You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaein.c 34 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b SLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse
  488. iteration. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SLAEIN + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaein.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaein.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaein.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B, */
  507. /* LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO ) */
  508. /* LOGICAL NOINIT, RIGHTV */
  509. /* INTEGER INFO, LDB, LDH, N */
  510. /* REAL BIGNUM, EPS3, SMLNUM, WI, WR */
  511. /* REAL B( LDB, * ), H( LDH, * ), VI( * ), VR( * ), */
  512. /* $ WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SLAEIN uses inverse iteration to find a right or left eigenvector */
  519. /* > corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg */
  520. /* > matrix H. */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] RIGHTV */
  525. /* > \verbatim */
  526. /* > RIGHTV is LOGICAL */
  527. /* > = .TRUE. : compute right eigenvector; */
  528. /* > = .FALSE.: compute left eigenvector. */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] NOINIT */
  532. /* > \verbatim */
  533. /* > NOINIT is LOGICAL */
  534. /* > = .TRUE. : no initial vector supplied in (VR,VI). */
  535. /* > = .FALSE.: initial vector supplied in (VR,VI). */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > The order of the matrix H. N >= 0. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] H */
  545. /* > \verbatim */
  546. /* > H is REAL array, dimension (LDH,N) */
  547. /* > The upper Hessenberg matrix H. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] LDH */
  551. /* > \verbatim */
  552. /* > LDH is INTEGER */
  553. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] WR */
  557. /* > \verbatim */
  558. /* > WR is REAL */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] WI */
  562. /* > \verbatim */
  563. /* > WI is REAL */
  564. /* > The real and imaginary parts of the eigenvalue of H whose */
  565. /* > corresponding right or left eigenvector is to be computed. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in,out] VR */
  569. /* > \verbatim */
  570. /* > VR is REAL array, dimension (N) */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] VI */
  574. /* > \verbatim */
  575. /* > VI is REAL array, dimension (N) */
  576. /* > On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain */
  577. /* > a real starting vector for inverse iteration using the real */
  578. /* > eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI */
  579. /* > must contain the real and imaginary parts of a complex */
  580. /* > starting vector for inverse iteration using the complex */
  581. /* > eigenvalue (WR,WI); otherwise VR and VI need not be set. */
  582. /* > On exit, if WI = 0.0 (real eigenvalue), VR contains the */
  583. /* > computed real eigenvector; if WI.ne.0.0 (complex eigenvalue), */
  584. /* > VR and VI contain the real and imaginary parts of the */
  585. /* > computed complex eigenvector. The eigenvector is normalized */
  586. /* > so that the component of largest magnitude has magnitude 1; */
  587. /* > here the magnitude of a complex number (x,y) is taken to be */
  588. /* > |x| + |y|. */
