You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggsvp.c 31 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static real c_b12 = 0.f;
  487. static real c_b22 = 1.f;
  488. /* > \brief \b SGGSVP */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SGGSVP + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, */
  507. /* TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, */
  508. /* IWORK, TAU, WORK, INFO ) */
  509. /* CHARACTER JOBQ, JOBU, JOBV */
  510. /* INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P */
  511. /* REAL TOLA, TOLB */
  512. /* INTEGER IWORK( * ) */
  513. /* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  514. /* $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > This routine is deprecated and has been replaced by routine SGGSVP3. */
  521. /* > */
  522. /* > SGGSVP computes orthogonal matrices U, V and Q such that */
  523. /* > */
  524. /* > N-K-L K L */
  525. /* > U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; */
  526. /* > L ( 0 0 A23 ) */
  527. /* > M-K-L ( 0 0 0 ) */
  528. /* > */
  529. /* > N-K-L K L */
  530. /* > = K ( 0 A12 A13 ) if M-K-L < 0; */
  531. /* > M-K ( 0 0 A23 ) */
  532. /* > */
  533. /* > N-K-L K L */
  534. /* > V**T*B*Q = L ( 0 0 B13 ) */
  535. /* > P-L ( 0 0 0 ) */
  536. /* > */
  537. /* > where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular */
  538. /* > upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, */
  539. /* > otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective */
  540. /* > numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T. */
  541. /* > */
  542. /* > This decomposition is the preprocessing step for computing the */
  543. /* > Generalized Singular Value Decomposition (GSVD), see subroutine */
  544. /* > SGGSVD. */
  545. /* > \endverbatim */
  546. /* Arguments: */
  547. /* ========== */
  548. /* > \param[in] JOBU */
  549. /* > \verbatim */
  550. /* > JOBU is CHARACTER*1 */
  551. /* > = 'U': Orthogonal matrix U is computed; */
  552. /* > = 'N': U is not computed. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] JOBV */
  556. /* > \verbatim */
  557. /* > JOBV is CHARACTER*1 */
  558. /* > = 'V': Orthogonal matrix V is computed; */
  559. /* > = 'N': V is not computed. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] JOBQ */
  563. /* > \verbatim */
  564. /* > JOBQ is CHARACTER*1 */
  565. /* > = 'Q': Orthogonal matrix Q is computed; */
  566. /* > = 'N': Q is not computed. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[in] M */
  570. /* > \verbatim */
  571. /* > M is INTEGER */
  572. /* > The number of rows of the matrix A. M >= 0. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] P */
  576. /* > \verbatim */
  577. /* > P is INTEGER */
  578. /* > The number of rows of the matrix B. P >= 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] N */
  582. /* > \verbatim */
  583. /* > N is INTEGER */
  584. /* > The number of columns of the matrices A and B. N >= 0. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in,out] A */
  588. /* > \verbatim */
  589. /* > A is REAL array, dimension (LDA,N) */
  590. /* > On entry, the M-by-N matrix A. */
  591. /* > On exit, A contains the triangular (or trapezoidal) matrix */
  592. /* > described in the Purpose section. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDA */
  596. /* > \verbatim */
  597. /* > LDA is INTEGER */
  598. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] B */
  602. /* > \verbatim */
