You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgegv.c 40 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {0.f,0.f};
  487. static complex c_b2 = {1.f,0.f};
  488. static integer c__1 = 1;
  489. static integer c_n1 = -1;
  490. static real c_b29 = 1.f;
  491. /* > \brief <b> CGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
  492. rices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download CGEGV + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgegv.f
  499. "> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgegv.f
  502. "> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgegv.f
  505. "> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE CGEGV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, */
  511. /* VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) */
  512. /* CHARACTER JOBVL, JOBVR */
  513. /* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
  514. /* REAL RWORK( * ) */
  515. /* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), */
  516. /* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), */
  517. /* $ WORK( * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > This routine is deprecated and has been replaced by routine CGGEV. */
  524. /* > */
  525. /* > CGEGV computes the eigenvalues and, optionally, the left and/or right */
  526. /* > eigenvectors of a complex matrix pair (A,B). */
  527. /* > Given two square matrices A and B, */
  528. /* > the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
  529. /* > eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
  530. /* > that */
  531. /* > A*x = lambda*B*x. */
  532. /* > */
  533. /* > An alternate form is to find the eigenvalues mu and corresponding */
  534. /* > eigenvectors y such that */
  535. /* > mu*A*y = B*y. */
  536. /* > */
  537. /* > These two forms are equivalent with mu = 1/lambda and x = y if */
  538. /* > neither lambda nor mu is zero. In order to deal with the case that */
  539. /* > lambda or mu is zero or small, two values alpha and beta are returned */
  540. /* > for each eigenvalue, such that lambda = alpha/beta and */
  541. /* > mu = beta/alpha. */
  542. /* > */
  543. /* > The vectors x and y in the above equations are right eigenvectors of */
  544. /* > the matrix pair (A,B). Vectors u and v satisfying */
  545. /* > u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
  546. /* > are left eigenvectors of (A,B). */
  547. /* > */
  548. /* > Note: this routine performs "full balancing" on A and B */
  549. /* > \endverbatim */
  550. /* Arguments: */
  551. /* ========== */
  552. /* > \param[in] JOBVL */
  553. /* > \verbatim */
  554. /* > JOBVL is CHARACTER*1 */
  555. /* > = 'N': do not compute the left generalized eigenvectors; */
  556. /* > = 'V': compute the left generalized eigenvectors (returned */
  557. /* > in VL). */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] JOBVR */
  561. /* > \verbatim */
  562. /* > JOBVR is CHARACTER*1 */
  563. /* > = 'N': do not compute the right generalized eigenvectors; */
  564. /* > = 'V': compute the right generalized eigenvectors (returned */
  565. /* > in VR). */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] N */
  569. /* > \verbatim */
  570. /* > N is INTEGER */
  571. /* > The order of the matrices A, B, VL, and VR. N >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in,out] A */
  575. /* > \verbatim */
  576. /* > A is COMPLEX array, dimension (LDA, N) */
  577. /* > On entry, the matrix A. */
