You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarfx.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b DLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling whe
  488. n the reflector has order ≤ 10. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download DLARFX + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfx.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfx.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfx.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE DLARFX( SIDE, M, N, V, TAU, C, LDC, WORK ) */
  507. /* CHARACTER SIDE */
  508. /* INTEGER LDC, M, N */
  509. /* DOUBLE PRECISION TAU */
  510. /* DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > DLARFX applies a real elementary reflector H to a real m by n */
  517. /* > matrix C, from either the left or the right. H is represented in the */
  518. /* > form */
  519. /* > */
  520. /* > H = I - tau * v * v**T */
  521. /* > */
  522. /* > where tau is a real scalar and v is a real vector. */
  523. /* > */
  524. /* > If tau = 0, then H is taken to be the unit matrix */
  525. /* > */
  526. /* > This version uses inline code if H has order < 11. */
  527. /* > \endverbatim */
  528. /* Arguments: */
  529. /* ========== */
  530. /* > \param[in] SIDE */
  531. /* > \verbatim */
  532. /* > SIDE is CHARACTER*1 */
  533. /* > = 'L': form H * C */
  534. /* > = 'R': form C * H */
  535. /* > \endverbatim */
  536. /* > */
  537. /* > \param[in] M */
  538. /* > \verbatim */
  539. /* > M is INTEGER */
  540. /* > The number of rows of the matrix C. */
  541. /* > \endverbatim */
  542. /* > */
  543. /* > \param[in] N */
  544. /* > \verbatim */
  545. /* > N is INTEGER */
  546. /* > The number of columns of the matrix C. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] V */
  550. /* > \verbatim */
  551. /* > V is DOUBLE PRECISION array, dimension (M) if SIDE = 'L' */
  552. /* > or (N) if SIDE = 'R' */
  553. /* > The vector v in the representation of H. */
  554. /* > \endverbatim */
  555. /* > */
  556. /* > \param[in] TAU */
  557. /* > \verbatim */
  558. /* > TAU is DOUBLE PRECISION */
  559. /* > The value tau in the representation of H. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in,out] C */
  563. /* > \verbatim */
  564. /* > C is DOUBLE PRECISION array, dimension (LDC,N) */
  565. /* > On entry, the m by n matrix C. */
  566. /* > On exit, C is overwritten by the matrix H * C if SIDE = 'L', */
  567. /* > or C * H if SIDE = 'R'. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDC */
  571. /* > \verbatim */
  572. /* > LDC is INTEGER */
  573. /* > The leading dimension of the array C. LDC >= (1,M). */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[out] WORK */
  577. /* > \verbatim */
  578. /* > WORK is DOUBLE PRECISION array, dimension */
  579. /* > (N) if SIDE = 'L' */
  580. /* > or (M) if SIDE = 'R' */
  581. /* > WORK is not referenced if H has order < 11. */
  582. /* > \endverbatim */
  583. /* Authors: */
