You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeevx.c 40 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. /* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  490. rices</b> */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download CGEEVX + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeevx.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeevx.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeevx.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE CGEEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, W, VL, */
  509. /* LDVL, VR, LDVR, ILO, IHI, SCALE, ABNRM, RCONDE, */
  510. /* RCONDV, WORK, LWORK, RWORK, INFO ) */
  511. /* CHARACTER BALANC, JOBVL, JOBVR, SENSE */
  512. /* INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N */
  513. /* REAL ABNRM */
  514. /* REAL RCONDE( * ), RCONDV( * ), RWORK( * ), */
  515. /* $ SCALE( * ) */
  516. /* COMPLEX A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ), */
  517. /* $ W( * ), WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CGEEVX computes for an N-by-N complex nonsymmetric matrix A, the */
  524. /* > eigenvalues and, optionally, the left and/or right eigenvectors. */
  525. /* > */
  526. /* > Optionally also, it computes a balancing transformation to improve */
  527. /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
  528. /* > SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
  529. /* > (RCONDE), and reciprocal condition numbers for the right */
  530. /* > eigenvectors (RCONDV). */
  531. /* > */
  532. /* > The right eigenvector v(j) of A satisfies */
  533. /* > A * v(j) = lambda(j) * v(j) */
  534. /* > where lambda(j) is its eigenvalue. */
  535. /* > The left eigenvector u(j) of A satisfies */
  536. /* > u(j)**H * A = lambda(j) * u(j)**H */
  537. /* > where u(j)**H denotes the conjugate transpose of u(j). */
  538. /* > */
  539. /* > The computed eigenvectors are normalized to have Euclidean norm */
  540. /* > equal to 1 and largest component real. */
  541. /* > */
  542. /* > Balancing a matrix means permuting the rows and columns to make it */
  543. /* > more nearly upper triangular, and applying a diagonal similarity */
  544. /* > transformation D * A * D**(-1), where D is a diagonal matrix, to */
  545. /* > make its rows and columns closer in norm and the condition numbers */
  546. /* > of its eigenvalues and eigenvectors smaller. The computed */
  547. /* > reciprocal condition numbers correspond to the balanced matrix. */
  548. /* > Permuting rows and columns will not change the condition numbers */
  549. /* > (in exact arithmetic) but diagonal scaling will. For further */
  550. /* > explanation of balancing, see section 4.10.2 of the LAPACK */
  551. /* > Users' Guide. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] BALANC */
  556. /* > \verbatim */
  557. /* > BALANC is CHARACTER*1 */
  558. /* > Indicates how the input matrix should be diagonally scaled */
  559. /* > and/or permuted to improve the conditioning of its */
  560. /* > eigenvalues. */
  561. /* > = 'N': Do not diagonally scale or permute; */
  562. /* > = 'P': Perform permutations to make the matrix more nearly */
  563. /* > upper triangular. Do not diagonally scale; */
  564. /* > = 'S': Diagonally scale the matrix, ie. replace A by */
  565. /* > D*A*D**(-1), where D is a diagonal matrix chosen */
  566. /* > to make the rows and columns of A more equal in */
  567. /* > norm. Do not permute; */
  568. /* > = 'B': Both diagonally scale and permute A. */
  569. /* > */
  570. /* > Computed reciprocal condition numbers will be for the matrix */
  571. /* > after balancing and/or permuting. Permuting does not change */
  572. /* > condition numbers (in exact arithmetic), but balancing does. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] JOBVL */
  576. /* > \verbatim */