  578. /* > If JOBVL = 'V' or JOBVR = 'V', then on exit A */
  579. /* > contains the Schur form of A from the generalized Schur */
  580. /* > factorization of the pair (A,B) after balancing. If no */
  581. /* > eigenvectors were computed, then only the diagonal elements */
  582. /* > of the Schur form will be correct. See CGGHRD and CHGEQZ */
  583. /* > for details. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDA */
  587. /* > \verbatim */
  588. /* > LDA is INTEGER */
  589. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[in,out] B */
  593. /* > \verbatim */
  594. /* > B is COMPLEX array, dimension (LDB, N) */
  595. /* > On entry, the matrix B. */
  596. /* > If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
  597. /* > upper triangular matrix obtained from B in the generalized */
  598. /* > Schur factorization of the pair (A,B) after balancing. */
  599. /* > If no eigenvectors were computed, then only the diagonal */
  600. /* > elements of B will be correct. See CGGHRD and CHGEQZ for */
  601. /* > details. */
  602. /* > \endverbatim */
  603. /* > */
  604. /* > \param[in] LDB */
  605. /* > \verbatim */
  606. /* > LDB is INTEGER */
  607. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  608. /* > \endverbatim */
  609. /* > */
  610. /* > \param[out] ALPHA */
  611. /* > \verbatim */
  612. /* > ALPHA is COMPLEX array, dimension (N) */
  613. /* > The complex scalars alpha that define the eigenvalues of */
  614. /* > GNEP. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] BETA */
  618. /* > \verbatim */
  619. /* > BETA is COMPLEX array, dimension (N) */
  620. /* > The complex scalars beta that define the eigenvalues of GNEP. */
  621. /* > */
  622. /* > Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */
  623. /* > represent the j-th eigenvalue of the matrix pair (A,B), in */
  624. /* > one of the forms lambda = alpha/beta or mu = beta/alpha. */
  625. /* > Since either lambda or mu may overflow, they should not, */
  626. /* > in general, be computed. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] VL */
  630. /* > \verbatim */
  631. /* > VL is COMPLEX array, dimension (LDVL,N) */
  632. /* > If JOBVL = 'V', the left eigenvectors u(j) are stored */
  633. /* > in the columns of VL, in the same order as their eigenvalues. */
  634. /* > Each eigenvector is scaled so that its largest component has */
  635. /* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
  636. /* > corresponding to an eigenvalue with alpha = beta = 0, which */
  637. /* > are set to zero. */
  638. /* > Not referenced if JOBVL = 'N'. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] LDVL */
  642. /* > \verbatim */
  643. /* > LDVL is INTEGER */
  644. /* > The leading dimension of the matrix VL. LDVL >= 1, and */
  645. /* > if JOBVL = 'V', LDVL >= N. */
  646. /* > \endverbatim */
  647. /* > */
  648. /* > \param[out] VR */
  649. /* > \verbatim */
  650. /* > VR is COMPLEX array, dimension (LDVR,N) */
  651. /* > If JOBVR = 'V', the right eigenvectors x(j) are stored */
  652. /* > in the columns of VR, in the same order as their eigenvalues. */
  653. /* > Each eigenvector is scaled so that its largest component has */
  654. /* > abs(real part) + abs(imag. part) = 1, except for eigenvectors */
  655. /* > corresponding to an eigenvalue with alpha = beta = 0, which */
  656. /* > are set to zero. */
  657. /* > Not referenced if JOBVR = 'N'. */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[in] LDVR */