  589. /* > VI is not referenced if WI = 0.0. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] B */
  593. /* > \verbatim */
  594. /* > B is REAL array, dimension (LDB,N) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDB */
  598. /* > \verbatim */
  599. /* > LDB is INTEGER */
  600. /* > The leading dimension of the array B. LDB >= N+1. */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] WORK */
  604. /* > \verbatim */
  605. /* > WORK is REAL array, dimension (N) */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] EPS3 */
  609. /* > \verbatim */
  610. /* > EPS3 is REAL */
  611. /* > A small machine-dependent value which is used to perturb */
  612. /* > close eigenvalues, and to replace zero pivots. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] SMLNUM */
  616. /* > \verbatim */
  617. /* > SMLNUM is REAL */
  618. /* > A machine-dependent value close to the underflow threshold. */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[in] BIGNUM */
  622. /* > \verbatim */
  623. /* > BIGNUM is REAL */
  624. /* > A machine-dependent value close to the overflow threshold. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit */
  631. /* > = 1: inverse iteration did not converge; VR is set to the */
  632. /* > last iterate, and so is VI if WI.ne.0.0. */
  633. /* > \endverbatim */
  634. /* Authors: */
  635. /* ======== */
  636. /* > \author Univ. of Tennessee */
  637. /* > \author Univ. of California Berkeley */
  638. /* > \author Univ. of Colorado Denver */
  639. /* > \author NAG Ltd. */
  640. /* > \date December 2016 */
  641. /* > \ingroup realOTHERauxiliary */
  642. /* ===================================================================== */
  643. /* Subroutine */ void slaein_(logical *rightv, logical *noinit, integer *n,
  644. real *h__, integer *ldh, real *wr, real *wi, real *vr, real *vi, real
  645. *b, integer *ldb, real *work, real *eps3, real *smlnum, real *bignum,
  646. integer *info)
  647. {
  648. /* System generated locals */
  649. integer b_dim1, b_offset, h_dim1, h_offset, i__1, i__2, i__3, i__4;
  650. real r__1, r__2, r__3, r__4;
  651. /* Local variables */
  652. integer ierr;
  653. real temp, norm, vmax;
  654. extern real snrm2_(integer *, real *, integer *);
  655. integer i__, j;
  656. real scale, w, x, y;
  657. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  658. char trans[1];
  659. real vcrit;
  660. extern real sasum_(integer *, real *, integer *);
  661. integer i1, i2, i3;
  662. real rootn, vnorm, w1;
  663. extern real slapy2_(real *, real *);
  664. real ei, ej, absbii, absbjj, xi, xr;
  665. extern integer isamax_(integer *, real *, integer *);
  666. extern /* Subroutine */ void sladiv_(real *, real *, real *, real *, real *
  667. , real *);
  668. char normin[1];
  669. real nrmsml;
  670. extern /* Subroutine */ void slatrs_(char *, char *, char *, char *,
  671. integer *, real *, integer *, real *, real *, real *, integer *);
  672. real growto, rec;
  673. integer its;
  674. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  675. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  676. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  677. /* December 2016 */
  678. /* ===================================================================== */
  679. /* Parameter adjustments */
  680. h_dim1 = *ldh;
  681. h_offset = 1 + h_dim1 * 1;
  682. h__ -= h_offset;
  683. --vr;
  684. --vi;
