You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgegs.c 33 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {0.,0.};
  487. static doublecomplex c_b2 = {1.,0.};
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. /* > \brief <b> ZGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  491. rices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZGEGS + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgegs.f
  498. "> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgegs.f
  501. "> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgegs.f
  504. "> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZGEGS( JOBVSL, JOBVSR, N, A, LDA, B, LDB, ALPHA, BETA, */
  510. /* VSL, LDVSL, VSR, LDVSR, WORK, LWORK, RWORK, */
  511. /* INFO ) */
  512. /* CHARACTER JOBVSL, JOBVSR */
  513. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N */
  514. /* DOUBLE PRECISION RWORK( * ) */
  515. /* COMPLEX*16 A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  516. /* $ BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
  517. /* $ WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > This routine is deprecated and has been replaced by routine ZGGES. */
  524. /* > */
  525. /* > ZGEGS computes the eigenvalues, Schur form, and, optionally, the */
  526. /* > left and or/right Schur vectors of a complex matrix pair (A,B). */
  527. /* > Given two square matrices A and B, the generalized Schur */
  528. /* > factorization has the form */
  529. /* > */
  530. /* > A = Q*S*Z**H, B = Q*T*Z**H */
  531. /* > */
  532. /* > where Q and Z are unitary matrices and S and T are upper triangular. */
  533. /* > The columns of Q are the left Schur vectors */
  534. /* > and the columns of Z are the right Schur vectors. */
  535. /* > */
  536. /* > If only the eigenvalues of (A,B) are needed, the driver routine */
  537. /* > ZGEGV should be used instead. See ZGEGV for a description of the */
  538. /* > eigenvalues of the generalized nonsymmetric eigenvalue problem */
  539. /* > (GNEP). */
  540. /* > \endverbatim */
  541. /* Arguments: */
  542. /* ========== */
  543. /* > \param[in] JOBVSL */
  544. /* > \verbatim */
  545. /* > JOBVSL is CHARACTER*1 */
  546. /* > = 'N': do not compute the left Schur vectors; */
  547. /* > = 'V': compute the left Schur vectors (returned in VSL). */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] JOBVSR */
  551. /* > \verbatim */
  552. /* > JOBVSR is CHARACTER*1 */
  553. /* > = 'N': do not compute the right Schur vectors; */
  554. /* > = 'V': compute the right Schur vectors (returned in VSR). */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] N */
  558. /* > \verbatim */
  559. /* > N is INTEGER */
  560. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] A */
  564. /* > \verbatim */
  565. /* > A is COMPLEX*16 array, dimension (LDA, N) */
  566. /* > On entry, the matrix A. */
  567. /* > On exit, the upper triangular matrix S from the generalized */
  568. /* > Schur factorization. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] LDA */
  572. /* > \verbatim */
  573. /* > LDA is INTEGER */
  574. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in,out] B */
  578. /* > \verbatim */
  579. /* > B is COMPLEX*16 array, dimension (LDB, N) */
  580. /* > On entry, the matrix B. */
  581. /* > On exit, the upper triangular matrix T from the generalized */
  582. /* > Schur factorization. */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in] LDB */
  586. /* > \verbatim */
  587. /* > LDB is INTEGER */
  588. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] ALPHA */
  592. /* > \verbatim */
  593. /* > ALPHA is COMPLEX*16 array, dimension (N) */
  594. /* > The complex scalars alpha that define the eigenvalues of */
  595. /* > GNEP. ALPHA(j) = S(j,j), the diagonal element of the Schur */
  596. /* > form of A. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[out] BETA */
