L150: */
  962. }
  963. } else if (lsame_(side, "R")) {
  964. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  965. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  966. /* W := C1 */
  967. i__1 = *k;
  968. for (j = 1; j <= i__1; ++j) {
  969. scopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  970. work_dim1 + 1], &c__1);
  971. /* L160: */
  972. }
  973. /* W := W * V1**T */
  974. strmm_("Right", "Upper", "Transpose", "Unit", m, k, &c_b14, &
  975. v[v_offset], ldv, &work[work_offset], ldwork);
  976. if (*n > *k) {
  977. /* W := W + C2 * V2**T */
  978. i__1 = *n - *k;
  979. sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  980. c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k + 1) *
  981. v_dim1 + 1], ldv, &c_b14, &work[work_offset],
  982. ldwork);
  983. }
  984. /* W := W * T or W * T**T */
  985. strmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b14, &t[
  986. t_offset], ldt, &work[work_offset], ldwork);
  987. /* C := C - W * V */
  988. if (*n > *k) {
  989. /* C2 := C2 - W * V2 */
  990. i__1 = *n - *k;
  991. sgemm_("No transpose", "No transpose", m, &i__1, k, &
  992. c_b25, &work[work_offset], ldwork, &v[(*k + 1) *
  993. v_dim1 + 1], ldv, &c_b14, &c__[(*k + 1) * c_dim1
  994. + 1], ldc);
  995. }
  996. /* W := W * V1 */
  997. strmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b14,
  998. &v[v_offset], ldv, &work[work_offset], ldwork);
  999. /* C1 := C1 - W */
  1000. i__1 = *k;
  1001. for (j = 1; j <= i__1; ++j) {
  1002. i__2 = *m;
  1003. for (i__ = 1; i__ <= i__2; ++i__) {
  1004. c__[i__ + j * c_dim1] -= work[i__ + j * work_dim1];
  1005. /* L170: */
  1006. }
  1007. /* L180: */
  1008. }
  1009. }
  1010. } else {
  1011. /* Let V = ( V1 V2 ) (V2: last K columns) */
  1012. /* where V2 is unit lower triangular. */
  1013. if (lsame_(side, "L")) {
  1014. /* Form H * C or H**T * C where C = ( C1 ) */
  1015. /* ( C2 ) */
  1016. /* W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK) */
  1017. /* W := C2**T */
  1018. i__1 = *k;
  1019. for (j = 1; j <= i__1; ++j) {
  1020. scopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  1021. work_dim1 + 1], &c__1);
  1022. /* L190: */
  1023. }
  1024. /* W := W * V2**T */
  1025. strmm_("Right", "Lower", "Transpose", "Unit", n, k, &c_b14, &
  1026. v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1027. , ldwork);
  1028. if (*m > *k) {
  1029. /* W := W + C1**T * V1**T */
  1030. i__1 = *m - *k;
  1031. sgemm_("Transpose", "Transpose", n, k, &i__1, &c_b14, &
  1032. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1033. work[work_offset], ldwork);
  1034. }
  1035. /* W := W * T**T or W * T */
  1036. strmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b14, &t[
  1037. t_offset], ldt, &work[work_offset], ldwork);
  1038. /* C := C - V**T * W**T */
  1039. if (*m > *k) {
  1040. /* C1 := C1 - V1**T * W**T */
  1041. i__1 = *m - *k;
  1042. sgemm_("Transpose", "Transpose", &i__1, n, k, &c_b25, &v[
  1043. v_offset], ldv, &work[work_offset], ldwork, &
  1044. c_b14, &c__[c_offset], ldc);
  1045. }
  1046. /* W := W * V2 */
  1047. strmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b14,
  1048. &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1049. work_offset], ldwork);
  1050. /* C2 := C2 - W**T */
  1051. i__1 = *k;
  1052. for (j = 1; j <= i__1; ++j) {
  1053. i__2 = *n;
  1054. for (i__ = 1; i__ <= i__2; ++i__) {
  1055. c__[*m - *k + j + i__ * c_dim1] -= work[i__ + j *
  1056. work_dim1];
  1057. /* L200: */
  1058. }
  1059. /* L210: */
  1060. }
  1061. } else if (lsame_(side, "R")) {
  1062. /* Form C * H or C * H**T where C = ( C1 C2 ) */
  1063. /* W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK) */
  1064. /* W := C2 */
  1065. i__1 = *k;
  1066. for (j = 1; j <= i__1; ++j) {
  1067. scopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  1068. j * work_dim1 + 1], &c__1);
  1069. /* L220: */
  1070. }
  1071. /* W := W * V2**T */
  1072. strmm_("Right", "Lower", "Transpose", "Unit", m, k, &c_b14, &
  1073. v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[work_offset]
  1074. , ldwork);
  1075. if (*n > *k) {
  1076. /* W := W + C1 * V1**T */
  1077. i__1 = *n - *k;
  1078. sgemm_("No transpose", "Transpose", m, k, &i__1, &c_b14, &
  1079. c__[c_offset], ldc, &v[v_offset], ldv, &c_b14, &
  1080. work[work_offset], ldwork);
  1081. }
  1082. /* W := W * T or W * T**T */
  1083. strmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b14, &t[
  1084. t_offset], ldt, &work[work_offset], ldwork);
  1085. /* C := C - W * V */
  1086. if (*n > *k) {
  1087. /* C1 := C1 - W * V1 */
  1088. i__1 = *n - *k;
  1089. sgemm_("No transpose", "No transpose", m, &i__1, k, &
  1090. c_b25, &work[work_offset], ldwork, &v[v_offset],
  1091. ldv, &c_b14, &c__[c_offset], ldc);
  1092. }
  1093. /* W := W * V2 */
  1094. strmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b14,
  1095. &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1096. work_offset], ldwork);
  1097. /* C1 := C1 - W */
  1098. i__1 = *k;
  1099. for (j = 1; j <= i__1; ++j) {
  1100. i__2 = *m;
  1101. for (i__ = 1; i__ <= i__2; ++i__) {
  1102. c__[i__ + (*n - *k + j) * c_dim1] -= work[i__ + j *
  1103. work_dim1];
  1104. /* L230: */
  1105. }
  1106. /* L240: */
  1107. }
  1108. }
  1109. }
  1110. }
  1111. return;
  1112. /* End of SLARFB */
  1113. } /* slarfb_ */