  577. /* > JOBVL is CHARACTER*1 */
  578. /* > = 'N': left eigenvectors of A are not computed; */
  579. /* > = 'V': left eigenvectors of A are computed. */
  580. /* > If SENSE = 'E' or 'B', JOBVL must = 'V'. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] JOBVR */
  584. /* > \verbatim */
  585. /* > JOBVR is CHARACTER*1 */
  586. /* > = 'N': right eigenvectors of A are not computed; */
  587. /* > = 'V': right eigenvectors of A are computed. */
  588. /* > If SENSE = 'E' or 'B', JOBVR must = 'V'. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] SENSE */
  592. /* > \verbatim */
  593. /* > SENSE is CHARACTER*1 */
  594. /* > Determines which reciprocal condition numbers are computed. */
  595. /* > = 'N': None are computed; */
  596. /* > = 'E': Computed for eigenvalues only; */
  597. /* > = 'V': Computed for right eigenvectors only; */
  598. /* > = 'B': Computed for eigenvalues and right eigenvectors. */
  599. /* > */
  600. /* > If SENSE = 'E' or 'B', both left and right eigenvectors */
  601. /* > must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] N */
  605. /* > \verbatim */
  606. /* > N is INTEGER */
  607. /* > The order of the matrix A. N >= 0. */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[in,out] A */
  611. /* > \verbatim */
  612. /* > A is COMPLEX array, dimension (LDA,N) */
  613. /* > On entry, the N-by-N matrix A. */
  614. /* > On exit, A has been overwritten. If JOBVL = 'V' or */
  615. /* > JOBVR = 'V', A contains the Schur form of the balanced */
  616. /* > version of the matrix A. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] LDA */
  620. /* > \verbatim */
  621. /* > LDA is INTEGER */
  622. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] W */
  626. /* > \verbatim */
  627. /* > W is COMPLEX array, dimension (N) */
  628. /* > W contains the computed eigenvalues. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] VL */
  632. /* > \verbatim */
  633. /* > VL is COMPLEX array, dimension (LDVL,N) */
  634. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored one */
  635. /* > after another in the columns of VL, in the same order */
  636. /* > as their eigenvalues. */
  637. /* > If JOBVL = 'N', VL is not referenced. */
  638. /* > u(j) = VL(:,j), the j-th column of VL. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDVL */
  642. /* > \verbatim */
  643. /* > LDVL is INTEGER */
  644. /* > The leading dimension of the array VL. LDVL >= 1; if */
  645. /* > JOBVL = 'V', LDVL >= N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] VR */
  649. /* > \verbatim */
  650. /* > VR is COMPLEX array, dimension (LDVR,N) */
  651. /* > If JOBVR = 'V', the right eigenvectors v(j) are stored one */
  652. /* > after another in the columns of VR, in the same order */
  653. /* > as their eigenvalues. */
  654. /* > If JOBVR = 'N', VR is not referenced. */
  655. /* > v(j) = VR(:,j), the j-th column of VR. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[in] LDVR */
  659. /* > \verbatim */
  660. /* > LDVR is INTEGER */
  661. /* > The leading dimension of the array VR. LDVR >= 1; if */
  662. /* > JOBVR = 'V', LDVR >= N. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[out] ILO */
  666. /* > \verbatim */
  667. /* > ILO is INTEGER */
  668. /* > \endverbatim */
  669. /* > */
  670. /* > \param[out] IHI */
  671. /* > \verbatim */
  672. /* > IHI is INTEGER */
  673. /* > ILO and IHI are integer values determined when A was */
  674. /* > balanced. The balanced A(i,j) = 0 if I > J and */
  675. /* > J = 1,...,ILO-1 or I = IHI+1,...,N. */
  676. /* > \endverbatim */
  677. /* > */
  678. /* > \param[out] SCALE */
  679. /* > \verbatim */
  680. /* > SCALE is REAL array, dimension (N) */
  681. /* > Details of the permutations and scaling factors applied */
  682. /* > when balancing A. If P(j) is the index of the row and column */