  584. /* ======== */
  585. /* > \author Univ. of Tennessee */
  586. /* > \author Univ. of California Berkeley */
  587. /* > \author Univ. of Colorado Denver */
  588. /* > \author NAG Ltd. */
  589. /* > \date December 2016 */
  590. /* > \ingroup doubleOTHERauxiliary */
  591. /* ===================================================================== */
  592. /* Subroutine */ void dlarfx_(char *side, integer *m, integer *n, doublereal *
  593. v, doublereal *tau, doublereal *c__, integer *ldc, doublereal *work)
  594. {
  595. /* System generated locals */
  596. integer c_dim1, c_offset, i__1;
  597. /* Local variables */
  598. integer j;
  599. extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
  600. doublereal *, integer *, doublereal *, doublereal *, integer *,
  601. doublereal *);
  602. extern logical lsame_(char *, char *);
  603. doublereal t1, t2, t3, t4, t5, t6, t7, t8, t9, v1, v2, v3, v4, v5, v6, v7,
  604. v8, v9, t10, v10, sum;
  605. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  606. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  607. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  608. /* December 2016 */
  609. /* ===================================================================== */
  610. /* Parameter adjustments */
  611. --v;
  612. c_dim1 = *ldc;
  613. c_offset = 1 + c_dim1 * 1;
  614. c__ -= c_offset;
  615. --work;
  616. /* Function Body */
  617. if (*tau == 0.) {
  618. return;
  619. }
  620. if (lsame_(side, "L")) {
  621. /* Form H * C, where H has order m. */
  622. switch (*m) {
  623. case 1: goto L10;
  624. case 2: goto L30;
  625. case 3: goto L50;
  626. case 4: goto L70;
  627. case 5: goto L90;
  628. case 6: goto L110;
  629. case 7: goto L130;
  630. case 8: goto L150;
  631. case 9: goto L170;
  632. case 10: goto L190;
  633. }
  634. /* Code for general M */
  635. dlarf_(side, m, n, &v[1], &c__1, tau, &c__[c_offset], ldc, &work[1]);
  636. goto L410;
  637. L10:
  638. /* Special code for 1 x 1 Householder */
  639. t1 = 1. - *tau * v[1] * v[1];
  640. i__1 = *n;
  641. for (j = 1; j <= i__1; ++j) {
  642. c__[j * c_dim1 + 1] = t1 * c__[j * c_dim1 + 1];
  643. /* L20: */
  644. }
  645. goto L410;
  646. L30:
  647. /* Special code for 2 x 2 Householder */
  648. v1 = v[1];
  649. t1 = *tau * v1;
  650. v2 = v[2];
  651. t2 = *tau * v2;
  652. i__1 = *n;
  653. for (j = 1; j <= i__1; ++j) {
  654. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2];
  655. c__[j * c_dim1 + 1] -= sum * t1;
  656. c__[j * c_dim1 + 2] -= sum * t2;
  657. /* L40: */
  658. }
  659. goto L410;
  660. L50:
  661. /* Special code for 3 x 3 Householder */
  662. v1 = v[1];
  663. t1 = *tau * v1;
  664. v2 = v[2];
  665. t2 = *tau * v2;
  666. v3 = v[3];
  667. t3 = *tau * v3;
  668. i__1 = *n;
  669. for (j = 1; j <= i__1; ++j) {
  670. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  671. c__[j * c_dim1 + 3];
  672. c__[j * c_dim1 + 1] -= sum * t1;
  673. c__[j * c_dim1 + 2] -= sum * t2;