  685. b_dim1 = *ldb;
  686. b_offset = 1 + b_dim1 * 1;
  687. b -= b_offset;
  688. --work;
  689. /* Function Body */
  690. *info = 0;
  691. /* GROWTO is the threshold used in the acceptance test for an */
  692. /* eigenvector. */
  693. rootn = sqrt((real) (*n));
  694. growto = .1f / rootn;
  695. /* Computing MAX */
  696. r__1 = 1.f, r__2 = *eps3 * rootn;
  697. nrmsml = f2cmax(r__1,r__2) * *smlnum;
  698. /* Form B = H - (WR,WI)*I (except that the subdiagonal elements and */
  699. /* the imaginary parts of the diagonal elements are not stored). */
  700. i__1 = *n;
  701. for (j = 1; j <= i__1; ++j) {
  702. i__2 = j - 1;
  703. for (i__ = 1; i__ <= i__2; ++i__) {
  704. b[i__ + j * b_dim1] = h__[i__ + j * h_dim1];
  705. /* L10: */
  706. }
  707. b[j + j * b_dim1] = h__[j + j * h_dim1] - *wr;
  708. /* L20: */
  709. }
  710. if (*wi == 0.f) {
  711. /* Real eigenvalue. */
  712. if (*noinit) {
  713. /* Set initial vector. */
  714. i__1 = *n;
  715. for (i__ = 1; i__ <= i__1; ++i__) {
  716. vr[i__] = *eps3;
  717. /* L30: */
  718. }
  719. } else {
  720. /* Scale supplied initial vector. */
  721. vnorm = snrm2_(n, &vr[1], &c__1);
  722. r__1 = *eps3 * rootn / f2cmax(vnorm,nrmsml);
  723. sscal_(n, &r__1, &vr[1], &c__1);
  724. }
  725. if (*rightv) {
  726. /* LU decomposition with partial pivoting of B, replacing zero */
  727. /* pivots by EPS3. */
  728. i__1 = *n - 1;
  729. for (i__ = 1; i__ <= i__1; ++i__) {
  730. ei = h__[i__ + 1 + i__ * h_dim1];
  731. if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) < abs(ei)) {
  732. /* Interchange rows and eliminate. */
  733. x = b[i__ + i__ * b_dim1] / ei;
  734. b[i__ + i__ * b_dim1] = ei;
  735. i__2 = *n;
  736. for (j = i__ + 1; j <= i__2; ++j) {
  737. temp = b[i__ + 1 + j * b_dim1];
  738. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - x *
  739. temp;
  740. b[i__ + j * b_dim1] = temp;
  741. /* L40: */
  742. }
  743. } else {
  744. /* Eliminate without interchange. */
  745. if (b[i__ + i__ * b_dim1] == 0.f) {
  746. b[i__ + i__ * b_dim1] = *eps3;
  747. }
  748. x = ei / b[i__ + i__ * b_dim1];
  749. if (x != 0.f) {
  750. i__2 = *n;
  751. for (j = i__ + 1; j <= i__2; ++j) {
  752. b[i__ + 1 + j * b_dim1] -= x * b[i__ + j * b_dim1]
  753. ;
  754. /* L50: */
  755. }
  756. }
  757. }
  758. /* L60: */
  759. }
  760. if (b[*n + *n * b_dim1] == 0.f) {
  761. b[*n + *n * b_dim1] = *eps3;
  762. }
  763. *(unsigned char *)trans = 'N';
  764. } else {
  765. /* UL decomposition with partial pivoting of B, replacing zero */
  766. /* pivots by EPS3. */
  767. for (j = *n; j >= 2; --j) {
  768. ej = h__[j + (j - 1) * h_dim1];
  769. if ((r__1 = b[j + j * b_dim1], abs(r__1)) < abs(ej)) {
  770. /* Interchange columns and eliminate. */
  771. x = b[j + j * b_dim1] / ej;
  772. b[j + j * b_dim1] = ej;
  773. i__1 = j - 1;
  774. for (i__ = 1; i__ <= i__1; ++i__) {
  775. temp = b[i__ + (j - 1) * b_dim1];
  776. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - x *
  777. temp;
  778. b[i__ + j * b_dim1] = temp;
  779. /* L70: */
  780. }
  781. } else {
  782. /* Eliminate without interchange. */
  783. if (b[j + j * b_dim1] == 0.f) {
  784. b[j + j * b_dim1] = *eps3;
  785. }
  786. x = ej / b[j + j * b_dim1];
  787. if (x != 0.f) {
  788. i__1 = j - 1;
  789. for (i__ = 1; i__ <= i__1; ++i__) {
  790. b[i__ + (j - 1) * b_dim1] -= x * b[i__ + j *
  791. b_dim1];