  683. /* > interchanged with row and column j, and D(j) is the scaling */
  684. /* > factor applied to row and column j, then */
  685. /* > SCALE(J) = P(J), for J = 1,...,ILO-1 */
  686. /* > = D(J), for J = ILO,...,IHI */
  687. /* > = P(J) for J = IHI+1,...,N. */
  688. /* > The order in which the interchanges are made is N to IHI+1, */
  689. /* > then 1 to ILO-1. */
  690. /* > \endverbatim */
  691. /* > */
  692. /* > \param[out] ABNRM */
  693. /* > \verbatim */
  694. /* > ABNRM is REAL */
  695. /* > The one-norm of the balanced matrix (the maximum */
  696. /* > of the sum of absolute values of elements of any column). */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] RCONDE */
  700. /* > \verbatim */
  701. /* > RCONDE is REAL array, dimension (N) */
  702. /* > RCONDE(j) is the reciprocal condition number of the j-th */
  703. /* > eigenvalue. */
  704. /* > \endverbatim */
  705. /* > */
  706. /* > \param[out] RCONDV */
  707. /* > \verbatim */
  708. /* > RCONDV is REAL array, dimension (N) */
  709. /* > RCONDV(j) is the reciprocal condition number of the j-th */
  710. /* > right eigenvector. */
  711. /* > \endverbatim */
  712. /* > */
  713. /* > \param[out] WORK */
  714. /* > \verbatim */
  715. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  716. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  717. /* > \endverbatim */
  718. /* > */
  719. /* > \param[in] LWORK */
  720. /* > \verbatim */
  721. /* > LWORK is INTEGER */
  722. /* > The dimension of the array WORK. If SENSE = 'N' or 'E', */
  723. /* > LWORK >= f2cmax(1,2*N), and if SENSE = 'V' or 'B', */
  724. /* > LWORK >= N*N+2*N. */
  725. /* > For good performance, LWORK must generally be larger. */
  726. /* > */
  727. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  728. /* > only calculates the optimal size of the WORK array, returns */
  729. /* > this value as the first entry of the WORK array, and no error */
  730. /* > message related to LWORK is issued by XERBLA. */
  731. /* > \endverbatim */
  732. /* > */
  733. /* > \param[out] RWORK */
  734. /* > \verbatim */
  735. /* > RWORK is REAL array, dimension (2*N) */
  736. /* > \endverbatim */
  737. /* > */
  738. /* > \param[out] INFO */
  739. /* > \verbatim */
  740. /* > INFO is INTEGER */
  741. /* > = 0: successful exit */
  742. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  743. /* > > 0: if INFO = i, the QR algorithm failed to compute all the */
  744. /* > eigenvalues, and no eigenvectors or condition numbers */
  745. /* > have been computed; elements 1:ILO-1 and i+1:N of W */
  746. /* > contain eigenvalues which have converged. */
  747. /* > \endverbatim */
  748. /* Authors: */
  749. /* ======== */
  750. /* > \author Univ. of Tennessee */
  751. /* > \author Univ. of California Berkeley */
  752. /* > \author Univ. of Colorado Denver */
  753. /* > \author NAG Ltd. */
  754. /* > \date June 2016 */
  755. /* @generated from zgeevx.f, fortran z -> c, Tue Apr 19 01:47:44 2016 */
  756. /* > \ingroup complexGEeigen */
  757. /* ===================================================================== */
  758. /* Subroutine */ void cgeevx_(char *balanc, char *jobvl, char *jobvr, char *
  759. sense, integer *n, complex *a, integer *lda, complex *w, complex *vl,
  760. integer *ldvl, complex *vr, integer *ldvr, integer *ilo, integer *ihi,
  761. real *scale, real *abnrm, real *rconde, real *rcondv, complex *work,
  762. integer *lwork, real *rwork, integer *info)
  763. {
  764. /* System generated locals */
  765. integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  766. i__2, i__3;
  767. real r__1, r__2;
  768. complex q__1, q__2;
  769. /* Local variables */
  770. char side[1];
  771. real anrm;
  772. integer ierr, itau, iwrk, nout, i__, k;
  773. extern /* Subroutine */ void cscal_(integer *, complex *, complex *,
