You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaln2.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* > \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. */
  486. /* =========== DOCUMENTATION =========== */
  487. /* Online html documentation available at */
  488. /* http://www.netlib.org/lapack/explore-html/ */
  489. /* > \htmlonly */
  490. /* > Download DLALN2 + dependencies */
  491. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaln2.
  492. f"> */
  493. /* > [TGZ]</a> */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaln2.
  495. f"> */
  496. /* > [ZIP]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaln2.
  498. f"> */
  499. /* > [TXT]</a> */
  500. /* > \endhtmlonly */
  501. /* Definition: */
  502. /* =========== */
  503. /* SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, */
  504. /* LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) */
  505. /* LOGICAL LTRANS */
  506. /* INTEGER INFO, LDA, LDB, LDX, NA, NW */
  507. /* DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM */
  508. /* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) */
  509. /* > \par Purpose: */
  510. /* ============= */
  511. /* > */
  512. /* > \verbatim */
  513. /* > */
  514. /* > DLALN2 solves a system of the form (ca A - w D ) X = s B */
  515. /* > or (ca A**T - w D) X = s B with possible scaling ("s") and */
  516. /* > perturbation of A. (A**T means A-transpose.) */
  517. /* > */
  518. /* > A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
  519. /* > real diagonal matrix, w is a real or complex value, and X and B are */
  520. /* > NA x 1 matrices -- real if w is real, complex if w is complex. NA */
  521. /* > may be 1 or 2. */
  522. /* > */
  523. /* > If w is complex, X and B are represented as NA x 2 matrices, */
  524. /* > the first column of each being the real part and the second */
  525. /* > being the imaginary part. */
  526. /* > */
  527. /* > "s" is a scaling factor (<= 1), computed by DLALN2, which is */
  528. /* > so chosen that X can be computed without overflow. X is further */
  529. /* > scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
  530. /* > than overflow. */
  531. /* > */
  532. /* > If both singular values of (ca A - w D) are less than SMIN, */
  533. /* > SMIN*identity will be used instead of (ca A - w D). If only one */
  534. /* > singular value is less than SMIN, one element of (ca A - w D) will be */
  535. /* > perturbed enough to make the smallest singular value roughly SMIN. */
  536. /* > If both singular values are at least SMIN, (ca A - w D) will not be */
  537. /* > perturbed. In any case, the perturbation will be at most some small */
  538. /* > multiple of f2cmax( SMIN, ulp*norm(ca A - w D) ). The singular values */
  539. /* > are computed by infinity-norm approximations, and thus will only be */
  540. /* > correct to a factor of 2 or so. */
  541. /* > */
  542. /* > Note: all input quantities are assumed to be smaller than overflow */
  543. /* > by a reasonable factor. (See BIGNUM.) */
  544. /* > \endverbatim */
  545. /* Arguments: */
  546. /* ========== */
  547. /* > \param[in] LTRANS */
  548. /* > \verbatim */
  549. /* > LTRANS is LOGICAL */
  550. /* > =.TRUE.: A-transpose will be used. */
  551. /* > =.FALSE.: A will be used (not transposed.) */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] NA */
  555. /* > \verbatim */
  556. /* > NA is INTEGER */
  557. /* > The size of the matrix A. It may (only) be 1 or 2. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] NW */
  561. /* > \verbatim */
  562. /* > NW is INTEGER */
  563. /* > 1 if "w" is real, 2 if "w" is complex. It may only be 1 */
  564. /* > or 2. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] SMIN */
  568. /* > \verbatim */
  569. /* > SMIN is DOUBLE PRECISION */
  570. /* > The desired lower bound on the singular values of A. This */
  571. /* > should be a safe distance away from underflow or overflow, */
  572. /* > say, between (underflow/machine precision) and (machine */