  674. c__[j * c_dim1 + 3] -= sum * t3;
  675. /* L60: */
  676. }
  677. goto L410;
  678. L70:
  679. /* Special code for 4 x 4 Householder */
  680. v1 = v[1];
  681. t1 = *tau * v1;
  682. v2 = v[2];
  683. t2 = *tau * v2;
  684. v3 = v[3];
  685. t3 = *tau * v3;
  686. v4 = v[4];
  687. t4 = *tau * v4;
  688. i__1 = *n;
  689. for (j = 1; j <= i__1; ++j) {
  690. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  691. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4];
  692. c__[j * c_dim1 + 1] -= sum * t1;
  693. c__[j * c_dim1 + 2] -= sum * t2;
  694. c__[j * c_dim1 + 3] -= sum * t3;
  695. c__[j * c_dim1 + 4] -= sum * t4;
  696. /* L80: */
  697. }
  698. goto L410;
  699. L90:
  700. /* Special code for 5 x 5 Householder */
  701. v1 = v[1];
  702. t1 = *tau * v1;
  703. v2 = v[2];
  704. t2 = *tau * v2;
  705. v3 = v[3];
  706. t3 = *tau * v3;
  707. v4 = v[4];
  708. t4 = *tau * v4;
  709. v5 = v[5];
  710. t5 = *tau * v5;
  711. i__1 = *n;
  712. for (j = 1; j <= i__1; ++j) {
  713. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  714. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  715. j * c_dim1 + 5];
  716. c__[j * c_dim1 + 1] -= sum * t1;
  717. c__[j * c_dim1 + 2] -= sum * t2;
  718. c__[j * c_dim1 + 3] -= sum * t3;
  719. c__[j * c_dim1 + 4] -= sum * t4;
  720. c__[j * c_dim1 + 5] -= sum * t5;
  721. /* L100: */
  722. }
  723. goto L410;
  724. L110:
  725. /* Special code for 6 x 6 Householder */
  726. v1 = v[1];
  727. t1 = *tau * v1;
  728. v2 = v[2];
  729. t2 = *tau * v2;
  730. v3 = v[3];
  731. t3 = *tau * v3;
  732. v4 = v[4];
  733. t4 = *tau * v4;
  734. v5 = v[5];
  735. t5 = *tau * v5;
  736. v6 = v[6];
  737. t6 = *tau * v6;
  738. i__1 = *n;
  739. for (j = 1; j <= i__1; ++j) {
  740. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  741. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  742. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6];
  743. c__[j * c_dim1 + 1] -= sum * t1;
  744. c__[j * c_dim1 + 2] -= sum * t2;
  745. c__[j * c_dim1 + 3] -= sum * t3;
  746. c__[j * c_dim1 + 4] -= sum * t4;
  747. c__[j * c_dim1 + 5] -= sum * t5;
  748. c__[j * c_dim1 + 6] -= sum * t6;
  749. /* L120: */
  750. }
  751. goto L410;
  752. L130:
  753. /* Special code for 7 x 7 Householder */
  754. v1 = v[1];
  755. t1 = *tau * v1;
  756. v2 = v[2];
  757. t2 = *tau * v2;
  758. v3 = v[3];
  759. t3 = *tau * v3;
  760. v4 = v[4];
  761. t4 = *tau * v4;
  762. v5 = v[5];
  763. t5 = *tau * v5;
  764. v6 = v[6];
  765. t6 = *tau * v6;
  766. v7 = v[7];
  767. t7 = *tau * v7;
  768. i__1 = *n;
  769. for (j = 1; j <= i__1; ++j) {
  770. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  771. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  772. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  773. c_dim1 + 7];
  774. c__[j * c_dim1 + 1] -= sum * t1;
  775. c__[j * c_dim1 + 2] -= sum * t2;
  776. c__[j * c_dim1 + 3] -= sum * t3;
  777. c__[j * c_dim1 + 4] -= sum * t4;
  778. c__[j * c_dim1 + 5] -= sum * t5;