  792. /* L80: */
  793. }
  794. }
  795. }
  796. /* L90: */
  797. }
  798. if (b[b_dim1 + 1] == 0.f) {
  799. b[b_dim1 + 1] = *eps3;
  800. }
  801. *(unsigned char *)trans = 'T';
  802. }
  803. *(unsigned char *)normin = 'N';
  804. i__1 = *n;
  805. for (its = 1; its <= i__1; ++its) {
  806. /* Solve U*x = scale*v for a right eigenvector */
  807. /* or U**T*x = scale*v for a left eigenvector, */
  808. /* overwriting x on v. */
  809. slatrs_("Upper", trans, "Nonunit", normin, n, &b[b_offset], ldb, &
  810. vr[1], &scale, &work[1], &ierr);
  811. *(unsigned char *)normin = 'Y';
  812. /* Test for sufficient growth in the norm of v. */
  813. vnorm = sasum_(n, &vr[1], &c__1);
  814. if (vnorm >= growto * scale) {
  815. goto L120;
  816. }
  817. /* Choose new orthogonal starting vector and try again. */
  818. temp = *eps3 / (rootn + 1.f);
  819. vr[1] = *eps3;
  820. i__2 = *n;
  821. for (i__ = 2; i__ <= i__2; ++i__) {
  822. vr[i__] = temp;
  823. /* L100: */
  824. }
  825. vr[*n - its + 1] -= *eps3 * rootn;
  826. /* L110: */
  827. }
  828. /* Failure to find eigenvector in N iterations. */
  829. *info = 1;
  830. L120:
  831. /* Normalize eigenvector. */
  832. i__ = isamax_(n, &vr[1], &c__1);
  833. r__2 = 1.f / (r__1 = vr[i__], abs(r__1));
  834. sscal_(n, &r__2, &vr[1], &c__1);
  835. } else {
  836. /* Complex eigenvalue. */
  837. if (*noinit) {
  838. /* Set initial vector. */
  839. i__1 = *n;
  840. for (i__ = 1; i__ <= i__1; ++i__) {
  841. vr[i__] = *eps3;
  842. vi[i__] = 0.f;
  843. /* L130: */
  844. }
  845. } else {
  846. /* Scale supplied initial vector. */
  847. r__1 = snrm2_(n, &vr[1], &c__1);
  848. r__2 = snrm2_(n, &vi[1], &c__1);
  849. norm = slapy2_(&r__1, &r__2);
  850. rec = *eps3 * rootn / f2cmax(norm,nrmsml);
  851. sscal_(n, &rec, &vr[1], &c__1);
  852. sscal_(n, &rec, &vi[1], &c__1);
  853. }
  854. if (*rightv) {
  855. /* LU decomposition with partial pivoting of B, replacing zero */
  856. /* pivots by EPS3. */
  857. /* The imaginary part of the (i,j)-th element of U is stored in */
  858. /* B(j+1,i). */
  859. b[b_dim1 + 2] = -(*wi);
  860. i__1 = *n;
  861. for (i__ = 2; i__ <= i__1; ++i__) {
  862. b[i__ + 1 + b_dim1] = 0.f;
  863. /* L140: */
  864. }
  865. i__1 = *n - 1;
  866. for (i__ = 1; i__ <= i__1; ++i__) {
  867. absbii = slapy2_(&b[i__ + i__ * b_dim1], &b[i__ + 1 + i__ *
  868. b_dim1]);
  869. ei = h__[i__ + 1 + i__ * h_dim1];
  870. if (absbii < abs(ei)) {
  871. /* Interchange rows and eliminate. */
  872. xr = b[i__ + i__ * b_dim1] / ei;
  873. xi = b[i__ + 1 + i__ * b_dim1] / ei;
  874. b[i__ + i__ * b_dim1] = ei;
  875. b[i__ + 1 + i__ * b_dim1] = 0.f;
  876. i__2 = *n;
  877. for (j = i__ + 1; j <= i__2; ++j) {
  878. temp = b[i__ + 1 + j * b_dim1];
  879. b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - xr *
  880. temp;
  881. b[j + 1 + (i__ + 1) * b_dim1] = b[j + 1 + i__ *
  882. b_dim1] - xi * temp;
  883. b[i__ + j * b_dim1] = temp;
  884. b[j + 1 + i__ * b_dim1] = 0.f;
  885. /* L150: */
  886. }
  887. b[i__ + 2 + i__ * b_dim1] = -(*wi);
  888. b[i__ + 1 + (i__ + 1) * b_dim1] -= xi * *wi;
  889. b[i__ + 2 + (i__ + 1) * b_dim1] += xr * *wi;
  890. } else {
  891. /* Eliminate without interchanging rows. */
  892. if (absbii == 0.f) {
  893. b[i__ + i__ * b_dim1] = *eps3;
  894. b[i__ + 1 + i__ * b_dim1] = 0.f;
  895. absbii = *eps3;
  896. }
  897. ei = ei / absbii / absbii;