  774. integer *);
  775. integer icond;
  776. extern logical lsame_(char *, char *);
  777. extern real scnrm2_(integer *, complex *, integer *);
  778. extern /* Subroutine */ void cgebak_(char *, char *, integer *, integer *,
  779. integer *, real *, integer *, complex *, integer *, integer *), cgebal_(char *, integer *, complex *, integer *,
  780. integer *, integer *, real *, integer *), slabad_(real *,
  781. real *);
  782. logical scalea;
  783. extern real clange_(char *, integer *, integer *, complex *, integer *,
  784. real *);
  785. real cscale;
  786. extern /* Subroutine */ void cgehrd_(integer *, integer *, integer *,
  787. complex *, integer *, complex *, complex *, integer *, integer *),
  788. clascl_(char *, integer *, integer *, real *, real *, integer *,
  789. integer *, complex *, integer *, integer *);
  790. extern real slamch_(char *);
  791. extern /* Subroutine */ void csscal_(integer *, real *, complex *, integer
  792. *), clacpy_(char *, integer *, integer *, complex *, integer *,
  793. complex *, integer *);
  794. extern int xerbla_(char *, integer *, ftnlen);
  795. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  796. integer *, integer *, ftnlen, ftnlen);
  797. logical select[1];
  798. real bignum;
  799. extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *,
  800. real *, integer *, integer *, real *, integer *, integer *);
  801. extern integer isamax_(integer *, real *, integer *);
  802. extern /* Subroutine */ void chseqr_(char *, char *, integer *, integer *,
  803. integer *, complex *, integer *, complex *, complex *, integer *,
  804. complex *, integer *, integer *), cunghr_(integer
  805. *, integer *, integer *, complex *, integer *, complex *, complex
  806. *, integer *, integer *), ctrsna_(char *, char *, logical *,
  807. integer *, complex *, integer *, complex *, integer *, complex *,
  808. integer *, real *, real *, integer *, integer *, complex *,
  809. integer *, real *, integer *);
  810. integer minwrk, maxwrk;
  811. logical wantvl, wntsnb;
  812. integer hswork;
  813. logical wntsne;
  814. real smlnum;
  815. logical lquery, wantvr, wntsnn, wntsnv;
  816. extern /* Subroutine */ void ctrevc3_(char *, char *, logical *, integer *,
  817. complex *, integer *, complex *, integer *, complex *, integer *,
  818. integer *, integer *, complex *, integer *, real *, integer *,
  819. integer *);
  820. char job[1];
  821. real scl, dum[1], eps;
  822. complex tmp;
  823. integer lwork_trevc__;
  824. /* -- LAPACK driver routine (version 3.7.1) -- */
  825. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  826. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  827. /* June 2016 */
  828. /* ===================================================================== */
  829. /* Test the input arguments */
  830. /* Parameter adjustments */
  831. a_dim1 = *lda;
  832. a_offset = 1 + a_dim1 * 1;
  833. a -= a_offset;
  834. --w;
  835. vl_dim1 = *ldvl;
  836. vl_offset = 1 + vl_dim1 * 1;
  837. vl -= vl_offset;
  838. vr_dim1 = *ldvr;
  839. vr_offset = 1 + vr_dim1 * 1;
  840. vr -= vr_offset;
  841. --scale;
  842. --rconde;
  843. --rcondv;
  844. --work;
  845. --rwork;
  846. /* Function Body */
  847. *info = 0;
  848. lquery = *lwork == -1;
  849. wantvl = lsame_(jobvl, "V");
  850. wantvr = lsame_(jobvr, "V");
  851. wntsnn = lsame_(sense, "N");
  852. wntsne = lsame_(sense, "E");
  853. wntsnv = lsame_(sense, "V");
  854. wntsnb = lsame_(sense, "B");
  855. if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
  856. || lsame_(balanc, "B"))) {
  857. *info = -1;
  858. } else if (! wantvl && ! lsame_(jobvl, "N")) {
  859. *info = -2;
  860. } else if (! wantvr && ! lsame_(jobvr, "N")) {
  861. *info = -3;
  862. } else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