  779. c__[j * c_dim1 + 6] -= sum * t6;
  780. c__[j * c_dim1 + 7] -= sum * t7;
  781. /* L140: */
  782. }
  783. goto L410;
  784. L150:
  785. /* Special code for 8 x 8 Householder */
  786. v1 = v[1];
  787. t1 = *tau * v1;
  788. v2 = v[2];
  789. t2 = *tau * v2;
  790. v3 = v[3];
  791. t3 = *tau * v3;
  792. v4 = v[4];
  793. t4 = *tau * v4;
  794. v5 = v[5];
  795. t5 = *tau * v5;
  796. v6 = v[6];
  797. t6 = *tau * v6;
  798. v7 = v[7];
  799. t7 = *tau * v7;
  800. v8 = v[8];
  801. t8 = *tau * v8;
  802. i__1 = *n;
  803. for (j = 1; j <= i__1; ++j) {
  804. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  805. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  806. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  807. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8];
  808. c__[j * c_dim1 + 1] -= sum * t1;
  809. c__[j * c_dim1 + 2] -= sum * t2;
  810. c__[j * c_dim1 + 3] -= sum * t3;
  811. c__[j * c_dim1 + 4] -= sum * t4;
  812. c__[j * c_dim1 + 5] -= sum * t5;
  813. c__[j * c_dim1 + 6] -= sum * t6;
  814. c__[j * c_dim1 + 7] -= sum * t7;
  815. c__[j * c_dim1 + 8] -= sum * t8;
  816. /* L160: */
  817. }
  818. goto L410;
  819. L170:
  820. /* Special code for 9 x 9 Householder */
  821. v1 = v[1];
  822. t1 = *tau * v1;
  823. v2 = v[2];
  824. t2 = *tau * v2;
  825. v3 = v[3];
  826. t3 = *tau * v3;
  827. v4 = v[4];
  828. t4 = *tau * v4;
  829. v5 = v[5];
  830. t5 = *tau * v5;
  831. v6 = v[6];
  832. t6 = *tau * v6;
  833. v7 = v[7];
  834. t7 = *tau * v7;
  835. v8 = v[8];
  836. t8 = *tau * v8;
  837. v9 = v[9];
  838. t9 = *tau * v9;
  839. i__1 = *n;
  840. for (j = 1; j <= i__1; ++j) {
  841. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  842. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  843. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  844. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
  845. c_dim1 + 9];
  846. c__[j * c_dim1 + 1] -= sum * t1;
  847. c__[j * c_dim1 + 2] -= sum * t2;
  848. c__[j * c_dim1 + 3] -= sum * t3;
  849. c__[j * c_dim1 + 4] -= sum * t4;
  850. c__[j * c_dim1 + 5] -= sum * t5;
  851. c__[j * c_dim1 + 6] -= sum * t6;
  852. c__[j * c_dim1 + 7] -= sum * t7;
  853. c__[j * c_dim1 + 8] -= sum * t8;
  854. c__[j * c_dim1 + 9] -= sum * t9;
  855. /* L180: */
  856. }
  857. goto L410;
  858. L190:
  859. /* Special code for 10 x 10 Householder */
  860. v1 = v[1];
  861. t1 = *tau * v1;
  862. v2 = v[2];
  863. t2 = *tau * v2;
  864. v3 = v[3];
  865. t3 = *tau * v3;
  866. v4 = v[4];
  867. t4 = *tau * v4;
  868. v5 = v[5];
  869. t5 = *tau * v5;
  870. v6 = v[6];
  871. t6 = *tau * v6;
  872. v7 = v[7];
  873. t7 = *tau * v7;
  874. v8 = v[8];
  875. t8 = *tau * v8;
  876. v9 = v[9];
  877. t9 = *tau * v9;
  878. v10 = v[10];
  879. t10 = *tau * v10;
  880. i__1 = *n;
  881. for (j = 1; j <= i__1; ++j) {
  882. sum = v1 * c__[j * c_dim1 + 1] + v2 * c__[j * c_dim1 + 2] + v3 *
  883. c__[j * c_dim1 + 3] + v4 * c__[j * c_dim1 + 4] + v5 * c__[
  884. j * c_dim1 + 5] + v6 * c__[j * c_dim1 + 6] + v7 * c__[j *
