You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgelsx.c 30 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__0 = 0;
  489. static integer c__2 = 2;
  490. static integer c__1 = 1;
  491. /* > \brief <b> CGELSX solves overdetermined or underdetermined systems for GE matrices</b> */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download CGELSX + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgelsx.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgelsx.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgelsx.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE CGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, */
  510. /* WORK, RWORK, INFO ) */
  511. /* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK */
  512. /* REAL RCOND */
  513. /* INTEGER JPVT( * ) */
  514. /* REAL RWORK( * ) */
  515. /* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > This routine is deprecated and has been replaced by routine CGELSY. */
  522. /* > */
  523. /* > CGELSX computes the minimum-norm solution to a complex linear least */
  524. /* > squares problem: */
  525. /* > minimize || A * X - B || */
  526. /* > using a complete orthogonal factorization of A. A is an M-by-N */
  527. /* > matrix which may be rank-deficient. */
  528. /* > */
  529. /* > Several right hand side vectors b and solution vectors x can be */
  530. /* > handled in a single call; they are stored as the columns of the */
  531. /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
  532. /* > matrix X. */
  533. /* > */
  534. /* > The routine first computes a QR factorization with column pivoting: */
  535. /* > A * P = Q * [ R11 R12 ] */
  536. /* > [ 0 R22 ] */
  537. /* > with R11 defined as the largest leading submatrix whose estimated */
  538. /* > condition number is less than 1/RCOND. The order of R11, RANK, */
  539. /* > is the effective rank of A. */
  540. /* > */
  541. /* > Then, R22 is considered to be negligible, and R12 is annihilated */
  542. /* > by unitary transformations from the right, arriving at the */
  543. /* > complete orthogonal factorization: */
  544. /* > A * P = Q * [ T11 0 ] * Z */
  545. /* > [ 0 0 ] */
  546. /* > The minimum-norm solution is then */
  547. /* > X = P * Z**H [ inv(T11)*Q1**H*B ] */
  548. /* > [ 0 ] */
  549. /* > where Q1 consists of the first RANK columns of Q. */
  550. /* > \endverbatim */
  551. /* Arguments: */
  552. /* ========== */
  553. /* > \param[in] M */
  554. /* > \verbatim */
  555. /* > M is INTEGER */
  556. /* > The number of rows of the matrix A. M >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The number of columns of the matrix A. N >= 0. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] NRHS */
  566. /* > \verbatim */
  567. /* > NRHS is INTEGER */
  568. /* > The number of right hand sides, i.e., the number of */
  569. /* > columns of matrices B and X. NRHS >= 0. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] A */
  573. /* > \verbatim */
  574. /* > A is COMPLEX array, dimension (LDA,N) */
  575. /* > On entry, the M-by-N matrix A. */
  576. /* > On exit, A has been overwritten by details of its */
  577. /* > complete orthogonal factorization. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDA */
  581. /* > \verbatim */
  582. /* > LDA is INTEGER */
  583. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] B */
  587. /* > \verbatim */
  588. /* > B is COMPLEX array, dimension (LDB,NRHS) */
  589. /* > On entry, the M-by-NRHS right hand side matrix B. */
  590. /* > On exit, the N-by-NRHS solution matrix X. */
  591. /* > If m >= n and RANK = n, the residual sum-of-squares for */
  592. /* > the solution in the i-th column is given by the sum of */
  593. /* > squares of elements N+1:M in that column. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDB */
  597. /* > \verbatim */
  598. /* > LDB is INTEGER */
  599. /* > The leading dimension of the array B. LDB >= f2cmax(1,M,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[in,out] JPVT */