  573. /* > precision * overflow ). (See BIGNUM and ULP.) */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in] CA */
  577. /* > \verbatim */
  578. /* > CA is DOUBLE PRECISION */
  579. /* > The coefficient c, which A is multiplied by. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] A */
  583. /* > \verbatim */
  584. /* > A is DOUBLE PRECISION array, dimension (LDA,NA) */
  585. /* > The NA x NA matrix A. */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in] LDA */
  589. /* > \verbatim */
  590. /* > LDA is INTEGER */
  591. /* > The leading dimension of A. It must be at least NA. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] D1 */
  595. /* > \verbatim */
  596. /* > D1 is DOUBLE PRECISION */
  597. /* > The 1,1 element in the diagonal matrix D. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] D2 */
  601. /* > \verbatim */
  602. /* > D2 is DOUBLE PRECISION */
  603. /* > The 2,2 element in the diagonal matrix D. Not used if NA=1. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] B */
  607. /* > \verbatim */
  608. /* > B is DOUBLE PRECISION array, dimension (LDB,NW) */
  609. /* > The NA x NW matrix B (right-hand side). If NW=2 ("w" is */
  610. /* > complex), column 1 contains the real part of B and column 2 */
  611. /* > contains the imaginary part. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[in] LDB */
  615. /* > \verbatim */
  616. /* > LDB is INTEGER */
  617. /* > The leading dimension of B. It must be at least NA. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] WR */
  621. /* > \verbatim */
  622. /* > WR is DOUBLE PRECISION */
  623. /* > The real part of the scalar "w". */
  624. /* > \endverbatim */
  625. /* > */
  626. /* > \param[in] WI */
  627. /* > \verbatim */
  628. /* > WI is DOUBLE PRECISION */
  629. /* > The imaginary part of the scalar "w". Not used if NW=1. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] X */
  633. /* > \verbatim */
  634. /* > X is DOUBLE PRECISION array, dimension (LDX,NW) */
  635. /* > The NA x NW matrix X (unknowns), as computed by DLALN2. */
  636. /* > If NW=2 ("w" is complex), on exit, column 1 will contain */
  637. /* > the real part of X and column 2 will contain the imaginary */
  638. /* > part. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDX */
  642. /* > \verbatim */
  643. /* > LDX is INTEGER */
  644. /* > The leading dimension of X. It must be at least NA. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] SCALE */
  648. /* > \verbatim */
  649. /* > SCALE is DOUBLE PRECISION */
  650. /* > The scale factor that B must be multiplied by to insure */
  651. /* > that overflow does not occur when computing X. Thus, */
  652. /* > (ca A - w D) X will be SCALE*B, not B (ignoring */
  653. /* > perturbations of A.) It will be at most 1. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] XNORM */
  657. /* > \verbatim */
  658. /* > XNORM is DOUBLE PRECISION */
  659. /* > The infinity-norm of X, when X is regarded as an NA x NW */
  660. /* > real matrix. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] INFO */
  664. /* > \verbatim */
  665. /* > INFO is INTEGER */
  666. /* > An error flag. It will be set to zero if no error occurs, */
  667. /* > a negative number if an argument is in error, or a positive */
  668. /* > number if ca A - w D had to be perturbed. */
  669. /* > The possible values are: */
  670. /* > = 0: No error occurred, and (ca A - w D) did not have to be */
  671. /* > perturbed. */
  672. /* > = 1: (ca A - w D) had to be perturbed to make its smallest */
  673. /* > (or only) singular value greater than SMIN. */
  674. /* > NOTE: In the interests of speed, this routine does not */
  675. /* > check the inputs for errors. */
  676. /* > \endverbatim */
  677. /* Authors: */
  678. /* ======== */
  679. /* > \author Univ. of Tennessee */
  680. /* > \author Univ. of California Berkeley */
  681. /* > \author Univ. of Colorado Denver */
  682. /* > \author NAG Ltd. */