  885. c_dim1 + 7] + v8 * c__[j * c_dim1 + 8] + v9 * c__[j *
  886. c_dim1 + 9] + v10 * c__[j * c_dim1 + 10];
  887. c__[j * c_dim1 + 1] -= sum * t1;
  888. c__[j * c_dim1 + 2] -= sum * t2;
  889. c__[j * c_dim1 + 3] -= sum * t3;
  890. c__[j * c_dim1 + 4] -= sum * t4;
  891. c__[j * c_dim1 + 5] -= sum * t5;
  892. c__[j * c_dim1 + 6] -= sum * t6;
  893. c__[j * c_dim1 + 7] -= sum * t7;
  894. c__[j * c_dim1 + 8] -= sum * t8;
  895. c__[j * c_dim1 + 9] -= sum * t9;
  896. c__[j * c_dim1 + 10] -= sum * t10;
  897. /* L200: */
  898. }
  899. goto L410;
  900. } else {
  901. /* Form C * H, where H has order n. */
  902. switch (*n) {
  903. case 1: goto L210;
  904. case 2: goto L230;
  905. case 3: goto L250;
  906. case 4: goto L270;
  907. case 5: goto L290;
  908. case 6: goto L310;
  909. case 7: goto L330;
  910. case 8: goto L350;
  911. case 9: goto L370;
  912. case 10: goto L390;
  913. }
  914. /* Code for general N */
  915. dlarf_(side, m, n, &v[1], &c__1, tau, &c__[c_offset], ldc, &work[1]);
  916. goto L410;
  917. L210:
  918. /* Special code for 1 x 1 Householder */
  919. t1 = 1. - *tau * v[1] * v[1];
  920. i__1 = *m;
  921. for (j = 1; j <= i__1; ++j) {
  922. c__[j + c_dim1] = t1 * c__[j + c_dim1];
  923. /* L220: */
  924. }
  925. goto L410;
  926. L230:
  927. /* Special code for 2 x 2 Householder */
  928. v1 = v[1];
  929. t1 = *tau * v1;
  930. v2 = v[2];
  931. t2 = *tau * v2;
  932. i__1 = *m;
  933. for (j = 1; j <= i__1; ++j) {
  934. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)];
  935. c__[j + c_dim1] -= sum * t1;
  936. c__[j + (c_dim1 << 1)] -= sum * t2;
  937. /* L240: */
  938. }
  939. goto L410;
  940. L250:
  941. /* Special code for 3 x 3 Householder */
  942. v1 = v[1];
  943. t1 = *tau * v1;
  944. v2 = v[2];
  945. t2 = *tau * v2;
  946. v3 = v[3];
  947. t3 = *tau * v3;
  948. i__1 = *m;
  949. for (j = 1; j <= i__1; ++j) {
  950. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  951. c__[j + c_dim1 * 3];
  952. c__[j + c_dim1] -= sum * t1;
  953. c__[j + (c_dim1 << 1)] -= sum * t2;
  954. c__[j + c_dim1 * 3] -= sum * t3;
  955. /* L260: */
  956. }
  957. goto L410;
  958. L270:
  959. /* Special code for 4 x 4 Householder */
  960. v1 = v[1];
  961. t1 = *tau * v1;
  962. v2 = v[2];
  963. t2 = *tau * v2;
  964. v3 = v[3];
  965. t3 = *tau * v3;
  966. v4 = v[4];
  967. t4 = *tau * v4;
  968. i__1 = *m;
  969. for (j = 1; j <= i__1; ++j) {
  970. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  971. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)];
  972. c__[j + c_dim1] -= sum * t1;
  973. c__[j + (c_dim1 << 1)] -= sum * t2;
  974. c__[j + c_dim1 * 3] -= sum * t3;
  975. c__[j + (c_dim1 << 2)] -= sum * t4;
  976. /* L280: */
  977. }
  978. goto L410;
  979. L290:
  980. /* Special code for 5 x 5 Householder */
  981. v1 = v[1];
  982. t1 = *tau * v1;
  983. v2 = v[2];
  984. t2 = *tau * v2;
  985. v3 = v[3];
  986. t3 = *tau * v3;
  987. v4 = v[4];
  988. t4 = *tau * v4;