  600. /* > \verbatim */
  601. /* > BETA is COMPLEX*16 array, dimension (N) */
  602. /* > The non-negative real scalars beta that define the */
  603. /* > eigenvalues of GNEP. BETA(j) = T(j,j), the diagonal element */
  604. /* > of the triangular factor T. */
  605. /* > */
  606. /* > Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
  607. /* > represent the j-th eigenvalue of the matrix pair (A,B), in */
  608. /* > one of the forms lambda = alpha/beta or mu = beta/alpha. */
  609. /* > Since either lambda or mu may overflow, they should not, */
  610. /* > in general, be computed. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] VSL */
  614. /* > \verbatim */
  615. /* > VSL is COMPLEX*16 array, dimension (LDVSL,N) */
  616. /* > If JOBVSL = 'V', the matrix of left Schur vectors Q. */
  617. /* > Not referenced if JOBVSL = 'N'. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] LDVSL */
  621. /* > \verbatim */
  622. /* > LDVSL is INTEGER */
  623. /* > The leading dimension of the matrix VSL. LDVSL >= 1, and */
  624. /* > if JOBVSL = 'V', LDVSL >= N. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] VSR */
  628. /* > \verbatim */
  629. /* > VSR is COMPLEX*16 array, dimension (LDVSR,N) */
  630. /* > If JOBVSR = 'V', the matrix of right Schur vectors Z. */
  631. /* > Not referenced if JOBVSR = 'N'. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in] LDVSR */
  635. /* > \verbatim */
  636. /* > LDVSR is INTEGER */
  637. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  638. /* > if JOBVSR = 'V', LDVSR >= N. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] WORK */
  642. /* > \verbatim */
  643. /* > WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
  644. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LWORK */
  648. /* > \verbatim */
  649. /* > LWORK is INTEGER */
  650. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  651. /* > For good performance, LWORK must generally be larger. */
  652. /* > To compute the optimal value of LWORK, call ILAENV to get */
  653. /* > blocksizes (for ZGEQRF, ZUNMQR, and CUNGQR.) Then compute: */
  654. /* > NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and CUNGQR; */
  655. /* > the optimal LWORK is N*(NB+1). */
  656. /* > */
  657. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  658. /* > only calculates the optimal size of the WORK array, returns */
  659. /* > this value as the first entry of the WORK array, and no error */
  660. /* > message related to LWORK is issued by XERBLA. */
  661. /* > \endverbatim */
  662. /* > */
  663. /* > \param[out] RWORK */
  664. /* > \verbatim */
  665. /* > RWORK is DOUBLE PRECISION array, dimension (3*N) */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[out] INFO */
  669. /* > \verbatim */
  670. /* > INFO is INTEGER */
  671. /* > = 0: successful exit */
  672. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  673. /* > =1,...,N: */
  674. /* > The QZ iteration failed. (A,B) are not in Schur */
  675. /* > form, but ALPHA(j) and BETA(j) should be correct for */
  676. /* > j=INFO+1,...,N. */
  677. /* > > N: errors that usually indicate LAPACK problems: */
  678. /* > =N+1: error return from ZGGBAL */
  679. /* > =N+2: error return from ZGEQRF */
  680. /* > =N+3: error return from ZUNMQR */
  681. /* > =N+4: error return from ZUNGQR */
  682. /* > =N+5: error return from ZGGHRD */
  683. /* > =N+6: error return from ZHGEQZ (other than failed */
  684. /* > iteration) */
  685. /* > =N+7: error return from ZGGBAK (computing VSL) */
  686. /* > =N+8: error return from ZGGBAK (computing VSR) */
  687. /* > =N+9: error return from ZLASCL (various places) */
  688. /* > \endverbatim */
  689. /* Authors: */
  690. /* ======== */
  691. /* > \author Univ. of Tennessee */
  692. /* > \author Univ. of California Berkeley */
  693. /* > \author Univ. of Colorado Denver */