  661. /* > \verbatim */
  662. /* > LDVR is INTEGER */
  663. /* > The leading dimension of the matrix VR. LDVR >= 1, and */
  664. /* > if JOBVR = 'V', LDVR >= N. */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] WORK */
  668. /* > \verbatim */
  669. /* > WORK is COMPLEX array, dimension (MAX(1,LWORK)) */
  670. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  671. /* > \endverbatim */
  672. /* > */
  673. /* > \param[in] LWORK */
  674. /* > \verbatim */
  675. /* > LWORK is INTEGER */
  676. /* > The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
  677. /* > For good performance, LWORK must generally be larger. */
  678. /* > To compute the optimal value of LWORK, call ILAENV to get */
  679. /* > blocksizes (for CGEQRF, CUNMQR, and CUNGQR.) Then compute: */
  680. /* > NB -- MAX of the blocksizes for CGEQRF, CUNMQR, and CUNGQR; */
  681. /* > The optimal LWORK is MAX( 2*N, N*(NB+1) ). */
  682. /* > */
  683. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  684. /* > only calculates the optimal size of the WORK array, returns */
  685. /* > this value as the first entry of the WORK array, and no error */
  686. /* > message related to LWORK is issued by XERBLA. */
  687. /* > \endverbatim */
  688. /* > */
  689. /* > \param[out] RWORK */
  690. /* > \verbatim */
  691. /* > RWORK is REAL array, dimension (8*N) */
  692. /* > \endverbatim */
  693. /* > */
  694. /* > \param[out] INFO */
  695. /* > \verbatim */
  696. /* > INFO is INTEGER */
  697. /* > = 0: successful exit */
  698. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  699. /* > =1,...,N: */
  700. /* > The QZ iteration failed. No eigenvectors have been */
  701. /* > calculated, but ALPHA(j) and BETA(j) should be */
  702. /* > correct for j=INFO+1,...,N. */
  703. /* > > N: errors that usually indicate LAPACK problems: */
  704. /* > =N+1: error return from CGGBAL */
  705. /* > =N+2: error return from CGEQRF */
  706. /* > =N+3: error return from CUNMQR */
  707. /* > =N+4: error return from CUNGQR */
  708. /* > =N+5: error return from CGGHRD */
  709. /* > =N+6: error return from CHGEQZ (other than failed */
  710. /* > iteration) */
  711. /* > =N+7: error return from CTGEVC */
  712. /* > =N+8: error return from CGGBAK (computing VL) */
  713. /* > =N+9: error return from CGGBAK (computing VR) */
  714. /* > =N+10: error return from CLASCL (various calls) */
  715. /* > \endverbatim */
  716. /* Authors: */
  717. /* ======== */
  718. /* > \author Univ. of Tennessee */
  719. /* > \author Univ. of California Berkeley */
  720. /* > \author Univ. of Colorado Denver */
  721. /* > \author NAG Ltd. */
  722. /* > \date December 2016 */
  723. /* > \ingroup complexGEeigen */
  724. /* > \par Further Details: */
  725. /* ===================== */
  726. /* > */
  727. /* > \verbatim */
  728. /* > */
  729. /* > Balancing */
  730. /* > --------- */
  731. /* > */
  732. /* > This driver calls CGGBAL to both permute and scale rows and columns */
  733. /* > of A and B. The permutations PL and PR are chosen so that PL*A*PR */
  734. /* > and PL*B*R will be upper triangular except for the diagonal blocks */
  735. /* > A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
  736. /* > possible. The diagonal scaling matrices DL and DR are chosen so */
  737. /* > that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
  738. /* > one (except for the elements that start out zero.) */