  898. xr = b[i__ + i__ * b_dim1] * ei;
  899. xi = -b[i__ + 1 + i__ * b_dim1] * ei;
  900. i__2 = *n;
  901. for (j = i__ + 1; j <= i__2; ++j) {
  902. b[i__ + 1 + j * b_dim1] = b[i__ + 1 + j * b_dim1] -
  903. xr * b[i__ + j * b_dim1] + xi * b[j + 1 + i__
  904. * b_dim1];
  905. b[j + 1 + (i__ + 1) * b_dim1] = -xr * b[j + 1 + i__ *
  906. b_dim1] - xi * b[i__ + j * b_dim1];
  907. /* L160: */
  908. }
  909. b[i__ + 2 + (i__ + 1) * b_dim1] -= *wi;
  910. }
  911. /* Compute 1-norm of offdiagonal elements of i-th row. */
  912. i__2 = *n - i__;
  913. i__3 = *n - i__;
  914. work[i__] = sasum_(&i__2, &b[i__ + (i__ + 1) * b_dim1], ldb)
  915. + sasum_(&i__3, &b[i__ + 2 + i__ * b_dim1], &c__1);
  916. /* L170: */
  917. }
  918. if (b[*n + *n * b_dim1] == 0.f && b[*n + 1 + *n * b_dim1] == 0.f)
  919. {
  920. b[*n + *n * b_dim1] = *eps3;
  921. }
  922. work[*n] = 0.f;
  923. i1 = *n;
  924. i2 = 1;
  925. i3 = -1;
  926. } else {
  927. /* UL decomposition with partial pivoting of conjg(B), */
  928. /* replacing zero pivots by EPS3. */
  929. /* The imaginary part of the (i,j)-th element of U is stored in */
  930. /* B(j+1,i). */
  931. b[*n + 1 + *n * b_dim1] = *wi;
  932. i__1 = *n - 1;
  933. for (j = 1; j <= i__1; ++j) {
  934. b[*n + 1 + j * b_dim1] = 0.f;
  935. /* L180: */
  936. }
  937. for (j = *n; j >= 2; --j) {
  938. ej = h__[j + (j - 1) * h_dim1];
  939. absbjj = slapy2_(&b[j + j * b_dim1], &b[j + 1 + j * b_dim1]);
  940. if (absbjj < abs(ej)) {
  941. /* Interchange columns and eliminate */
  942. xr = b[j + j * b_dim1] / ej;
  943. xi = b[j + 1 + j * b_dim1] / ej;
  944. b[j + j * b_dim1] = ej;
  945. b[j + 1 + j * b_dim1] = 0.f;
  946. i__1 = j - 1;
  947. for (i__ = 1; i__ <= i__1; ++i__) {
  948. temp = b[i__ + (j - 1) * b_dim1];
  949. b[i__ + (j - 1) * b_dim1] = b[i__ + j * b_dim1] - xr *
  950. temp;
  951. b[j + i__ * b_dim1] = b[j + 1 + i__ * b_dim1] - xi *
  952. temp;
  953. b[i__ + j * b_dim1] = temp;
  954. b[j + 1 + i__ * b_dim1] = 0.f;
  955. /* L190: */
  956. }
  957. b[j + 1 + (j - 1) * b_dim1] = *wi;
  958. b[j - 1 + (j - 1) * b_dim1] += xi * *wi;
  959. b[j + (j - 1) * b_dim1] -= xr * *wi;
  960. } else {
  961. /* Eliminate without interchange. */
  962. if (absbjj == 0.f) {
  963. b[j + j * b_dim1] = *eps3;
  964. b[j + 1 + j * b_dim1] = 0.f;
  965. absbjj = *eps3;
  966. }
  967. ej = ej / absbjj / absbjj;
  968. xr = b[j + j * b_dim1] * ej;
  969. xi = -b[j + 1 + j * b_dim1] * ej;
  970. i__1 = j - 1;
  971. for (i__ = 1; i__ <= i__1; ++i__) {
  972. b[i__ + (j - 1) * b_dim1] = b[i__ + (j - 1) * b_dim1]
  973. - xr * b[i__ + j * b_dim1] + xi * b[j + 1 +
  974. i__ * b_dim1];
  975. b[j + i__ * b_dim1] = -xr * b[j + 1 + i__ * b_dim1] -
  976. xi * b[i__ + j * b_dim1];
  977. /* L200: */
  978. }
  979. b[j + (j - 1) * b_dim1] += *wi;
  980. }
  981. /* Compute 1-norm of offdiagonal elements of j-th column. */
  982. i__1 = j - 1;
  983. i__2 = j - 1;
  984. work[j] = sasum_(&i__1, &b[j * b_dim1 + 1], &c__1) + sasum_(&
  985. i__2, &b[j + 1 + b_dim1], ldb);
  986. /* L210: */
  987. }
  988. if (b[b_dim1 + 1] == 0.f && b[b_dim1 + 2] == 0.f) {
  989. b[b_dim1 + 1] = *eps3;
  990. }
  991. work[1] = 0.f;
  992. i1 = 1;
  993. i2 = *n;
  994. i3 = 1;
  995. }
  996. i__1 = *n;
  997. for (its = 1; its <= i__1; ++its) {
  998. scale = 1.f;
  999. vmax = 1.f;
  1000. vcrit = *bignum;