  603. /* > B is REAL array, dimension (LDB,N) */
  604. /* > On entry, the P-by-N matrix B. */
  605. /* > On exit, B contains the triangular matrix described in */
  606. /* > the Purpose section. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDB */
  610. /* > \verbatim */
  611. /* > LDB is INTEGER */
  612. /* > The leading dimension of the array B. LDB >= f2cmax(1,P). */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] TOLA */
  616. /* > \verbatim */
  617. /* > TOLA is REAL */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in] TOLB */
  621. /* > \verbatim */
  622. /* > TOLB is REAL */
  623. /* > */
  624. /* > TOLA and TOLB are the thresholds to determine the effective */
  625. /* > numerical rank of matrix B and a subblock of A. Generally, */
  626. /* > they are set to */
  627. /* > TOLA = MAX(M,N)*norm(A)*MACHEPS, */
  628. /* > TOLB = MAX(P,N)*norm(B)*MACHEPS. */
  629. /* > The size of TOLA and TOLB may affect the size of backward */
  630. /* > errors of the decomposition. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[out] K */
  634. /* > \verbatim */
  635. /* > K is INTEGER */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] L */
  639. /* > \verbatim */
  640. /* > L is INTEGER */
  641. /* > */
  642. /* > On exit, K and L specify the dimension of the subblocks */
  643. /* > described in Purpose section. */
  644. /* > K + L = effective numerical rank of (A**T,B**T)**T. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[out] U */
  648. /* > \verbatim */
  649. /* > U is REAL array, dimension (LDU,M) */
  650. /* > If JOBU = 'U', U contains the orthogonal matrix U. */
  651. /* > If JOBU = 'N', U is not referenced. */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[in] LDU */
  655. /* > \verbatim */
  656. /* > LDU is INTEGER */
  657. /* > The leading dimension of the array U. LDU >= f2cmax(1,M) if */
  658. /* > JOBU = 'U'; LDU >= 1 otherwise. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[out] V */
  662. /* > \verbatim */
  663. /* > V is REAL array, dimension (LDV,P) */
  664. /* > If JOBV = 'V', V contains the orthogonal matrix V. */
  665. /* > If JOBV = 'N', V is not referenced. */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] LDV */
  669. /* > \verbatim */
  670. /* > LDV is INTEGER */
  671. /* > The leading dimension of the array V. LDV >= f2cmax(1,P) if */
  672. /* > JOBV = 'V'; LDV >= 1 otherwise. */
  673. /* > \endverbatim */
  674. /* > */
  675. /* > \param[out] Q */
  676. /* > \verbatim */
  677. /* > Q is REAL array, dimension (LDQ,N) */
  678. /* > If JOBQ = 'Q', Q contains the orthogonal matrix Q. */
  679. /* > If JOBQ = 'N', Q is not referenced. */
  680. /* > \endverbatim */
  681. /* > */
  682. /* > \param[in] LDQ */
  683. /* > \verbatim */
  684. /* > LDQ is INTEGER */
  685. /* > The leading dimension of the array Q. LDQ >= f2cmax(1,N) if */
  686. /* > JOBQ = 'Q'; LDQ >= 1 otherwise. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] IWORK */
  690. /* > \verbatim */
  691. /* > IWORK is INTEGER array, dimension (N) */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] TAU */
  695. /* > \verbatim */
  696. /* > TAU is REAL array, dimension (N) */
  697. /* > \endverbatim */
  698. /* > */
  699. /* > \param[out] WORK */
  700. /* > \verbatim */
  701. /* > WORK is REAL array, dimension (f2cmax(3*N,M,P)) */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] INFO */
  705. /* > \verbatim */
  706. /* > INFO is INTEGER */
  707. /* > = 0: successful exit */