  739. /* > */
  740. /* > After the eigenvalues and eigenvectors of the balanced matrices */
  741. /* > have been computed, CGGBAK transforms the eigenvectors back to what */
  742. /* > they would have been (in perfect arithmetic) if they had not been */
  743. /* > balanced. */
  744. /* > */
  745. /* > Contents of A and B on Exit */
  746. /* > -------- -- - --- - -- ---- */
  747. /* > */
  748. /* > If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
  749. /* > both), then on exit the arrays A and B will contain the complex Schur */
  750. /* > form[*] of the "balanced" versions of A and B. If no eigenvectors */
  751. /* > are computed, then only the diagonal blocks will be correct. */
  752. /* > */
  753. /* > [*] In other words, upper triangular form. */
  754. /* > \endverbatim */
  755. /* > */
  756. /* ===================================================================== */
  757. /* Subroutine */ void cgegv_(char *jobvl, char *jobvr, integer *n, complex *a,
  758. integer *lda, complex *b, integer *ldb, complex *alpha, complex *beta,
  759. complex *vl, integer *ldvl, complex *vr, integer *ldvr, complex *
  760. work, integer *lwork, real *rwork, integer *info)
  761. {
  762. /* System generated locals */
  763. integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
  764. vr_offset, i__1, i__2, i__3, i__4;
  765. real r__1, r__2, r__3, r__4;
  766. complex q__1, q__2;
  767. /* Local variables */
  768. real absb, anrm, bnrm;
  769. integer itau;
  770. real temp;
  771. logical ilvl, ilvr;
  772. integer lopt;
  773. real anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
  774. extern logical lsame_(char *, char *);
  775. integer ileft, iinfo, icols, iwork, irows, jc;
  776. extern /* Subroutine */ void cggbak_(char *, char *, integer *, integer *,
  777. integer *, real *, real *, integer *, complex *, integer *,
  778. integer *), cggbal_(char *, integer *, complex *,
  779. integer *, complex *, integer *, integer *, integer *, real *,
  780. real *, real *, integer *);
  781. integer nb, in;
  782. extern real clange_(char *, integer *, integer *, complex *, integer *,
  783. real *);
  784. integer jr;
  785. extern /* Subroutine */ void cgghrd_(char *, char *, integer *, integer *,
  786. integer *, complex *, integer *, complex *, integer *, complex *,
  787. integer *, complex *, integer *, integer *);
  788. real salfai;
  789. extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
  790. real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *,
  791. complex *, complex *, integer *, integer *);
  792. real salfar;
  793. extern real slamch_(char *);
  794. extern /* Subroutine */ void clacpy_(char *, integer *, integer *, complex
  795. *, integer *, complex *, integer *), claset_(char *,
  796. integer *, integer *, complex *, complex *, complex *, integer *);
  797. real safmin;
  798. extern /* Subroutine */ void ctgevc_(char *, char *, logical *, integer *,
  799. complex *, integer *, complex *, integer *, complex *, integer *,
  800. complex *, integer *, integer *, integer *, complex *, real *,
  801. integer *);
  802. real safmax;
  803. char chtemp[1];
  804. logical ldumma[1];
  805. extern /* Subroutine */ void chgeqz_(char *, char *, char *, integer *,
  806. integer *, integer *, complex *, integer *, complex *, integer *,
  807. complex *, complex *, complex *, integer *, complex *, integer *,
  808. complex *, integer *, real *, integer *);