  603. /* > \verbatim */
  604. /* > JPVT is INTEGER array, dimension (N) */
  605. /* > On entry, if JPVT(i) .ne. 0, the i-th column of A is an */
  606. /* > initial column, otherwise it is a free column. Before */
  607. /* > the QR factorization of A, all initial columns are */
  608. /* > permuted to the leading positions; only the remaining */
  609. /* > free columns are moved as a result of column pivoting */
  610. /* > during the factorization. */
  611. /* > On exit, if JPVT(i) = k, then the i-th column of A*P */
  612. /* > was the k-th column of A. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in] RCOND */
  616. /* > \verbatim */
  617. /* > RCOND is REAL */
  618. /* > RCOND is used to determine the effective rank of A, which */
  619. /* > is defined as the order of the largest leading triangular */
  620. /* > submatrix R11 in the QR factorization with pivoting of A, */
  621. /* > whose estimated condition number < 1/RCOND. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] RANK */
  625. /* > \verbatim */
  626. /* > RANK is INTEGER */
  627. /* > The effective rank of A, i.e., the order of the submatrix */
  628. /* > R11. This is the same as the order of the submatrix T11 */
  629. /* > in the complete orthogonal factorization of A. */
  630. /* > \endverbatim */
  631. /* > */
  632. /* > \param[out] WORK */
  633. /* > \verbatim */
  634. /* > WORK is COMPLEX array, dimension */
  635. /* > (f2cmin(M,N) + f2cmax( N, 2*f2cmin(M,N)+NRHS )), */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[out] RWORK */
  639. /* > \verbatim */
  640. /* > RWORK is REAL array, dimension (2*N) */
  641. /* > \endverbatim */
  642. /* > */
  643. /* > \param[out] INFO */
  644. /* > \verbatim */
  645. /* > INFO is INTEGER */
  646. /* > = 0: successful exit */
  647. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  648. /* > \endverbatim */
  649. /* Authors: */
  650. /* ======== */
  651. /* > \author Univ. of Tennessee */
  652. /* > \author Univ. of California Berkeley */
  653. /* > \author Univ. of Colorado Denver */
  654. /* > \author NAG Ltd. */
  655. /* > \date December 2016 */
  656. /* > \ingroup complexGEsolve */
  657. /* ===================================================================== */
  658. /* Subroutine */ void cgelsx_(integer *m, integer *n, integer *nrhs, complex *
  659. a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond,
  660. integer *rank, complex *work, real *rwork, integer *info)
  661. {
  662. /* System generated locals */
  663. integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
  664. complex q__1;
  665. /* Local variables */
  666. real anrm, bnrm, smin, smax;
  667. integer i__, j, k, iascl, ibscl, ismin, ismax;
  668. complex c1, c2;
  669. extern /* Subroutine */ void ctrsm_(char *, char *, char *, char *,
  670. integer *, integer *, complex *, complex *, integer *, complex *,
  671. integer *), claic1_(integer *,
  672. integer *, complex *, real *, complex *, complex *, real *,
  673. complex *, complex *);
  674. complex s1, s2, t1, t2;
  675. extern /* Subroutine */ void cunm2r_(char *, char *, integer *, integer *,
  676. integer *, complex *, integer *, complex *, complex *, integer *,
  677. complex *, integer *), slabad_(real *, real *);
  678. extern real clange_(char *, integer *, integer *, complex *, integer *,
  679. real *);
  680. integer mn;
  681. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  682. real *, integer *, integer *, complex *, integer *, integer *), cgeqpf_(integer *, integer *, complex *, integer *,
  683. integer *, complex *, complex *, real *, integer *);
  684. extern real slamch_(char *);
  685. extern /* Subroutine */ void claset_(char *, integer *, integer *, complex
  686. *, complex *, complex *, integer *);
  687. extern int xerbla_(char *, integer *, ftnlen);
  688. real bignum;
  689. extern /* Subroutine */ void clatzm_(char *, integer *, integer *, complex
  690. *, integer *, complex *, complex *, complex *, integer *, complex
  691. *);
