You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaqr3.c 37 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static doublecomplex c_b1 = {0.,0.};
  485. static doublecomplex c_b2 = {1.,0.};
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static logical c_true = TRUE_;
  489. static integer c__12 = 12;
  490. /* > \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and defl
  491. ate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). */
  492. /* =========== DOCUMENTATION =========== */
  493. /* Online html documentation available at */
  494. /* http://www.netlib.org/lapack/explore-html/ */
  495. /* > \htmlonly */
  496. /* > Download ZLAQR3 + dependencies */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.
  498. f"> */
  499. /* > [TGZ]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.
  501. f"> */
  502. /* > [ZIP]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.
  504. f"> */
  505. /* > [TXT]</a> */
  506. /* > \endhtmlonly */
  507. /* Definition: */
  508. /* =========== */
  509. /* SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  510. /* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, */
  511. /* NV, WV, LDWV, WORK, LWORK ) */
  512. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  513. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  514. /* LOGICAL WANTT, WANTZ */
  515. /* COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ), */
  516. /* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > Aggressive early deflation: */
  523. /* > */
  524. /* > ZLAQR3 accepts as input an upper Hessenberg matrix */
  525. /* > H and performs an unitary similarity transformation */
  526. /* > designed to detect and deflate fully converged eigenvalues from */
  527. /* > a trailing principal submatrix. On output H has been over- */
  528. /* > written by a new Hessenberg matrix that is a perturbation of */
  529. /* > an unitary similarity transformation of H. It is to be */
  530. /* > hoped that the final version of H has many zero subdiagonal */
  531. /* > entries. */
  532. /* > */
  533. /* > \endverbatim */
  534. /* Arguments: */
  535. /* ========== */
  536. /* > \param[in] WANTT */
  537. /* > \verbatim */
  538. /* > WANTT is LOGICAL */
  539. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  540. /* > so that the triangular Schur factor may be */
  541. /* > computed (in cooperation with the calling subroutine). */
  542. /* > If .FALSE., then only enough of H is updated to preserve */
  543. /* > the eigenvalues. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] WANTZ */
  547. /* > \verbatim */
  548. /* > WANTZ is LOGICAL */
  549. /* > If .TRUE., then the unitary matrix Z is updated so */
  550. /* > so that the unitary Schur factor may be computed */
  551. /* > (in cooperation with the calling subroutine). */
  552. /* > If .FALSE., then Z is not referenced. */
  553. /* > \endverbatim */
  554. /* > */
  555. /* > \param[in] N */
  556. /* > \verbatim */
  557. /* > N is INTEGER */
  558. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  559. /* > order of the unitary matrix Z. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] KTOP */
  563. /* > \verbatim */
  564. /* > KTOP is INTEGER */
  565. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  566. /* > KBOT and KTOP together determine an isolated block */
  567. /* > along the diagonal of the Hessenberg matrix. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] KBOT */
  571. /* > \verbatim */
  572. /* > KBOT is INTEGER */
  573. /* > It is assumed without a check that either */
  574. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  575. /* > determine an isolated block along the diagonal of the */
  576. /* > Hessenberg matrix. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in] NW */
  580. /* > \verbatim */
  581. /* > NW is INTEGER */
  582. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  583. /* > \endverbatim */
  584. /* > */
  585. /* > \param[in,out] H */
  586. /* > \verbatim */
  587. /* > H is COMPLEX*16 array, dimension (LDH,N) */
  588. /* > On input the initial N-by-N section of H stores the */
  589. /* > Hessenberg matrix undergoing aggressive early deflation. */
  590. /* > On output H has been transformed by a unitary */
  591. /* > similarity transformation, perturbed, and the returned */
  592. /* > to Hessenberg form that (it is to be hoped) has some */
  593. /* > zero subdiagonal entries. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDH */
  597. /* > \verbatim */
  598. /* > LDH is INTEGER */
  599. /* > Leading dimension of H just as declared in the calling */
  600. /* > subroutine. N <= LDH */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[in] ILOZ */
  604. /* > \verbatim */
  605. /* > ILOZ is INTEGER */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] IHIZ */
  609. /* > \verbatim */
  610. /* > IHIZ is INTEGER */
  611. /* > Specify the rows of Z to which transformations must be */