  1001. /* Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector, */
  1002. /* or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector, */
  1003. /* overwriting (xr,xi) on (vr,vi). */
  1004. i__2 = i2;
  1005. i__3 = i3;
  1006. for (i__ = i1; i__3 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__3)
  1007. {
  1008. if (work[i__] > vcrit) {
  1009. rec = 1.f / vmax;
  1010. sscal_(n, &rec, &vr[1], &c__1);
  1011. sscal_(n, &rec, &vi[1], &c__1);
  1012. scale *= rec;
  1013. vmax = 1.f;
  1014. vcrit = *bignum;
  1015. }
  1016. xr = vr[i__];
  1017. xi = vi[i__];
  1018. if (*rightv) {
  1019. i__4 = *n;
  1020. for (j = i__ + 1; j <= i__4; ++j) {
  1021. xr = xr - b[i__ + j * b_dim1] * vr[j] + b[j + 1 + i__
  1022. * b_dim1] * vi[j];
  1023. xi = xi - b[i__ + j * b_dim1] * vi[j] - b[j + 1 + i__
  1024. * b_dim1] * vr[j];
  1025. /* L220: */
  1026. }
  1027. } else {
  1028. i__4 = i__ - 1;
  1029. for (j = 1; j <= i__4; ++j) {
  1030. xr = xr - b[j + i__ * b_dim1] * vr[j] + b[i__ + 1 + j
  1031. * b_dim1] * vi[j];
  1032. xi = xi - b[j + i__ * b_dim1] * vi[j] - b[i__ + 1 + j
  1033. * b_dim1] * vr[j];
  1034. /* L230: */
  1035. }
  1036. }
  1037. w = (r__1 = b[i__ + i__ * b_dim1], abs(r__1)) + (r__2 = b[i__
  1038. + 1 + i__ * b_dim1], abs(r__2));
  1039. if (w > *smlnum) {
  1040. if (w < 1.f) {
  1041. w1 = abs(xr) + abs(xi);
  1042. if (w1 > w * *bignum) {
  1043. rec = 1.f / w1;
  1044. sscal_(n, &rec, &vr[1], &c__1);
  1045. sscal_(n, &rec, &vi[1], &c__1);
  1046. xr = vr[i__];
  1047. xi = vi[i__];
  1048. scale *= rec;
  1049. vmax *= rec;
  1050. }
  1051. }
  1052. /* Divide by diagonal element of B. */
  1053. sladiv_(&xr, &xi, &b[i__ + i__ * b_dim1], &b[i__ + 1 +
  1054. i__ * b_dim1], &vr[i__], &vi[i__]);
  1055. /* Computing MAX */
  1056. r__3 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__], abs(
  1057. r__2));
  1058. vmax = f2cmax(r__3,vmax);
  1059. vcrit = *bignum / vmax;
  1060. } else {
  1061. i__4 = *n;
  1062. for (j = 1; j <= i__4; ++j) {
  1063. vr[j] = 0.f;
  1064. vi[j] = 0.f;
  1065. /* L240: */
  1066. }
  1067. vr[i__] = 1.f;
  1068. vi[i__] = 1.f;
  1069. scale = 0.f;
  1070. vmax = 1.f;
  1071. vcrit = *bignum;
  1072. }
  1073. /* L250: */
  1074. }
  1075. /* Test for sufficient growth in the norm of (VR,VI). */
  1076. vnorm = sasum_(n, &vr[1], &c__1) + sasum_(n, &vi[1], &c__1);
  1077. if (vnorm >= growto * scale) {
  1078. goto L280;
  1079. }
  1080. /* Choose a new orthogonal starting vector and try again. */
  1081. y = *eps3 / (rootn + 1.f);
  1082. vr[1] = *eps3;
  1083. vi[1] = 0.f;
  1084. i__3 = *n;
  1085. for (i__ = 2; i__ <= i__3; ++i__) {
  1086. vr[i__] = y;
  1087. vi[i__] = 0.f;
  1088. /* L260: */
  1089. }
  1090. vr[*n - its + 1] -= *eps3 * rootn;
  1091. /* L270: */
  1092. }
  1093. /* Failure to find eigenvector in N iterations */
  1094. *info = 1;
  1095. L280:
  1096. /* Normalize eigenvector. */
  1097. vnorm = 0.f;
  1098. i__1 = *n;
  1099. for (i__ = 1; i__ <= i__1; ++i__) {
  1100. /* Computing MAX */
  1101. r__3 = vnorm, r__4 = (r__1 = vr[i__], abs(r__1)) + (r__2 = vi[i__]
  1102. , abs(r__2));
  1103. vnorm = f2cmax(r__3,r__4);
  1104. /* L290: */
  1105. }
  1106. r__1 = 1.f / vnorm;
  1107. sscal_(n, &r__1, &vr[1], &c__1);
  1108. r__1 = 1.f / vnorm;
  1109. sscal_(n, &r__1, &vi[1], &c__1);
  1110. }
  1111. return;
  1112. /* End of SLAEIN */
  1113. } /* slaein_ */