  692. real sminpr;
  693. extern /* Subroutine */ void ctzrqf_(integer *, integer *, complex *,
  694. integer *, complex *, integer *);
  695. real smaxpr, smlnum;
  696. /* -- LAPACK driver routine (version 3.7.0) -- */
  697. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  698. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  699. /* December 2016 */
  700. /* ===================================================================== */
  701. /* Parameter adjustments */
  702. a_dim1 = *lda;
  703. a_offset = 1 + a_dim1 * 1;
  704. a -= a_offset;
  705. b_dim1 = *ldb;
  706. b_offset = 1 + b_dim1 * 1;
  707. b -= b_offset;
  708. --jpvt;
  709. --work;
  710. --rwork;
  711. /* Function Body */
  712. mn = f2cmin(*m,*n);
  713. ismin = mn + 1;
  714. ismax = (mn << 1) + 1;
  715. /* Test the input arguments. */
  716. *info = 0;
  717. if (*m < 0) {
  718. *info = -1;
  719. } else if (*n < 0) {
  720. *info = -2;
  721. } else if (*nrhs < 0) {
  722. *info = -3;
  723. } else if (*lda < f2cmax(1,*m)) {
  724. *info = -5;
  725. } else /* if(complicated condition) */ {
  726. /* Computing MAX */
  727. i__1 = f2cmax(1,*m);
  728. if (*ldb < f2cmax(i__1,*n)) {
  729. *info = -7;
  730. }
  731. }
  732. if (*info != 0) {
  733. i__1 = -(*info);
  734. xerbla_("CGELSX", &i__1, 6);
  735. return;
  736. }
  737. /* Quick return if possible */
  738. /* Computing MIN */
  739. i__1 = f2cmin(*m,*n);
  740. if (f2cmin(i__1,*nrhs) == 0) {
  741. *rank = 0;
  742. return;
  743. }
  744. /* Get machine parameters */
  745. smlnum = slamch_("S") / slamch_("P");
  746. bignum = 1.f / smlnum;
  747. slabad_(&smlnum, &bignum);
  748. /* Scale A, B if f2cmax elements outside range [SMLNUM,BIGNUM] */
  749. anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
  750. iascl = 0;
  751. if (anrm > 0.f && anrm < smlnum) {
  752. /* Scale matrix norm up to SMLNUM */
  753. clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
  754. info);
  755. iascl = 1;
  756. } else if (anrm > bignum) {
  757. /* Scale matrix norm down to BIGNUM */
  758. clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
  759. info);
  760. iascl = 2;
  761. } else if (anrm == 0.f) {
  762. /* Matrix all zero. Return zero solution. */
  763. i__1 = f2cmax(*m,*n);
  764. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  765. *rank = 0;
  766. goto L100;
  767. }
  768. bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
  769. ibscl = 0;
  770. if (bnrm > 0.f && bnrm < smlnum) {
  771. /* Scale matrix norm up to SMLNUM */
  772. clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
  773. info);
  774. ibscl = 1;
  775. } else if (bnrm > bignum) {
  776. /* Scale matrix norm down to BIGNUM */
  777. clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
  778. info);
  779. ibscl = 2;
  780. }
  781. /* Compute QR factorization with column pivoting of A: */
  782. /* A * P = Q * R */
  783. cgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], &
  784. rwork[1], info);
  785. /* complex workspace MN+N. Real workspace 2*N. Details of Householder */
  786. /* rotations stored in WORK(1:MN). */
  787. /* Determine RANK using incremental condition estimation */
  788. i__1 = ismin;
  789. work[i__1].r = 1.f, work[i__1].i = 0.f;
  790. i__1 = ismax;
  791. work[i__1].r = 1.f, work[i__1].i = 0.f;
  792. smax = c_abs(&a[a_dim1 + 1]);
  793. smin = smax;
  794. if (c_abs(&a[a_dim1 + 1]) == 0.f) {
  795. *rank = 0;
  796. i__1 = f2cmax(*m,*n);
  797. claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
  798. goto L100;
  799. } else {
  800. *rank = 1;
  801. }
  802. L10:
  803. if (*rank < mn) {
  804. i__ = *rank + 1;
  805. claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[
  806. i__ + i__ * a_dim1], &sminpr, &s1, &c1);
  807. claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[
  808. i__ + i__ * a_dim1], &smaxpr, &s2, &c2);
  809. if (smaxpr * *rcond <= sminpr) {
  810. i__1 = *rank;
  811. for (i__ = 1; i__ <= i__1; ++i__) {
  812. i__2 = ismin + i__ - 1;