  809. extern int xerbla_(char *, integer *, ftnlen);
  810. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  811. integer *, integer *, ftnlen, ftnlen);
  812. integer ijobvl, iright;
  813. logical ilimit;
  814. integer ijobvr;
  815. extern /* Subroutine */ void cungqr_(integer *, integer *, integer *,
  816. complex *, integer *, complex *, complex *, integer *, integer *);
  817. integer lwkmin, nb1, nb2, nb3;
  818. extern /* Subroutine */ void cunmqr_(char *, char *, integer *, integer *,
  819. integer *, complex *, integer *, complex *, complex *, integer *,
  820. complex *, integer *, integer *);
  821. integer irwork, lwkopt;
  822. logical lquery;
  823. integer ihi, ilo;
  824. real eps;
  825. logical ilv;
  826. /* -- LAPACK driver routine (version 3.7.0) -- */
  827. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  828. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  829. /* December 2016 */
  830. /* ===================================================================== */
  831. /* Decode the input arguments */
  832. /* Parameter adjustments */
  833. a_dim1 = *lda;
  834. a_offset = 1 + a_dim1 * 1;
  835. a -= a_offset;
  836. b_dim1 = *ldb;
  837. b_offset = 1 + b_dim1 * 1;
  838. b -= b_offset;
  839. --alpha;
  840. --beta;
  841. vl_dim1 = *ldvl;
  842. vl_offset = 1 + vl_dim1 * 1;
  843. vl -= vl_offset;
  844. vr_dim1 = *ldvr;
  845. vr_offset = 1 + vr_dim1 * 1;
  846. vr -= vr_offset;
  847. --work;
  848. --rwork;
  849. /* Function Body */
  850. if (lsame_(jobvl, "N")) {
  851. ijobvl = 1;
  852. ilvl = FALSE_;
  853. } else if (lsame_(jobvl, "V")) {
  854. ijobvl = 2;
  855. ilvl = TRUE_;
  856. } else {
  857. ijobvl = -1;
  858. ilvl = FALSE_;
  859. }
  860. if (lsame_(jobvr, "N")) {
  861. ijobvr = 1;
  862. ilvr = FALSE_;
  863. } else if (lsame_(jobvr, "V")) {
  864. ijobvr = 2;
  865. ilvr = TRUE_;
  866. } else {
  867. ijobvr = -1;
  868. ilvr = FALSE_;
  869. }
  870. ilv = ilvl || ilvr;
  871. /* Test the input arguments */
  872. /* Computing MAX */
  873. i__1 = *n << 1;
  874. lwkmin = f2cmax(i__1,1);
  875. lwkopt = lwkmin;
  876. work[1].r = (real) lwkopt, work[1].i = 0.f;
  877. lquery = *lwork == -1;
  878. *info = 0;
  879. if (ijobvl <= 0) {
  880. *info = -1;
  881. } else if (ijobvr <= 0) {
  882. *info = -2;
  883. } else if (*n < 0) {
  884. *info = -3;
  885. } else if (*lda < f2cmax(1,*n)) {
  886. *info = -5;
  887. } else if (*ldb < f2cmax(1,*n)) {
  888. *info = -7;
  889. } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
  890. *info = -11;
  891. } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
  892. *info = -13;
  893. } else if (*lwork < lwkmin && ! lquery) {
  894. *info = -15;
  895. }
  896. if (*info == 0) {
  897. nb1 = ilaenv_(&c__1, "CGEQRF", " ", n, n, &c_n1, &c_n1, (ftnlen)6, (
  898. ftnlen)1);
  899. nb2 = ilaenv_(&c__1, "CUNMQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  900. ftnlen)1);
  901. nb3 = ilaenv_(&c__1, "CUNGQR", " ", n, n, n, &c_n1, (ftnlen)6, (
  902. ftnlen)1);
  903. /* Computing MAX */
  904. i__1 = f2cmax(nb1,nb2);
  905. nb = f2cmax(i__1,nb3);
  906. /* Computing MAX */
  907. i__1 = *n << 1, i__2 = *n * (nb + 1);
  908. lopt = f2cmax(i__1,i__2);
  909. work[1].r = (real) lopt, work[1].i = 0.f;
  910. }
  911. if (*info != 0) {
  912. i__1 = -(*info);
  913. xerbla_("CGEGV ", &i__1, 6);
  914. return;
  915. } else if (lquery) {
  916. return;
  917. }
  918. /* Quick return if possible */
  919. if (*n == 0) {