  863. && ! (wantvl && wantvr)) {
  864. *info = -4;
  865. } else if (*n < 0) {
  866. *info = -5;
  867. } else if (*lda < f2cmax(1,*n)) {
  868. *info = -7;
  869. } else if (*ldvl < 1 || wantvl && *ldvl < *n) {
  870. *info = -10;
  871. } else if (*ldvr < 1 || wantvr && *ldvr < *n) {
  872. *info = -12;
  873. }
  874. /* Compute workspace */
  875. /* (Note: Comments in the code beginning "Workspace:" describe the */
  876. /* minimal amount of workspace needed at that point in the code, */
  877. /* as well as the preferred amount for good performance. */
  878. /* CWorkspace refers to complex workspace, and RWorkspace to real */
  879. /* workspace. NB refers to the optimal block size for the */
  880. /* immediately following subroutine, as returned by ILAENV. */
  881. /* HSWORK refers to the workspace preferred by CHSEQR, as */
  882. /* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
  883. /* the worst case.) */
  884. if (*info == 0) {
  885. if (*n == 0) {
  886. minwrk = 1;
  887. maxwrk = 1;
  888. } else {
  889. maxwrk = *n + *n * ilaenv_(&c__1, "CGEHRD", " ", n, &c__1, n, &
  890. c__0, (ftnlen)6, (ftnlen)1);
  891. if (wantvl) {
  892. ctrevc3_("L", "B", select, n, &a[a_offset], lda, &vl[
  893. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  894. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  895. lwork_trevc__ = (integer) work[1].r;
  896. maxwrk = f2cmax(maxwrk,lwork_trevc__);
  897. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vl[
  898. vl_offset], ldvl, &work[1], &c_n1, info);
  899. } else if (wantvr) {
  900. ctrevc3_("R", "B", select, n, &a[a_offset], lda, &vl[
  901. vl_offset], ldvl, &vr[vr_offset], ldvr, n, &nout, &
  902. work[1], &c_n1, &rwork[1], &c_n1, &ierr);
  903. lwork_trevc__ = (integer) work[1].r;
  904. maxwrk = f2cmax(maxwrk,lwork_trevc__);
  905. chseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &w[1], &vr[
  906. vr_offset], ldvr, &work[1], &c_n1, info);
  907. } else {
  908. if (wntsnn) {
  909. chseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
  910. vr[vr_offset], ldvr, &work[1], &c_n1, info);
  911. } else {
  912. chseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &w[1], &
  913. vr[vr_offset], ldvr, &work[1], &c_n1, info);
  914. }
  915. }
  916. hswork = (integer) work[1].r;
  917. if (! wantvl && ! wantvr) {
  918. minwrk = *n << 1;
  919. if (! (wntsnn || wntsne)) {
  920. /* Computing MAX */
  921. i__1 = minwrk, i__2 = *n * *n + (*n << 1);
  922. minwrk = f2cmax(i__1,i__2);
  923. }
  924. maxwrk = f2cmax(maxwrk,hswork);
  925. if (! (wntsnn || wntsne)) {
  926. /* Computing MAX */
  927. i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
  928. maxwrk = f2cmax(i__1,i__2);
  929. }
  930. } else {
  931. minwrk = *n << 1;
  932. if (! (wntsnn || wntsne)) {
  933. /* Computing MAX */
  934. i__1 = minwrk, i__2 = *n * *n + (*n << 1);
  935. minwrk = f2cmax(i__1,i__2);
  936. }
  937. maxwrk = f2cmax(maxwrk,hswork);
  938. /* Computing MAX */
  939. i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "CUNGHR",
  940. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  941. maxwrk = f2cmax(i__1,i__2);
  942. if (! (wntsnn || wntsne)) {
  943. /* Computing MAX */
  944. i__1 = maxwrk, i__2 = *n * *n + (*n << 1);
  945. maxwrk = f2cmax(i__1,i__2);
  946. }
  947. /* Computing MAX */
  948. i__1 = maxwrk, i__2 = *n << 1;
  949. maxwrk = f2cmax(i__1,i__2);
  950. }
  951. maxwrk = f2cmax(maxwrk,minwrk);
  952. }
  953. work[1].r = (real) maxwrk, work[1].i = 0.f;
  954. if (*lwork < minwrk && ! lquery) {
  955. *info = -20;
  956. }
  957. }
  958. if (*info != 0) {
  959. i__1 = -(*info);
  960. xerbla_("CGEEVX", &i__1, (ftnlen)6);
  961. return;
  962. } else if (lquery) {
  963. return;
  964. }
  965. /* Quick return if possible */
  966. if (*n == 0) {
  967. return;
  968. }
  969. /* Get machine constants */