  683. /* > \date December 2016 */
  684. /* > \ingroup doubleOTHERauxiliary */
  685. /* ===================================================================== */
  686. /* Subroutine */ void dlaln2_(logical *ltrans, integer *na, integer *nw,
  687. doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
  688. doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
  689. doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
  690. doublereal *scale, doublereal *xnorm, integer *info)
  691. {
  692. /* Initialized data */
  693. static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
  694. static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
  695. static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
  696. 4,3,2,1 };
  697. /* System generated locals */
  698. integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
  699. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  700. static doublereal equiv_0[4], equiv_1[4];
  701. /* Local variables */
  702. doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s;
  703. integer j;
  704. doublereal u22abs;
  705. integer icmax;
  706. doublereal bnorm, cnorm, smini;
  707. #define ci (equiv_0)
  708. #define cr (equiv_1)
  709. extern doublereal dlamch_(char *);
  710. extern /* Subroutine */ void dladiv_(doublereal *, doublereal *,
  711. doublereal *, doublereal *, doublereal *, doublereal *);
  712. doublereal bignum, bi1, bi2, br1, br2, smlnum, xi1, xi2, xr1, xr2, ci21,
  713. ci22, cr21, cr22, li21, csi, ui11, lr21, ui12, ui22;
  714. #define civ (equiv_0)
  715. doublereal csr, ur11, ur12, ur22;
  716. #define crv (equiv_1)
  717. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  718. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  719. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  720. /* December 2016 */
  721. /* ===================================================================== */
  722. /* Parameter adjustments */
  723. a_dim1 = *lda;
  724. a_offset = 1 + a_dim1 * 1;
  725. a -= a_offset;
  726. b_dim1 = *ldb;
  727. b_offset = 1 + b_dim1 * 1;
  728. b -= b_offset;
  729. x_dim1 = *ldx;
  730. x_offset = 1 + x_dim1 * 1;
  731. x -= x_offset;
  732. /* Function Body */
  733. /* Compute BIGNUM */
  734. smlnum = 2. * dlamch_("Safe minimum");
  735. bignum = 1. / smlnum;
  736. smini = f2cmax(*smin,smlnum);
  737. /* Don't check for input errors */
  738. *info = 0;
  739. /* Standard Initializations */
  740. *scale = 1.;
  741. if (*na == 1) {
  742. /* 1 x 1 (i.e., scalar) system C X = B */
  743. if (*nw == 1) {
  744. /* Real 1x1 system. */
  745. /* C = ca A - w D */
  746. csr = *ca * a[a_dim1 + 1] - *wr * *d1;
  747. cnorm = abs(csr);
  748. /* If | C | < SMINI, use C = SMINI */
  749. if (cnorm < smini) {
  750. csr = smini;
  751. cnorm = smini;
  752. *info = 1;
  753. }
  754. /* Check scaling for X = B / C */
  755. bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
  756. if (cnorm < 1. && bnorm > 1.) {
  757. if (bnorm > bignum * cnorm) {
  758. *scale = 1. / bnorm;
  759. }
  760. }
  761. /* Compute X */
  762. x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
  763. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
  764. } else {
  765. /* Complex 1x1 system (w is complex) */
  766. /* C = ca A - w D */
  767. csr = *ca * a[a_dim1 + 1] - *wr * *d1;
  768. csi = -(*wi) * *d1;
  769. cnorm = abs(csr) + abs(csi);
  770. /* If | C | < SMINI, use C = SMINI */
  771. if (cnorm < smini) {
  772. csr = smini;
  773. csi = 0.;
  774. cnorm = smini;
  775. *info = 1;
  776. }
  777. /* Check scaling for X = B / C */
  778. bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 <<
  779. 1) + 1], abs(d__2));
  780. if (cnorm < 1. && bnorm > 1.) {
  781. if (bnorm > bignum * cnorm) {
  782. *scale = 1. / bnorm;
  783. }
  784. }
  785. /* Compute X */
  786. d__1 = *scale * b[b_dim1 + 1];
  787. d__2 = *scale * b[(b_dim1 << 1) + 1];
  788. dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
  789. + 1]);