  694. /* > \author NAG Ltd. */
  695. /* > \date December 2016 */
  696. /* > \ingroup complex16GEeigen */
  697. /* ===================================================================== */
  698. /* Subroutine */ void zgegs_(char *jobvsl, char *jobvsr, integer *n,
  699. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  700. doublecomplex *alpha, doublecomplex *beta, doublecomplex *vsl,
  701. integer *ldvsl, doublecomplex *vsr, integer *ldvsr, doublecomplex *
  702. work, integer *lwork, doublereal *rwork, integer *info)
  703. {
  704. /* System generated locals */
  705. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  706. vsr_dim1, vsr_offset, i__1, i__2, i__3;
  707. /* Local variables */
  708. doublereal anrm, bnrm;
  709. integer itau, lopt;
  710. extern logical lsame_(char *, char *);
  711. integer ileft, iinfo, icols;
  712. logical ilvsl;
  713. integer iwork;
  714. logical ilvsr;
  715. integer irows, nb;
  716. extern doublereal dlamch_(char *);
  717. extern /* Subroutine */ void zggbak_(char *, char *, integer *, integer *,
  718. integer *, doublereal *, doublereal *, integer *, doublecomplex *,
  719. integer *, integer *), zggbal_(char *, integer *,
  720. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  721. , integer *, doublereal *, doublereal *, doublereal *, integer *);
  722. logical ilascl, ilbscl;
  723. doublereal safmin;
  724. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  725. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  726. integer *, integer *, ftnlen, ftnlen);
  727. extern doublereal zlange_(char *, integer *, integer *, doublecomplex *,
  728. integer *, doublereal *);
  729. doublereal bignum;
  730. integer ijobvl, iright;
  731. extern /* Subroutine */ void zgghrd_(char *, char *, integer *, integer *,
  732. integer *, doublecomplex *, integer *, doublecomplex *, integer *,
  733. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  734. ), zlascl_(char *, integer *, integer *,
  735. doublereal *, doublereal *, integer *, integer *, doublecomplex *,
  736. integer *, integer *);
  737. integer ijobvr;
  738. extern /* Subroutine */ void zgeqrf_(integer *, integer *, doublecomplex *,
  739. integer *, doublecomplex *, doublecomplex *, integer *, integer *
  740. );
  741. doublereal anrmto;
  742. integer lwkmin, nb1, nb2, nb3;
  743. doublereal bnrmto;
  744. extern /* Subroutine */ void zlacpy_(char *, integer *, integer *,
  745. doublecomplex *, integer *, doublecomplex *, integer *),
  746. zhgeqz_(char *, char *, char *, integer *, integer *, integer *,
  747. doublecomplex *, integer *, doublecomplex *, integer *,
  748. doublecomplex *, doublecomplex *, doublecomplex *, integer *,
  749. doublecomplex *, integer *, doublecomplex *, integer *,
  750. doublereal *, integer *), zlaset_(char *,
  751. integer *, integer *, doublecomplex *, doublecomplex *,
  752. doublecomplex *, integer *);
  753. doublereal smlnum;
  754. integer irwork, lwkopt;
  755. logical lquery;
  756. extern /* Subroutine */ void zungqr_(integer *, integer *, integer *,
  757. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  758. integer *, integer *), zunmqr_(char *, char *, integer *, integer
  759. *, integer *, doublecomplex *, integer *, doublecomplex *,
  760. doublecomplex *, integer *, doublecomplex *, integer *, integer *);
  761. integer ihi, ilo;
  762. doublereal eps;
  763. /* -- LAPACK driver routine (version 3.7.0) -- */
  764. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  765. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  766. /* December 2016 */
  767. /* ===================================================================== */
  768. /* Decode the input arguments */
  769. /* Parameter adjustments */
  770. a_dim1 = *lda;
  771. a_offset = 1 + a_dim1 * 1;
  772. a -= a_offset;
  773. b_dim1 = *ldb;
  774. b_offset = 1 + b_dim1 * 1;
  775. b -= b_offset;