  970. eps = slamch_("P");
  971. smlnum = slamch_("S");
  972. bignum = 1.f / smlnum;
  973. slabad_(&smlnum, &bignum);
  974. smlnum = sqrt(smlnum) / eps;
  975. bignum = 1.f / smlnum;
  976. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  977. icond = 0;
  978. anrm = clange_("M", n, n, &a[a_offset], lda, dum);
  979. scalea = FALSE_;
  980. if (anrm > 0.f && anrm < smlnum) {
  981. scalea = TRUE_;
  982. cscale = smlnum;
  983. } else if (anrm > bignum) {
  984. scalea = TRUE_;
  985. cscale = bignum;
  986. }
  987. if (scalea) {
  988. clascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
  989. ierr);
  990. }
  991. /* Balance the matrix and compute ABNRM */
  992. cgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
  993. *abnrm = clange_("1", n, n, &a[a_offset], lda, dum);
  994. if (scalea) {
  995. dum[0] = *abnrm;
  996. slascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
  997. ierr);
  998. *abnrm = dum[0];
  999. }
  1000. /* Reduce to upper Hessenberg form */
  1001. /* (CWorkspace: need 2*N, prefer N+N*NB) */
  1002. /* (RWorkspace: none) */
  1003. itau = 1;
  1004. iwrk = itau + *n;
  1005. i__1 = *lwork - iwrk + 1;
  1006. cgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
  1007. ierr);
  1008. if (wantvl) {
  1009. /* Want left eigenvectors */
  1010. /* Copy Householder vectors to VL */
  1011. *(unsigned char *)side = 'L';
  1012. clacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
  1013. ;
  1014. /* Generate unitary matrix in VL */
  1015. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  1016. /* (RWorkspace: none) */
  1017. i__1 = *lwork - iwrk + 1;
  1018. cunghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
  1019. i__1, &ierr);
  1020. /* Perform QR iteration, accumulating Schur vectors in VL */
  1021. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1022. /* (RWorkspace: none) */
  1023. iwrk = itau;
  1024. i__1 = *lwork - iwrk + 1;
  1025. chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vl[
  1026. vl_offset], ldvl, &work[iwrk], &i__1, info);
  1027. if (wantvr) {
  1028. /* Want left and right eigenvectors */
  1029. /* Copy Schur vectors to VR */
  1030. *(unsigned char *)side = 'B';
  1031. clacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
  1032. }
  1033. } else if (wantvr) {
  1034. /* Want right eigenvectors */
  1035. /* Copy Householder vectors to VR */
  1036. *(unsigned char *)side = 'R';
  1037. clacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
  1038. ;
  1039. /* Generate unitary matrix in VR */
  1040. /* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */
  1041. /* (RWorkspace: none) */
  1042. i__1 = *lwork - iwrk + 1;
  1043. cunghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
  1044. i__1, &ierr);
  1045. /* Perform QR iteration, accumulating Schur vectors in VR */
  1046. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1047. /* (RWorkspace: none) */
  1048. iwrk = itau;
  1049. i__1 = *lwork - iwrk + 1;
  1050. chseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
  1051. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1052. } else {
  1053. /* Compute eigenvalues only */
  1054. /* If condition numbers desired, compute Schur form */
  1055. if (wntsnn) {
  1056. *(unsigned char *)job = 'E';
  1057. } else {
  1058. *(unsigned char *)job = 'S';
  1059. }
  1060. /* (CWorkspace: need 1, prefer HSWORK (see comments) ) */
  1061. /* (RWorkspace: none) */
  1062. iwrk = itau;
  1063. i__1 = *lwork - iwrk + 1;
  1064. chseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &w[1], &vr[
  1065. vr_offset], ldvr, &work[iwrk], &i__1, info);
  1066. }
  1067. /* If INFO .NE. 0 from CHSEQR, then quit */
  1068. if (*info != 0) {
  1069. goto L50;
  1070. }
  1071. if (wantvl || wantvr) {
  1072. /* Compute left and/or right eigenvectors */