  790. *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 <<
  791. 1) + 1], abs(d__2));
  792. }
  793. } else {
  794. /* 2x2 System */
  795. /* Compute the real part of C = ca A - w D (or ca A**T - w D ) */
  796. cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
  797. cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
  798. if (*ltrans) {
  799. cr[2] = *ca * a[a_dim1 + 2];
  800. cr[1] = *ca * a[(a_dim1 << 1) + 1];
  801. } else {
  802. cr[1] = *ca * a[a_dim1 + 2];
  803. cr[2] = *ca * a[(a_dim1 << 1) + 1];
  804. }
  805. if (*nw == 1) {
  806. /* Real 2x2 system (w is real) */
  807. /* Find the largest element in C */
  808. cmax = 0.;
  809. icmax = 0;
  810. for (j = 1; j <= 4; ++j) {
  811. if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
  812. cmax = (d__1 = crv[j - 1], abs(d__1));
  813. icmax = j;
  814. }
  815. /* L10: */
  816. }
  817. /* If norm(C) < SMINI, use SMINI*identity. */
  818. if (cmax < smini) {
  819. /* Computing MAX */
  820. d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
  821. b_dim1 + 2], abs(d__2));
  822. bnorm = f2cmax(d__3,d__4);
  823. if (smini < 1. && bnorm > 1.) {
  824. if (bnorm > bignum * smini) {
  825. *scale = 1. / bnorm;
  826. }
  827. }
  828. temp = *scale / smini;
  829. x[x_dim1 + 1] = temp * b[b_dim1 + 1];
  830. x[x_dim1 + 2] = temp * b[b_dim1 + 2];
  831. *xnorm = temp * bnorm;
  832. *info = 1;
  833. return;
  834. }
  835. /* Gaussian elimination with complete pivoting. */
  836. ur11 = crv[icmax - 1];
  837. cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
  838. ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
  839. cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
  840. ur11r = 1. / ur11;
  841. lr21 = ur11r * cr21;
  842. ur22 = cr22 - ur12 * lr21;
  843. /* If smaller pivot < SMINI, use SMINI */
  844. if (abs(ur22) < smini) {
  845. ur22 = smini;
  846. *info = 1;
  847. }
  848. if (rswap[icmax - 1]) {
  849. br1 = b[b_dim1 + 2];
  850. br2 = b[b_dim1 + 1];
  851. } else {
  852. br1 = b[b_dim1 + 1];
  853. br2 = b[b_dim1 + 2];
  854. }
  855. br2 -= lr21 * br1;
  856. /* Computing MAX */
  857. d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
  858. bbnd = f2cmax(d__2,d__3);
  859. if (bbnd > 1. && abs(ur22) < 1.) {
  860. if (bbnd >= bignum * abs(ur22)) {
  861. *scale = 1. / bbnd;
  862. }
  863. }
  864. xr2 = br2 * *scale / ur22;
  865. xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
  866. if (zswap[icmax - 1]) {
  867. x[x_dim1 + 1] = xr2;
  868. x[x_dim1 + 2] = xr1;
  869. } else {
  870. x[x_dim1 + 1] = xr1;
  871. x[x_dim1 + 2] = xr2;
  872. }
  873. /* Computing MAX */
  874. d__1 = abs(xr1), d__2 = abs(xr2);
  875. *xnorm = f2cmax(d__1,d__2);
  876. /* Further scaling if norm(A) norm(X) > overflow */
  877. if (*xnorm > 1. && cmax > 1.) {
  878. if (*xnorm > bignum / cmax) {
  879. temp = cmax / bignum;
  880. x[x_dim1 + 1] = temp * x[x_dim1 + 1];
  881. x[x_dim1 + 2] = temp * x[x_dim1 + 2];
  882. *xnorm = temp * *xnorm;
  883. *scale = temp * *scale;
  884. }
  885. }
  886. } else {
  887. /* Complex 2x2 system (w is complex) */
  888. /* Find the largest element in C */
  889. ci[0] = -(*wi) * *d1;
  890. ci[1] = 0.;
  891. ci[2] = 0.;
  892. ci[3] = -(*wi) * *d2;
  893. cmax = 0.;
  894. icmax = 0;
  895. for (j = 1; j <= 4; ++j) {
  896. if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
  897. d__2)) > cmax) {
  898. cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
  899. , abs(d__2));
  900. icmax = j;
  901. }
  902. /* L20: */
  903. }
  904. /* If norm(C) < SMINI, use SMINI*identity. */
  905. if (cmax < smini) {
  906. /* Computing MAX */
  907. d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1
  908. << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2],
  909. abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
  910. bnorm = f2cmax(d__5,d__6);
  911. if (smini < 1. && bnorm > 1.) {
  912. if (bnorm > bignum * smini) {
  913. *scale = 1. / bnorm;
  914. }
  915. }
  916. temp = *scale / smini;