  776. --alpha;
  777. --beta;
  778. vsl_dim1 = *ldvsl;
  779. vsl_offset = 1 + vsl_dim1 * 1;
  780. vsl -= vsl_offset;
  781. vsr_dim1 = *ldvsr;
  782. vsr_offset = 1 + vsr_dim1 * 1;
  783. vsr -= vsr_offset;
  784. --work;
  785. --rwork;
  786. /* Function Body */
  787. if (lsame_(jobvsl, "N")) {
  788. ijobvl = 1;
  789. ilvsl = FALSE_;
  790. } else if (lsame_(jobvsl, "V")) {
  791. ijobvl = 2;
  792. ilvsl = TRUE_;
  793. } else {
  794. ijobvl = -1;
  795. ilvsl = FALSE_;
  796. }
  797. if (lsame_(jobvsr, "N")) {
  798. ijobvr = 1;
  799. ilvsr = FALSE_;
  800. } else if (lsame_(jobvsr, "V")) {
  801. ijobvr = 2;
  802. ilvsr = TRUE_;
  803. } else {
  804. ijobvr = -1;
  805. ilvsr = FALSE_;
  806. }
  807. /* Test the input arguments */
  808. /* Computing MAX */
  809. i__1 = *n << 1;
  810. lwkmin = f2cmax(i__1,1);
  811. lwkopt = lwkmin;
  812. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  813. lquery = *lwork == -1;
  814. *info = 0;
  815. if (ijobvl <= 0) {
  816. *info = -1;
  817. } else if (ijobvr <= 0) {
  818. *info = -2;
  819. } else if (*n < 0) {
  820. *info = -3;
  821. } else if (*lda < f2cmax(1,*n)) {
  822. *info = -5;
  823. } else if (*ldb < f2cmax(1,*n)) {
  824. *info = -7;
  825. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  826. *info = -11;
  827. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  828. *info = -13;
  829. } else if (*lwork < lwkmin && ! lquery) {
  830. *info = -15;
  831. }
  832. if (*info == 0) {
  833. nb1 = ilaenv_(&c__1, "ZGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
  834. ftnlen)1);
  835. nb2 = ilaenv_(&c__1, "ZUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  836. ftnlen)1);
  837. nb3 = ilaenv_(&c__1, "ZUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  838. ftnlen)1);
  839. /* Computing MAX */
  840. i__1 = f2cmax(nb1,nb2);
  841. nb = f2cmax(i__1,nb3);
  842. lopt = *n * (nb + 1);
  843. work[1].r = (doublereal) lopt, work[1].i = 0.;
  844. }
  845. if (*info != 0) {
  846. i__1 = -(*info);
  847. xerbla_("ZGEGS ", &i__1, 6);
  848. return;
  849. } else if (lquery) {
  850. return;
  851. }
  852. /* Quick return if possible */
  853. if (*n == 0) {
  854. return;
  855. }
  856. /* Get machine constants */
  857. eps = dlamch_("E") * dlamch_("B");
  858. safmin = dlamch_("S");
  859. smlnum = *n * safmin / eps;
  860. bignum = 1. / smlnum;
  861. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  862. anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  863. ilascl = FALSE_;
  864. if (anrm > 0. && anrm < smlnum) {
  865. anrmto = smlnum;
  866. ilascl = TRUE_;
  867. } else if (anrm > bignum) {
  868. anrmto = bignum;
  869. ilascl = TRUE_;
  870. }
  871. if (ilascl) {
  872. zlascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  873. iinfo);
  874. if (iinfo != 0) {
  875. *info = *n + 9;
  876. return;
  877. }
  878. }
  879. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  880. bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  881. ilbscl = FALSE_;
  882. if (bnrm > 0. && bnrm < smlnum) {
  883. bnrmto = smlnum;
  884. ilbscl = TRUE_;
  885. } else if (bnrm > bignum) {
  886. bnrmto = bignum;
  887. ilbscl = TRUE_;
  888. }
  889. if (ilbscl) {
  890. zlascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  891. iinfo);
  892. if (iinfo != 0) {
  893. *info = *n + 9;
  894. return;
  895. }
  896. }
  897. /* Permute the matrix to make it more nearly triangular */
  898. ileft = 1;
  899. iright = *n + 1;
  900. irwork = iright + *n;
  901. iwork = 1;
  902. zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  903. ileft], &rwork[iright], &rwork[irwork], &iinfo);
  904. if (iinfo != 0) {
  905. *info = *n + 1;
  906. goto L10;
  907. }
  908. /* Reduce B to triangular form, and initialize VSL and/or VSR */
  909. irows = ihi + 1 - ilo;
  910. icols = *n + 1 - ilo;
  911. itau = iwork;