  989. v5 = v[5];
  990. t5 = *tau * v5;
  991. i__1 = *m;
  992. for (j = 1; j <= i__1; ++j) {
  993. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  994. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  995. c__[j + c_dim1 * 5];
  996. c__[j + c_dim1] -= sum * t1;
  997. c__[j + (c_dim1 << 1)] -= sum * t2;
  998. c__[j + c_dim1 * 3] -= sum * t3;
  999. c__[j + (c_dim1 << 2)] -= sum * t4;
  1000. c__[j + c_dim1 * 5] -= sum * t5;
  1001. /* L300: */
  1002. }
  1003. goto L410;
  1004. L310:
  1005. /* Special code for 6 x 6 Householder */
  1006. v1 = v[1];
  1007. t1 = *tau * v1;
  1008. v2 = v[2];
  1009. t2 = *tau * v2;
  1010. v3 = v[3];
  1011. t3 = *tau * v3;
  1012. v4 = v[4];
  1013. t4 = *tau * v4;
  1014. v5 = v[5];
  1015. t5 = *tau * v5;
  1016. v6 = v[6];
  1017. t6 = *tau * v6;
  1018. i__1 = *m;
  1019. for (j = 1; j <= i__1; ++j) {
  1020. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1021. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1022. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6];
  1023. c__[j + c_dim1] -= sum * t1;
  1024. c__[j + (c_dim1 << 1)] -= sum * t2;
  1025. c__[j + c_dim1 * 3] -= sum * t3;
  1026. c__[j + (c_dim1 << 2)] -= sum * t4;
  1027. c__[j + c_dim1 * 5] -= sum * t5;
  1028. c__[j + c_dim1 * 6] -= sum * t6;
  1029. /* L320: */
  1030. }
  1031. goto L410;
  1032. L330:
  1033. /* Special code for 7 x 7 Householder */
  1034. v1 = v[1];
  1035. t1 = *tau * v1;
  1036. v2 = v[2];
  1037. t2 = *tau * v2;
  1038. v3 = v[3];
  1039. t3 = *tau * v3;
  1040. v4 = v[4];
  1041. t4 = *tau * v4;
  1042. v5 = v[5];
  1043. t5 = *tau * v5;
  1044. v6 = v[6];
  1045. t6 = *tau * v6;
  1046. v7 = v[7];
  1047. t7 = *tau * v7;
  1048. i__1 = *m;
  1049. for (j = 1; j <= i__1; ++j) {
  1050. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1051. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1052. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1053. j + c_dim1 * 7];
  1054. c__[j + c_dim1] -= sum * t1;
  1055. c__[j + (c_dim1 << 1)] -= sum * t2;
  1056. c__[j + c_dim1 * 3] -= sum * t3;
  1057. c__[j + (c_dim1 << 2)] -= sum * t4;
  1058. c__[j + c_dim1 * 5] -= sum * t5;
  1059. c__[j + c_dim1 * 6] -= sum * t6;
  1060. c__[j + c_dim1 * 7] -= sum * t7;
  1061. /* L340: */
  1062. }
  1063. goto L410;
  1064. L350:
  1065. /* Special code for 8 x 8 Householder */
  1066. v1 = v[1];
  1067. t1 = *tau * v1;
  1068. v2 = v[2];
  1069. t2 = *tau * v2;
  1070. v3 = v[3];
  1071. t3 = *tau * v3;
  1072. v4 = v[4];
  1073. t4 = *tau * v4;
  1074. v5 = v[5];
  1075. t5 = *tau * v5;
  1076. v6 = v[6];
  1077. t6 = *tau * v6;
  1078. v7 = v[7];
  1079. t7 = *tau * v7;
  1080. v8 = v[8];
  1081. t8 = *tau * v8;
  1082. i__1 = *m;
  1083. for (j = 1; j <= i__1; ++j) {
  1084. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1085. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1086. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1087. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)];