  813. i__3 = ismin + i__ - 1;
  814. q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i =
  815. s1.r * work[i__3].i + s1.i * work[i__3].r;
  816. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  817. i__2 = ismax + i__ - 1;
  818. i__3 = ismax + i__ - 1;
  819. q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i =
  820. s2.r * work[i__3].i + s2.i * work[i__3].r;
  821. work[i__2].r = q__1.r, work[i__2].i = q__1.i;
  822. /* L20: */
  823. }
  824. i__1 = ismin + *rank;
  825. work[i__1].r = c1.r, work[i__1].i = c1.i;
  826. i__1 = ismax + *rank;
  827. work[i__1].r = c2.r, work[i__1].i = c2.i;
  828. smin = sminpr;
  829. smax = smaxpr;
  830. ++(*rank);
  831. goto L10;
  832. }
  833. }
  834. /* Logically partition R = [ R11 R12 ] */
  835. /* [ 0 R22 ] */
  836. /* where R11 = R(1:RANK,1:RANK) */
  837. /* [R11,R12] = [ T11, 0 ] * Y */
  838. if (*rank < *n) {
  839. ctzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info);
  840. }
  841. /* Details of Householder rotations stored in WORK(MN+1:2*MN) */
  842. /* B(1:M,1:NRHS) := Q**H * B(1:M,1:NRHS) */
  843. cunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, &
  844. work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info);
  845. /* workspace NRHS */
  846. /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */
  847. ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[
  848. a_offset], lda, &b[b_offset], ldb);
  849. i__1 = *n;
  850. for (i__ = *rank + 1; i__ <= i__1; ++i__) {
  851. i__2 = *nrhs;
  852. for (j = 1; j <= i__2; ++j) {
  853. i__3 = i__ + j * b_dim1;
  854. b[i__3].r = 0.f, b[i__3].i = 0.f;
  855. /* L30: */
  856. }
  857. /* L40: */
  858. }
  859. /* B(1:N,1:NRHS) := Y**H * B(1:N,1:NRHS) */
  860. if (*rank < *n) {
  861. i__1 = *rank;
  862. for (i__ = 1; i__ <= i__1; ++i__) {
  863. i__2 = *n - *rank + 1;
  864. r_cnjg(&q__1, &work[mn + i__]);
  865. clatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda,
  866. &q__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, &
  867. work[(mn << 1) + 1]);
  868. /* L50: */
  869. }
  870. }
  871. /* workspace NRHS */
  872. /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */
  873. i__1 = *nrhs;
  874. for (j = 1; j <= i__1; ++j) {
  875. i__2 = *n;
  876. for (i__ = 1; i__ <= i__2; ++i__) {
  877. i__3 = (mn << 1) + i__;
  878. work[i__3].r = 1.f, work[i__3].i = 0.f;
  879. /* L60: */
  880. }
  881. i__2 = *n;
  882. for (i__ = 1; i__ <= i__2; ++i__) {
  883. i__3 = (mn << 1) + i__;
  884. if (work[i__3].r == 1.f && work[i__3].i == 0.f) {
  885. if (jpvt[i__] != i__) {
  886. k = i__;
  887. i__3 = k + j * b_dim1;
  888. t1.r = b[i__3].r, t1.i = b[i__3].i;
  889. i__3 = jpvt[k] + j * b_dim1;
  890. t2.r = b[i__3].r, t2.i = b[i__3].i;
  891. L70:
  892. i__3 = jpvt[k] + j * b_dim1;
  893. b[i__3].r = t1.r, b[i__3].i = t1.i;
  894. i__3 = (mn << 1) + k;
  895. work[i__3].r = 0.f, work[i__3].i = 0.f;
  896. t1.r = t2.r, t1.i = t2.i;
  897. k = jpvt[k];
  898. i__3 = jpvt[k] + j * b_dim1;
  899. t2.r = b[i__3].r, t2.i = b[i__3].i;
  900. if (jpvt[k] != i__) {
  901. goto L70;
  902. }
  903. i__3 = i__ + j * b_dim1;
  904. b[i__3].r = t1.r, b[i__3].i = t1.i;
  905. i__3 = (mn << 1) + k;
  906. work[i__3].r = 0.f, work[i__3].i = 0.f;
  907. }
  908. }
  909. /* L80: */
  910. }
  911. /* L90: */
  912. }
  913. /* Undo scaling */
  914. if (iascl == 1) {
  915. clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
  916. info);
  917. clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset],
  918. lda, info);
  919. } else if (iascl == 2) {
  920. clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
  921. info);
  922. clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset],
  923. lda, info);
  924. }
  925. if (ibscl == 1) {
  926. clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
  927. info);
  928. } else if (ibscl == 2) {
  929. clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
  930. info);
  931. }
  932. L100:
  933. return;
  934. /* End of CGELSX */
  935. } /* cgelsx_ */