  1073. /* (CWorkspace: need 2*N, prefer N + 2*N*NB) */
  1074. /* (RWorkspace: need N) */
  1075. i__1 = *lwork - iwrk + 1;
  1076. ctrevc3_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset],
  1077. ldvl, &vr[vr_offset], ldvr, n, &nout, &work[iwrk], &i__1, &
  1078. rwork[1], n, &ierr);
  1079. }
  1080. /* Compute condition numbers if desired */
  1081. /* (CWorkspace: need N*N+2*N unless SENSE = 'E') */
  1082. /* (RWorkspace: need 2*N unless SENSE = 'E') */
  1083. if (! wntsnn) {
  1084. ctrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
  1085. ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
  1086. &work[iwrk], n, &rwork[1], &icond);
  1087. }
  1088. if (wantvl) {
  1089. /* Undo balancing of left eigenvectors */
  1090. cgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
  1091. &ierr);
  1092. /* Normalize left eigenvectors and make largest component real */
  1093. i__1 = *n;
  1094. for (i__ = 1; i__ <= i__1; ++i__) {
  1095. scl = 1.f / scnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
  1096. csscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
  1097. i__2 = *n;
  1098. for (k = 1; k <= i__2; ++k) {
  1099. i__3 = k + i__ * vl_dim1;
  1100. /* Computing 2nd power */
  1101. r__1 = vl[i__3].r;
  1102. /* Computing 2nd power */
  1103. r__2 = r_imag(&vl[k + i__ * vl_dim1]);
  1104. rwork[k] = r__1 * r__1 + r__2 * r__2;
  1105. /* L10: */
  1106. }
  1107. k = isamax_(n, &rwork[1], &c__1);
  1108. r_cnjg(&q__2, &vl[k + i__ * vl_dim1]);
  1109. r__1 = sqrt(rwork[k]);
  1110. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  1111. tmp.r = q__1.r, tmp.i = q__1.i;
  1112. cscal_(n, &tmp, &vl[i__ * vl_dim1 + 1], &c__1);
  1113. i__2 = k + i__ * vl_dim1;
  1114. i__3 = k + i__ * vl_dim1;
  1115. r__1 = vl[i__3].r;
  1116. q__1.r = r__1, q__1.i = 0.f;
  1117. vl[i__2].r = q__1.r, vl[i__2].i = q__1.i;
  1118. /* L20: */
  1119. }
  1120. }
  1121. if (wantvr) {
  1122. /* Undo balancing of right eigenvectors */
  1123. cgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
  1124. &ierr);
  1125. /* Normalize right eigenvectors and make largest component real */
  1126. i__1 = *n;
  1127. for (i__ = 1; i__ <= i__1; ++i__) {
  1128. scl = 1.f / scnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
  1129. csscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
  1130. i__2 = *n;
  1131. for (k = 1; k <= i__2; ++k) {
  1132. i__3 = k + i__ * vr_dim1;
  1133. /* Computing 2nd power */
  1134. r__1 = vr[i__3].r;
  1135. /* Computing 2nd power */
  1136. r__2 = r_imag(&vr[k + i__ * vr_dim1]);
  1137. rwork[k] = r__1 * r__1 + r__2 * r__2;
  1138. /* L30: */
  1139. }
  1140. k = isamax_(n, &rwork[1], &c__1);
  1141. r_cnjg(&q__2, &vr[k + i__ * vr_dim1]);
  1142. r__1 = sqrt(rwork[k]);
  1143. q__1.r = q__2.r / r__1, q__1.i = q__2.i / r__1;
  1144. tmp.r = q__1.r, tmp.i = q__1.i;
  1145. cscal_(n, &tmp, &vr[i__ * vr_dim1 + 1], &c__1);
  1146. i__2 = k + i__ * vr_dim1;
  1147. i__3 = k + i__ * vr_dim1;
  1148. r__1 = vr[i__3].r;
  1149. q__1.r = r__1, q__1.i = 0.f;
  1150. vr[i__2].r = q__1.r, vr[i__2].i = q__1.i;
  1151. /* L40: */
  1152. }
  1153. }
  1154. /* Undo scaling if necessary */
  1155. L50:
  1156. if (scalea) {
  1157. i__1 = *n - *info;
  1158. /* Computing MAX */
  1159. i__3 = *n - *info;
  1160. i__2 = f2cmax(i__3,1);
  1161. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[*info + 1]
  1162. , &i__2, &ierr);
  1163. if (*info == 0) {
  1164. if ((wntsnv || wntsnb) && icond == 0) {
  1165. slascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
  1166. 1], n, &ierr);
  1167. }
  1168. } else {
  1169. i__1 = *ilo - 1;
  1170. clascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &w[1], n,
  1171. &ierr);
  1172. }
  1173. }
  1174. work[1].r = (real) maxwrk, work[1].i = 0.f;
  1175. return;
  1176. /* End of CGEEVX */
  1177. } /* cgeevx_ */