  1088. c__[j + c_dim1] -= sum * t1;
  1089. c__[j + (c_dim1 << 1)] -= sum * t2;
  1090. c__[j + c_dim1 * 3] -= sum * t3;
  1091. c__[j + (c_dim1 << 2)] -= sum * t4;
  1092. c__[j + c_dim1 * 5] -= sum * t5;
  1093. c__[j + c_dim1 * 6] -= sum * t6;
  1094. c__[j + c_dim1 * 7] -= sum * t7;
  1095. c__[j + (c_dim1 << 3)] -= sum * t8;
  1096. /* L360: */
  1097. }
  1098. goto L410;
  1099. L370:
  1100. /* Special code for 9 x 9 Householder */
  1101. v1 = v[1];
  1102. t1 = *tau * v1;
  1103. v2 = v[2];
  1104. t2 = *tau * v2;
  1105. v3 = v[3];
  1106. t3 = *tau * v3;
  1107. v4 = v[4];
  1108. t4 = *tau * v4;
  1109. v5 = v[5];
  1110. t5 = *tau * v5;
  1111. v6 = v[6];
  1112. t6 = *tau * v6;
  1113. v7 = v[7];
  1114. t7 = *tau * v7;
  1115. v8 = v[8];
  1116. t8 = *tau * v8;
  1117. v9 = v[9];
  1118. t9 = *tau * v9;
  1119. i__1 = *m;
  1120. for (j = 1; j <= i__1; ++j) {
  1121. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1122. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1123. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1124. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)] + v9 * c__[
  1125. j + c_dim1 * 9];
  1126. c__[j + c_dim1] -= sum * t1;
  1127. c__[j + (c_dim1 << 1)] -= sum * t2;
  1128. c__[j + c_dim1 * 3] -= sum * t3;
  1129. c__[j + (c_dim1 << 2)] -= sum * t4;
  1130. c__[j + c_dim1 * 5] -= sum * t5;
  1131. c__[j + c_dim1 * 6] -= sum * t6;
  1132. c__[j + c_dim1 * 7] -= sum * t7;
  1133. c__[j + (c_dim1 << 3)] -= sum * t8;
  1134. c__[j + c_dim1 * 9] -= sum * t9;
  1135. /* L380: */
  1136. }
  1137. goto L410;
  1138. L390:
  1139. /* Special code for 10 x 10 Householder */
  1140. v1 = v[1];
  1141. t1 = *tau * v1;
  1142. v2 = v[2];
  1143. t2 = *tau * v2;
  1144. v3 = v[3];
  1145. t3 = *tau * v3;
  1146. v4 = v[4];
  1147. t4 = *tau * v4;
  1148. v5 = v[5];
  1149. t5 = *tau * v5;
  1150. v6 = v[6];
  1151. t6 = *tau * v6;
  1152. v7 = v[7];
  1153. t7 = *tau * v7;
  1154. v8 = v[8];
  1155. t8 = *tau * v8;
  1156. v9 = v[9];
  1157. t9 = *tau * v9;
  1158. v10 = v[10];
  1159. t10 = *tau * v10;
  1160. i__1 = *m;
  1161. for (j = 1; j <= i__1; ++j) {
  1162. sum = v1 * c__[j + c_dim1] + v2 * c__[j + (c_dim1 << 1)] + v3 *
  1163. c__[j + c_dim1 * 3] + v4 * c__[j + (c_dim1 << 2)] + v5 *
  1164. c__[j + c_dim1 * 5] + v6 * c__[j + c_dim1 * 6] + v7 * c__[
  1165. j + c_dim1 * 7] + v8 * c__[j + (c_dim1 << 3)] + v9 * c__[
  1166. j + c_dim1 * 9] + v10 * c__[j + c_dim1 * 10];
  1167. c__[j + c_dim1] -= sum * t1;
  1168. c__[j + (c_dim1 << 1)] -= sum * t2;
  1169. c__[j + c_dim1 * 3] -= sum * t3;
  1170. c__[j + (c_dim1 << 2)] -= sum * t4;
  1171. c__[j + c_dim1 * 5] -= sum * t5;
  1172. c__[j + c_dim1 * 6] -= sum * t6;
  1173. c__[j + c_dim1 * 7] -= sum * t7;
  1174. c__[j + (c_dim1 << 3)] -= sum * t8;
  1175. c__[j + c_dim1 * 9] -= sum * t9;
  1176. c__[j + c_dim1 * 10] -= sum * t10;
  1177. /* L400: */
  1178. }
  1179. goto L410;
  1180. }
  1181. L410:
  1182. return;
  1183. /* End of DLARFX */
  1184. } /* dlarfx_ */