  708. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  709. /* > \endverbatim */
  710. /* Authors: */
  711. /* ======== */
  712. /* > \author Univ. of Tennessee */
  713. /* > \author Univ. of California Berkeley */
  714. /* > \author Univ. of Colorado Denver */
  715. /* > \author NAG Ltd. */
  716. /* > \date December 2016 */
  717. /* > \ingroup realOTHERcomputational */
  718. /* > \par Further Details: */
  719. /* ===================== */
  720. /* > */
  721. /* > The subroutine uses LAPACK subroutine SGEQPF for the QR factorization */
  722. /* > with column pivoting to detect the effective numerical rank of the */
  723. /* > a matrix. It may be replaced by a better rank determination strategy. */
  724. /* > */
  725. /* ===================================================================== */
  726. /* Subroutine */ void sggsvp_(char *jobu, char *jobv, char *jobq, integer *m,
  727. integer *p, integer *n, real *a, integer *lda, real *b, integer *ldb,
  728. real *tola, real *tolb, integer *k, integer *l, real *u, integer *ldu,
  729. real *v, integer *ldv, real *q, integer *ldq, integer *iwork, real *
  730. tau, real *work, integer *info)
  731. {
  732. /* System generated locals */
  733. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, u_dim1,
  734. u_offset, v_dim1, v_offset, i__1, i__2, i__3;
  735. real r__1;
  736. /* Local variables */
  737. integer i__, j;
  738. extern logical lsame_(char *, char *);
  739. logical wantq, wantu, wantv;
  740. extern /* Subroutine */ void sgeqr2_(integer *, integer *, real *, integer
  741. *, real *, real *, integer *), sgerq2_(integer *, integer *, real
  742. *, integer *, real *, real *, integer *), sorg2r_(integer *,
  743. integer *, integer *, real *, integer *, real *, real *, integer *
  744. ), sorm2r_(char *, char *, integer *, integer *, integer *, real *
  745. , integer *, real *, real *, integer *, real *, integer *), sormr2_(char *, char *, integer *, integer *, integer *,
  746. real *, integer *, real *, real *, integer *, real *, integer *);
  747. extern int xerbla_(char *, integer *, ftnlen);
  748. extern void sgeqpf_(
  749. integer *, integer *, real *, integer *, integer *, real *, real *
  750. , integer *), slacpy_(char *, integer *, integer *, real *,
  751. integer *, real *, integer *), slaset_(char *, integer *,
  752. integer *, real *, real *, real *, integer *), slapmt_(
  753. logical *, integer *, integer *, real *, integer *, integer *);
  754. logical forwrd;
  755. /* -- LAPACK computational routine (version 3.7.0) -- */
  756. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  757. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  758. /* December 2016 */
  759. /* ===================================================================== */
  760. /* Test the input parameters */
  761. /* Parameter adjustments */
  762. a_dim1 = *lda;
  763. a_offset = 1 + a_dim1 * 1;
  764. a -= a_offset;
  765. b_dim1 = *ldb;
  766. b_offset = 1 + b_dim1 * 1;
  767. b -= b_offset;
  768. u_dim1 = *ldu;
  769. u_offset = 1 + u_dim1 * 1;
  770. u -= u_offset;
  771. v_dim1 = *ldv;
  772. v_offset = 1 + v_dim1 * 1;
  773. v -= v_offset;
  774. q_dim1 = *ldq;
  775. q_offset = 1 + q_dim1 * 1;
  776. q -= q_offset;
  777. --iwork;
  778. --tau;
  779. --work;
  780. /* Function Body */
  781. wantu = lsame_(jobu, "U");
  782. wantv = lsame_(jobv, "V");
  783. wantq = lsame_(jobq, "Q");
  784. forwrd = TRUE_;
  785. *info = 0;
  786. if (! (wantu || lsame_(jobu, "N"))) {