  920. return;
  921. }
  922. /* Get machine constants */
  923. eps = slamch_("E") * slamch_("B");
  924. safmin = slamch_("S");
  925. safmin += safmin;
  926. safmax = 1.f / safmin;
  927. /* Scale A */
  928. anrm = clange_("M", n, n, &a[a_offset], lda, &rwork[1]);
  929. anrm1 = anrm;
  930. anrm2 = 1.f;
  931. if (anrm < 1.f) {
  932. if (safmax * anrm < 1.f) {
  933. anrm1 = safmin;
  934. anrm2 = safmax * anrm;
  935. }
  936. }
  937. if (anrm > 0.f) {
  938. clascl_("G", &c_n1, &c_n1, &anrm, &c_b29, n, n, &a[a_offset], lda, &
  939. iinfo);
  940. if (iinfo != 0) {
  941. *info = *n + 10;
  942. return;
  943. }
  944. }
  945. /* Scale B */
  946. bnrm = clange_("M", n, n, &b[b_offset], ldb, &rwork[1]);
  947. bnrm1 = bnrm;
  948. bnrm2 = 1.f;
  949. if (bnrm < 1.f) {
  950. if (safmax * bnrm < 1.f) {
  951. bnrm1 = safmin;
  952. bnrm2 = safmax * bnrm;
  953. }
  954. }
  955. if (bnrm > 0.f) {
  956. clascl_("G", &c_n1, &c_n1, &bnrm, &c_b29, n, n, &b[b_offset], ldb, &
  957. iinfo);
  958. if (iinfo != 0) {
  959. *info = *n + 10;
  960. return;
  961. }
  962. }
  963. /* Permute the matrix to make it more nearly triangular */
  964. /* Also "balance" the matrix. */
  965. ileft = 1;
  966. iright = *n + 1;
  967. irwork = iright + *n;
  968. cggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[
  969. ileft], &rwork[iright], &rwork[irwork], &iinfo);
  970. if (iinfo != 0) {
  971. *info = *n + 1;
  972. goto L80;
  973. }
  974. /* Reduce B to triangular form, and initialize VL and/or VR */
  975. irows = ihi + 1 - ilo;
  976. if (ilv) {
  977. icols = *n + 1 - ilo;
  978. } else {
  979. icols = irows;
  980. }
  981. itau = 1;
  982. iwork = itau + irows;
  983. i__1 = *lwork + 1 - iwork;
  984. cgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  985. iwork], &i__1, &iinfo);
  986. if (iinfo >= 0) {
  987. /* Computing MAX */
  988. i__3 = iwork;
  989. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  990. lwkopt = f2cmax(i__1,i__2);
  991. }
  992. if (iinfo != 0) {
  993. *info = *n + 2;
  994. goto L80;
  995. }
  996. i__1 = *lwork + 1 - iwork;
  997. cunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  998. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
  999. iinfo);
  1000. if (iinfo >= 0) {
  1001. /* Computing MAX */
  1002. i__3 = iwork;
  1003. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  1004. lwkopt = f2cmax(i__1,i__2);
  1005. }
  1006. if (iinfo != 0) {
  1007. *info = *n + 3;
  1008. goto L80;
  1009. }
  1010. if (ilvl) {
  1011. claset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl);
  1012. i__1 = irows - 1;
  1013. i__2 = irows - 1;
  1014. clacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
  1015. 1 + ilo * vl_dim1], ldvl);
  1016. i__1 = *lwork + 1 - iwork;
  1017. cungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
  1018. itau], &work[iwork], &i__1, &iinfo);
  1019. if (iinfo >= 0) {
  1020. /* Computing MAX */
  1021. i__3 = iwork;
  1022. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  1023. lwkopt = f2cmax(i__1,i__2);
  1024. }
  1025. if (iinfo != 0) {
  1026. *info = *n + 4;
  1027. goto L80;
  1028. }
  1029. }
  1030. if (ilvr) {
  1031. claset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr);
  1032. }
  1033. /* Reduce to generalized Hessenberg form */
  1034. if (ilv) {
  1035. /* Eigenvectors requested -- work on whole matrix. */
  1036. cgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1037. ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