  912. iwork = itau + irows;
  913. i__1 = *lwork + 1 - iwork;
  914. zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  915. iwork], &i__1, &iinfo);
  916. if (iinfo >= 0) {
  917. /* Computing MAX */
  918. i__3 = iwork;
  919. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  920. lwkopt = f2cmax(i__1,i__2);
  921. }
  922. if (iinfo != 0) {
  923. *info = *n + 2;
  924. goto L10;
  925. }
  926. i__1 = *lwork + 1 - iwork;
  927. zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  928. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
  929. iinfo);
  930. if (iinfo >= 0) {
  931. /* Computing MAX */
  932. i__3 = iwork;
  933. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  934. lwkopt = f2cmax(i__1,i__2);
  935. }
  936. if (iinfo != 0) {
  937. *info = *n + 3;
  938. goto L10;
  939. }
  940. if (ilvsl) {
  941. zlaset_("Full", n, n, &c_b1, &c_b2, &vsl[vsl_offset], ldvsl);
  942. i__1 = irows - 1;
  943. i__2 = irows - 1;
  944. zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo
  945. + 1 + ilo * vsl_dim1], ldvsl);
  946. i__1 = *lwork + 1 - iwork;
  947. zungqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  948. work[itau], &work[iwork], &i__1, &iinfo);
  949. if (iinfo >= 0) {
  950. /* Computing MAX */
  951. i__3 = iwork;
  952. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  953. lwkopt = f2cmax(i__1,i__2);
  954. }
  955. if (iinfo != 0) {
  956. *info = *n + 4;
  957. goto L10;
  958. }
  959. }
  960. if (ilvsr) {
  961. zlaset_("Full", n, n, &c_b1, &c_b2, &vsr[vsr_offset], ldvsr);
  962. }
  963. /* Reduce to generalized Hessenberg form */
  964. zgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  965. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo);
  966. if (iinfo != 0) {
  967. *info = *n + 5;
  968. goto L10;
  969. }
  970. /* Perform QZ algorithm, computing Schur vectors if desired */
  971. iwork = itau;
  972. i__1 = *lwork + 1 - iwork;
  973. zhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  974. b_offset], ldb, &alpha[1], &beta[1], &vsl[vsl_offset], ldvsl, &
  975. vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &rwork[irwork], &
  976. iinfo);
  977. if (iinfo >= 0) {
  978. /* Computing MAX */
  979. i__3 = iwork;
  980. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  981. lwkopt = f2cmax(i__1,i__2);
  982. }
  983. if (iinfo != 0) {
  984. if (iinfo > 0 && iinfo <= *n) {
  985. *info = iinfo;
  986. } else if (iinfo > *n && iinfo <= *n << 1) {
  987. *info = iinfo - *n;
  988. } else {
  989. *info = *n + 6;
  990. }
  991. goto L10;
  992. }
  993. /* Apply permutation to VSL and VSR */
  994. if (ilvsl) {
  995. zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  996. vsl[vsl_offset], ldvsl, &iinfo);
  997. if (iinfo != 0) {
  998. *info = *n + 7;
  999. goto L10;
  1000. }
  1001. }
  1002. if (ilvsr) {
  1003. zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, &
  1004. vsr[vsr_offset], ldvsr, &iinfo);
  1005. if (iinfo != 0) {
  1006. *info = *n + 8;
  1007. goto L10;
  1008. }
  1009. }
  1010. /* Undo scaling */
  1011. if (ilascl) {
  1012. zlascl_("U", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1013. iinfo);
  1014. if (iinfo != 0) {
  1015. *info = *n + 9;
  1016. return;
  1017. }
  1018. zlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alpha[1], n, &
  1019. iinfo);
  1020. if (iinfo != 0) {
  1021. *info = *n + 9;
  1022. return;
  1023. }
  1024. }
  1025. if (ilbscl) {
  1026. zlascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1027. iinfo);
  1028. if (iinfo != 0) {
  1029. *info = *n + 9;
  1030. return;
  1031. }
  1032. zlascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1033. iinfo);
  1034. if (iinfo != 0) {
  1035. *info = *n + 9;
  1036. return;
  1037. }
  1038. }
  1039. L10:
  1040. work[1].r = (doublereal) lwkopt, work[1].i = 0.;
  1041. return;
  1042. /* End of ZGEGS */
  1043. } /* zgegs_ */