  787. *info = -1;
  788. } else if (! (wantv || lsame_(jobv, "N"))) {
  789. *info = -2;
  790. } else if (! (wantq || lsame_(jobq, "N"))) {
  791. *info = -3;
  792. } else if (*m < 0) {
  793. *info = -4;
  794. } else if (*p < 0) {
  795. *info = -5;
  796. } else if (*n < 0) {
  797. *info = -6;
  798. } else if (*lda < f2cmax(1,*m)) {
  799. *info = -8;
  800. } else if (*ldb < f2cmax(1,*p)) {
  801. *info = -10;
  802. } else if (*ldu < 1 || wantu && *ldu < *m) {
  803. *info = -16;
  804. } else if (*ldv < 1 || wantv && *ldv < *p) {
  805. *info = -18;
  806. } else if (*ldq < 1 || wantq && *ldq < *n) {
  807. *info = -20;
  808. }
  809. if (*info != 0) {
  810. i__1 = -(*info);
  811. xerbla_("SGGSVP", &i__1, 6);
  812. return;
  813. }
  814. /* QR with column pivoting of B: B*P = V*( S11 S12 ) */
  815. /* ( 0 0 ) */
  816. i__1 = *n;
  817. for (i__ = 1; i__ <= i__1; ++i__) {
  818. iwork[i__] = 0;
  819. /* L10: */
  820. }
  821. sgeqpf_(p, n, &b[b_offset], ldb, &iwork[1], &tau[1], &work[1], info);
  822. /* Update A := A*P */
  823. slapmt_(&forwrd, m, n, &a[a_offset], lda, &iwork[1]);
  824. /* Determine the effective rank of matrix B. */
  825. *l = 0;
  826. i__1 = f2cmin(*p,*n);
  827. for (i__ = 1; i__ <= i__1; ++i__) {
  828. if ((r__1 = b[i__ + i__ * b_dim1], abs(r__1)) > *tolb) {
  829. ++(*l);
  830. }
  831. /* L20: */
  832. }
  833. if (wantv) {
  834. /* Copy the details of V, and form V. */
  835. slaset_("Full", p, p, &c_b12, &c_b12, &v[v_offset], ldv);
  836. if (*p > 1) {
  837. i__1 = *p - 1;
  838. slacpy_("Lower", &i__1, n, &b[b_dim1 + 2], ldb, &v[v_dim1 + 2],
  839. ldv);
  840. }
  841. i__1 = f2cmin(*p,*n);
  842. sorg2r_(p, p, &i__1, &v[v_offset], ldv, &tau[1], &work[1], info);
  843. }
  844. /* Clean up B */
  845. i__1 = *l - 1;
  846. for (j = 1; j <= i__1; ++j) {
  847. i__2 = *l;
  848. for (i__ = j + 1; i__ <= i__2; ++i__) {
  849. b[i__ + j * b_dim1] = 0.f;
  850. /* L30: */
  851. }
  852. /* L40: */
  853. }
  854. if (*p > *l) {
  855. i__1 = *p - *l;
  856. slaset_("Full", &i__1, n, &c_b12, &c_b12, &b[*l + 1 + b_dim1], ldb);
  857. }
  858. if (wantq) {
  859. /* Set Q = I and Update Q := Q*P */
  860. slaset_("Full", n, n, &c_b12, &c_b22, &q[q_offset], ldq);
  861. slapmt_(&forwrd, n, n, &q[q_offset], ldq, &iwork[1]);
  862. }
  863. if (*p >= *l && *n != *l) {
  864. /* RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z */
  865. sgerq2_(l, n, &b[b_offset], ldb, &tau[1], &work[1], info);
  866. /* Update A := A*Z**T */
  867. sormr2_("Right", "Transpose", m, n, l, &b[b_offset], ldb, &tau[1], &a[
  868. a_offset], lda, &work[1], info);
  869. if (wantq) {
  870. /* Update Q := Q*Z**T */
  871. sormr2_("Right", "Transpose", n, n, l, &b[b_offset], ldb, &tau[1],
  872. &q[q_offset], ldq, &work[1], info);
  873. }
  874. /* Clean up B */
  875. i__1 = *n - *l;
  876. slaset_("Full", l, &i__1, &c_b12, &c_b12, &b[b_offset], ldb);
  877. i__1 = *n;
  878. for (j = *n - *l + 1; j <= i__1; ++j) {
  879. i__2 = *l;
  880. for (i__ = j - *n + *l + 1; i__ <= i__2; ++i__) {
  881. b[i__ + j * b_dim1] = 0.f;
  882. /* L50: */
  883. }
  884. /* L60: */
  885. }
  886. }
  887. /* Let N-L L */
  888. /* A = ( A11 A12 ) M, */
  889. /* then the following does the complete QR decomposition of A11: */
  890. /* A11 = U*( 0 T12 )*P1**T */
  891. /* ( 0 0 ) */
  892. i__1 = *n - *l;
  893. for (i__ = 1; i__ <= i__1; ++i__) {
  894. iwork[i__] = 0;
  895. /* L70: */
  896. }
  897. i__1 = *n - *l;