  1038. } else {
  1039. cgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
  1040. &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
  1041. vr_offset], ldvr, &iinfo);
  1042. }
  1043. if (iinfo != 0) {
  1044. *info = *n + 5;
  1045. goto L80;
  1046. }
  1047. /* Perform QZ algorithm */
  1048. iwork = itau;
  1049. if (ilv) {
  1050. *(unsigned char *)chtemp = 'S';
  1051. } else {
  1052. *(unsigned char *)chtemp = 'E';
  1053. }
  1054. i__1 = *lwork + 1 - iwork;
  1055. chgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1056. b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[
  1057. vr_offset], ldvr, &work[iwork], &i__1, &rwork[irwork], &iinfo);
  1058. if (iinfo >= 0) {
  1059. /* Computing MAX */
  1060. i__3 = iwork;
  1061. i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1;
  1062. lwkopt = f2cmax(i__1,i__2);
  1063. }
  1064. if (iinfo != 0) {
  1065. if (iinfo > 0 && iinfo <= *n) {
  1066. *info = iinfo;
  1067. } else if (iinfo > *n && iinfo <= *n << 1) {
  1068. *info = iinfo - *n;
  1069. } else {
  1070. *info = *n + 6;
  1071. }
  1072. goto L80;
  1073. }
  1074. if (ilv) {
  1075. /* Compute Eigenvectors */
  1076. if (ilvl) {
  1077. if (ilvr) {
  1078. *(unsigned char *)chtemp = 'B';
  1079. } else {
  1080. *(unsigned char *)chtemp = 'L';
  1081. }
  1082. } else {
  1083. *(unsigned char *)chtemp = 'R';
  1084. }
  1085. ctgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
  1086. &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
  1087. iwork], &rwork[irwork], &iinfo);
  1088. if (iinfo != 0) {
  1089. *info = *n + 7;
  1090. goto L80;
  1091. }
  1092. /* Undo balancing on VL and VR, rescale */
  1093. if (ilvl) {
  1094. cggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
  1095. &vl[vl_offset], ldvl, &iinfo);
  1096. if (iinfo != 0) {
  1097. *info = *n + 8;
  1098. goto L80;
  1099. }
  1100. i__1 = *n;
  1101. for (jc = 1; jc <= i__1; ++jc) {
  1102. temp = 0.f;
  1103. i__2 = *n;
  1104. for (jr = 1; jr <= i__2; ++jr) {
  1105. /* Computing MAX */
  1106. i__3 = jr + jc * vl_dim1;
  1107. r__3 = temp, r__4 = (r__1 = vl[i__3].r, abs(r__1)) + (
  1108. r__2 = r_imag(&vl[jr + jc * vl_dim1]), abs(r__2));
  1109. temp = f2cmax(r__3,r__4);
  1110. /* L10: */
  1111. }
  1112. if (temp < safmin) {
  1113. goto L30;
  1114. }
  1115. temp = 1.f / temp;
  1116. i__2 = *n;
  1117. for (jr = 1; jr <= i__2; ++jr) {
  1118. i__3 = jr + jc * vl_dim1;
  1119. i__4 = jr + jc * vl_dim1;
  1120. q__1.r = temp * vl[i__4].r, q__1.i = temp * vl[i__4].i;
  1121. vl[i__3].r = q__1.r, vl[i__3].i = q__1.i;
  1122. /* L20: */
  1123. }
  1124. L30:
  1125. ;
  1126. }
  1127. }
  1128. if (ilvr) {
  1129. cggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n,
  1130. &vr[vr_offset], ldvr, &iinfo);
  1131. if (iinfo != 0) {
  1132. *info = *n + 9;
  1133. goto L80;
  1134. }
  1135. i__1 = *n;
  1136. for (jc = 1; jc <= i__1; ++jc) {
  1137. temp = 0.f;
  1138. i__2 = *n;
  1139. for (jr = 1; jr <= i__2; ++jr) {
  1140. /* Computing MAX */
  1141. i__3 = jr + jc * vr_dim1;
  1142. r__3 = temp, r__4 = (r__1 = vr[i__3].r, abs(r__1)) + (
  1143. r__2 = r_imag(&vr[jr + jc * vr_dim1]), abs(r__2));
  1144. temp = f2cmax(r__3,r__4);
  1145. /* L40: */
  1146. }
  1147. if (temp < safmin) {
  1148. goto L60;
  1149. }
  1150. temp = 1.f / temp;
  1151. i__2 = *n;
  1152. for (jr = 1; jr <= i__2; ++jr) {
  1153. i__3 = jr + jc * vr_dim1;