  917. x[x_dim1 + 1] = temp * b[b_dim1 + 1];
  918. x[x_dim1 + 2] = temp * b[b_dim1 + 2];
  919. x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
  920. x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
  921. *xnorm = temp * bnorm;
  922. *info = 1;
  923. return;
  924. }
  925. /* Gaussian elimination with complete pivoting. */
  926. ur11 = crv[icmax - 1];
  927. ui11 = civ[icmax - 1];
  928. cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
  929. ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
  930. ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
  931. ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
  932. cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
  933. ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
  934. if (icmax == 1 || icmax == 4) {
  935. /* Code when off-diagonals of pivoted C are real */
  936. if (abs(ur11) > abs(ui11)) {
  937. temp = ui11 / ur11;
  938. /* Computing 2nd power */
  939. d__1 = temp;
  940. ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
  941. ui11r = -temp * ur11r;
  942. } else {
  943. temp = ur11 / ui11;
  944. /* Computing 2nd power */
  945. d__1 = temp;
  946. ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
  947. ur11r = -temp * ui11r;
  948. }
  949. lr21 = cr21 * ur11r;
  950. li21 = cr21 * ui11r;
  951. ur12s = ur12 * ur11r;
  952. ui12s = ur12 * ui11r;
  953. ur22 = cr22 - ur12 * lr21;
  954. ui22 = ci22 - ur12 * li21;
  955. } else {
  956. /* Code when diagonals of pivoted C are real */
  957. ur11r = 1. / ur11;
  958. ui11r = 0.;
  959. lr21 = cr21 * ur11r;
  960. li21 = ci21 * ur11r;
  961. ur12s = ur12 * ur11r;
  962. ui12s = ui12 * ur11r;
  963. ur22 = cr22 - ur12 * lr21 + ui12 * li21;
  964. ui22 = -ur12 * li21 - ui12 * lr21;
  965. }
  966. u22abs = abs(ur22) + abs(ui22);
  967. /* If smaller pivot < SMINI, use SMINI */
  968. if (u22abs < smini) {
  969. ur22 = smini;
  970. ui22 = 0.;
  971. *info = 1;
  972. }
  973. if (rswap[icmax - 1]) {
  974. br2 = b[b_dim1 + 1];
  975. br1 = b[b_dim1 + 2];
  976. bi2 = b[(b_dim1 << 1) + 1];
  977. bi1 = b[(b_dim1 << 1) + 2];
  978. } else {
  979. br1 = b[b_dim1 + 1];
  980. br2 = b[b_dim1 + 2];
  981. bi1 = b[(b_dim1 << 1) + 1];
  982. bi2 = b[(b_dim1 << 1) + 2];
  983. }
  984. br2 = br2 - lr21 * br1 + li21 * bi1;
  985. bi2 = bi2 - li21 * br1 - lr21 * bi1;
  986. /* Computing MAX */
  987. d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
  988. ), d__2 = abs(br2) + abs(bi2);
  989. bbnd = f2cmax(d__1,d__2);
  990. if (bbnd > 1. && u22abs < 1.) {
  991. if (bbnd >= bignum * u22abs) {
  992. *scale = 1. / bbnd;
  993. br1 = *scale * br1;
  994. bi1 = *scale * bi1;
  995. br2 = *scale * br2;
  996. bi2 = *scale * bi2;
  997. }
  998. }
  999. dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
  1000. xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
  1001. xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
  1002. if (zswap[icmax - 1]) {
  1003. x[x_dim1 + 1] = xr2;
  1004. x[x_dim1 + 2] = xr1;
  1005. x[(x_dim1 << 1) + 1] = xi2;
  1006. x[(x_dim1 << 1) + 2] = xi1;
  1007. } else {
  1008. x[x_dim1 + 1] = xr1;
  1009. x[x_dim1 + 2] = xr2;
  1010. x[(x_dim1 << 1) + 1] = xi1;
  1011. x[(x_dim1 << 1) + 2] = xi2;
  1012. }
  1013. /* Computing MAX */
  1014. d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
  1015. *xnorm = f2cmax(d__1,d__2);
  1016. /* Further scaling if norm(A) norm(X) > overflow */
  1017. if (*xnorm > 1. && cmax > 1.) {
  1018. if (*xnorm > bignum / cmax) {
  1019. temp = cmax / bignum;
  1020. x[x_dim1 + 1] = temp * x[x_dim1 + 1];
  1021. x[x_dim1 + 2] = temp * x[x_dim1 + 2];
  1022. x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
  1023. x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
  1024. *xnorm = temp * *xnorm;
  1025. *scale = temp * *scale;
  1026. }
  1027. }
  1028. }
  1029. }
  1030. return;
  1031. /* End of DLALN2 */
  1032. } /* dlaln2_ */
  1033. #undef crv
  1034. #undef civ
  1035. #undef cr
  1036. #undef ci