  898. sgeqpf_(m, &i__1, &a[a_offset], lda, &iwork[1], &tau[1], &work[1], info);
  899. /* Determine the effective rank of A11 */
  900. *k = 0;
  901. /* Computing MIN */
  902. i__2 = *m, i__3 = *n - *l;
  903. i__1 = f2cmin(i__2,i__3);
  904. for (i__ = 1; i__ <= i__1; ++i__) {
  905. if ((r__1 = a[i__ + i__ * a_dim1], abs(r__1)) > *tola) {
  906. ++(*k);
  907. }
  908. /* L80: */
  909. }
  910. /* Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N ) */
  911. /* Computing MIN */
  912. i__2 = *m, i__3 = *n - *l;
  913. i__1 = f2cmin(i__2,i__3);
  914. sorm2r_("Left", "Transpose", m, l, &i__1, &a[a_offset], lda, &tau[1], &a[(
  915. *n - *l + 1) * a_dim1 + 1], lda, &work[1], info);
  916. if (wantu) {
  917. /* Copy the details of U, and form U */
  918. slaset_("Full", m, m, &c_b12, &c_b12, &u[u_offset], ldu);
  919. if (*m > 1) {
  920. i__1 = *m - 1;
  921. i__2 = *n - *l;
  922. slacpy_("Lower", &i__1, &i__2, &a[a_dim1 + 2], lda, &u[u_dim1 + 2]
  923. , ldu);
  924. }
  925. /* Computing MIN */
  926. i__2 = *m, i__3 = *n - *l;
  927. i__1 = f2cmin(i__2,i__3);
  928. sorg2r_(m, m, &i__1, &u[u_offset], ldu, &tau[1], &work[1], info);
  929. }
  930. if (wantq) {
  931. /* Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 */
  932. i__1 = *n - *l;
  933. slapmt_(&forwrd, n, &i__1, &q[q_offset], ldq, &iwork[1]);
  934. }
  935. /* Clean up A: set the strictly lower triangular part of */
  936. /* A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. */
  937. i__1 = *k - 1;
  938. for (j = 1; j <= i__1; ++j) {
  939. i__2 = *k;
  940. for (i__ = j + 1; i__ <= i__2; ++i__) {
  941. a[i__ + j * a_dim1] = 0.f;
  942. /* L90: */
  943. }
  944. /* L100: */
  945. }
  946. if (*m > *k) {
  947. i__1 = *m - *k;
  948. i__2 = *n - *l;
  949. slaset_("Full", &i__1, &i__2, &c_b12, &c_b12, &a[*k + 1 + a_dim1],
  950. lda);
  951. }
  952. if (*n - *l > *k) {
  953. /* RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 */
  954. i__1 = *n - *l;
  955. sgerq2_(k, &i__1, &a[a_offset], lda, &tau[1], &work[1], info);
  956. if (wantq) {
  957. /* Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T */
  958. i__1 = *n - *l;
  959. sormr2_("Right", "Transpose", n, &i__1, k, &a[a_offset], lda, &
  960. tau[1], &q[q_offset], ldq, &work[1], info);
  961. }
  962. /* Clean up A */
  963. i__1 = *n - *l - *k;
  964. slaset_("Full", k, &i__1, &c_b12, &c_b12, &a[a_offset], lda);
  965. i__1 = *n - *l;
  966. for (j = *n - *l - *k + 1; j <= i__1; ++j) {
  967. i__2 = *k;
  968. for (i__ = j - *n + *l + *k + 1; i__ <= i__2; ++i__) {
  969. a[i__ + j * a_dim1] = 0.f;
  970. /* L110: */
  971. }
  972. /* L120: */
  973. }
  974. }
  975. if (*m > *k) {
  976. /* QR factorization of A( K+1:M,N-L+1:N ) */
  977. i__1 = *m - *k;
  978. sgeqr2_(&i__1, l, &a[*k + 1 + (*n - *l + 1) * a_dim1], lda, &tau[1], &
  979. work[1], info);
  980. if (wantu) {
  981. /* Update U(:,K+1:M) := U(:,K+1:M)*U1 */
  982. i__1 = *m - *k;
  983. /* Computing MIN */
  984. i__3 = *m - *k;
  985. i__2 = f2cmin(i__3,*l);
  986. sorm2r_("Right", "No transpose", m, &i__1, &i__2, &a[*k + 1 + (*n
  987. - *l + 1) * a_dim1], lda, &tau[1], &u[(*k + 1) * u_dim1 +
  988. 1], ldu, &work[1], info);
  989. }
  990. /* Clean up */
  991. i__1 = *n;
  992. for (j = *n - *l + 1; j <= i__1; ++j) {
  993. i__2 = *m;
  994. for (i__ = j - *n + *k + *l + 1; i__ <= i__2; ++i__) {
  995. a[i__ + j * a_dim1] = 0.f;
  996. /* L130: */
  997. }
  998. /* L140: */
  999. }
  1000. }
  1001. return;
  1002. /* End of SGGSVP */
  1003. } /* sggsvp_ */