  1154. i__4 = jr + jc * vr_dim1;
  1155. q__1.r = temp * vr[i__4].r, q__1.i = temp * vr[i__4].i;
  1156. vr[i__3].r = q__1.r, vr[i__3].i = q__1.i;
  1157. /* L50: */
  1158. }
  1159. L60:
  1160. ;
  1161. }
  1162. }
  1163. /* End of eigenvector calculation */
  1164. }
  1165. /* Undo scaling in alpha, beta */
  1166. /* Note: this does not give the alpha and beta for the unscaled */
  1167. /* problem. */
  1168. /* Un-scaling is limited to avoid underflow in alpha and beta */
  1169. /* if they are significant. */
  1170. i__1 = *n;
  1171. for (jc = 1; jc <= i__1; ++jc) {
  1172. i__2 = jc;
  1173. absar = (r__1 = alpha[i__2].r, abs(r__1));
  1174. absai = (r__1 = r_imag(&alpha[jc]), abs(r__1));
  1175. i__2 = jc;
  1176. absb = (r__1 = beta[i__2].r, abs(r__1));
  1177. i__2 = jc;
  1178. salfar = anrm * alpha[i__2].r;
  1179. salfai = anrm * r_imag(&alpha[jc]);
  1180. i__2 = jc;
  1181. sbeta = bnrm * beta[i__2].r;
  1182. ilimit = FALSE_;
  1183. scale = 1.f;
  1184. /* Check for significant underflow in imaginary part of ALPHA */
  1185. /* Computing MAX */
  1186. r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1187. absb;
  1188. if (abs(salfai) < safmin && absai >= f2cmax(r__1,r__2)) {
  1189. ilimit = TRUE_;
  1190. /* Computing MAX */
  1191. r__1 = safmin, r__2 = anrm2 * absai;
  1192. scale = safmin / anrm1 / f2cmax(r__1,r__2);
  1193. }
  1194. /* Check for significant underflow in real part of ALPHA */
  1195. /* Computing MAX */
  1196. r__1 = safmin, r__2 = eps * absai, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1197. absb;
  1198. if (abs(salfar) < safmin && absar >= f2cmax(r__1,r__2)) {
  1199. ilimit = TRUE_;
  1200. /* Computing MAX */
  1201. /* Computing MAX */
  1202. r__3 = safmin, r__4 = anrm2 * absar;
  1203. r__1 = scale, r__2 = safmin / anrm1 / f2cmax(r__3,r__4);
  1204. scale = f2cmax(r__1,r__2);
  1205. }
  1206. /* Check for significant underflow in BETA */
  1207. /* Computing MAX */
  1208. r__1 = safmin, r__2 = eps * absar, r__1 = f2cmax(r__1,r__2), r__2 = eps *
  1209. absai;
  1210. if (abs(sbeta) < safmin && absb >= f2cmax(r__1,r__2)) {
  1211. ilimit = TRUE_;
  1212. /* Computing MAX */
  1213. /* Computing MAX */
  1214. r__3 = safmin, r__4 = bnrm2 * absb;
  1215. r__1 = scale, r__2 = safmin / bnrm1 / f2cmax(r__3,r__4);
  1216. scale = f2cmax(r__1,r__2);
  1217. }
  1218. /* Check for possible overflow when limiting scaling */
  1219. if (ilimit) {
  1220. /* Computing MAX */
  1221. r__1 = abs(salfar), r__2 = abs(salfai), r__1 = f2cmax(r__1,r__2),
  1222. r__2 = abs(sbeta);
  1223. temp = scale * safmin * f2cmax(r__1,r__2);
  1224. if (temp > 1.f) {
  1225. scale /= temp;
  1226. }
  1227. if (scale < 1.f) {
  1228. ilimit = FALSE_;
  1229. }
  1230. }
  1231. /* Recompute un-scaled ALPHA, BETA if necessary. */
  1232. if (ilimit) {
  1233. i__2 = jc;
  1234. salfar = scale * alpha[i__2].r * anrm;
  1235. salfai = scale * r_imag(&alpha[jc]) * anrm;
  1236. i__2 = jc;
  1237. q__2.r = scale * beta[i__2].r, q__2.i = scale * beta[i__2].i;
  1238. q__1.r = bnrm * q__2.r, q__1.i = bnrm * q__2.i;
  1239. sbeta = q__1.r;
  1240. }
  1241. i__2 = jc;
  1242. q__1.r = salfar, q__1.i = salfai;
  1243. alpha[i__2].r = q__1.r, alpha[i__2].i = q__1.i;
  1244. i__2 = jc;
  1245. beta[i__2].r = sbeta, beta[i__2].i = 0.f;
  1246. /* L70: */
  1247. }
  1248. L80:
  1249. work[1].r = (real) lwkopt, work[1].i = 0.f;
  1250. return;
  1251. /* End of CGEGV */
  1252. } /* cgegv_ */