  612. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  613. /* > \endverbatim */
  614. /* > */
  615. /* > \param[in,out] Z */
  616. /* > \verbatim */
  617. /* > Z is COMPLEX*16 array, dimension (LDZ,N) */
  618. /* > IF WANTZ is .TRUE., then on output, the unitary */
  619. /* > similarity transformation mentioned above has been */
  620. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  621. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDZ */
  625. /* > \verbatim */
  626. /* > LDZ is INTEGER */
  627. /* > The leading dimension of Z just as declared in the */
  628. /* > calling subroutine. 1 <= LDZ. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[out] NS */
  632. /* > \verbatim */
  633. /* > NS is INTEGER */
  634. /* > The number of unconverged (ie approximate) eigenvalues */
  635. /* > returned in SR and SI that may be used as shifts by the */
  636. /* > calling subroutine. */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[out] ND */
  640. /* > \verbatim */
  641. /* > ND is INTEGER */
  642. /* > The number of converged eigenvalues uncovered by this */
  643. /* > subroutine. */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] SH */
  647. /* > \verbatim */
  648. /* > SH is COMPLEX*16 array, dimension (KBOT) */
  649. /* > On output, approximate eigenvalues that may */
  650. /* > be used for shifts are stored in SH(KBOT-ND-NS+1) */
  651. /* > through SR(KBOT-ND). Converged eigenvalues are */
  652. /* > stored in SH(KBOT-ND+1) through SH(KBOT). */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] V */
  656. /* > \verbatim */
  657. /* > V is COMPLEX*16 array, dimension (LDV,NW) */
  658. /* > An NW-by-NW work array. */
  659. /* > \endverbatim */
  660. /* > */
  661. /* > \param[in] LDV */
  662. /* > \verbatim */
  663. /* > LDV is INTEGER */
  664. /* > The leading dimension of V just as declared in the */
  665. /* > calling subroutine. NW <= LDV */
  666. /* > \endverbatim */
  667. /* > */
  668. /* > \param[in] NH */
  669. /* > \verbatim */
  670. /* > NH is INTEGER */
  671. /* > The number of columns of T. NH >= NW. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] T */
  675. /* > \verbatim */
  676. /* > T is COMPLEX*16 array, dimension (LDT,NW) */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] LDT */
  680. /* > \verbatim */
  681. /* > LDT is INTEGER */
  682. /* > The leading dimension of T just as declared in the */
  683. /* > calling subroutine. NW <= LDT */
  684. /* > \endverbatim */
  685. /* > */
  686. /* > \param[in] NV */
  687. /* > \verbatim */
  688. /* > NV is INTEGER */
  689. /* > The number of rows of work array WV available for */
  690. /* > workspace. NV >= NW. */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] WV */
  694. /* > \verbatim */
  695. /* > WV is COMPLEX*16 array, dimension (LDWV,NW) */
  696. /* > \endverbatim */
  697. /* > */
  698. /* > \param[in] LDWV */
  699. /* > \verbatim */
  700. /* > LDWV is INTEGER */
  701. /* > The leading dimension of W just as declared in the */
  702. /* > calling subroutine. NW <= LDV */
  703. /* > \endverbatim */
  704. /* > */
  705. /* > \param[out] WORK */
  706. /* > \verbatim */
  707. /* > WORK is COMPLEX*16 array, dimension (LWORK) */
  708. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  709. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  710. /* > \endverbatim */
  711. /* > */
  712. /* > \param[in] LWORK */
  713. /* > \verbatim */
  714. /* > LWORK is INTEGER */
  715. /* > The dimension of the work array WORK. LWORK = 2*NW */
  716. /* > suffices, but greater efficiency may result from larger */
  717. /* > values of LWORK. */
  718. /* > */
  719. /* > If LWORK = -1, then a workspace query is assumed; ZLAQR3 */
  720. /* > only estimates the optimal workspace size for the given */
  721. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  722. /* > in WORK(1). No error message related to LWORK is issued */
  723. /* > by XERBLA. Neither H nor Z are accessed. */
  724. /* > \endverbatim */
  725. /* Authors: */
  726. /* ======== */
  727. /* > \author Univ. of Tennessee */
  728. /* > \author Univ. of California Berkeley */
  729. /* > \author Univ. of Colorado Denver */
  730. /* > \author NAG Ltd. */
  731. /* > \date June 2016 */
  732. /* > \ingroup complex16OTHERauxiliary */
  733. /* > \par Contributors: */
  734. /* ================== */
  735. /* > */
  736. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  737. /* > University of Kansas, USA */
  738. /* > */
  739. /* ===================================================================== */
  740. /* Subroutine */ void zlaqr3_(logical *wantt, logical *wantz, integer *n,
  741. integer *ktop, integer *kbot, integer *nw, doublecomplex *h__,
  742. integer *ldh, integer *iloz, integer *ihiz, doublecomplex *z__,
  743. integer *ldz, integer *ns, integer *nd, doublecomplex *sh,
  744. doublecomplex *v, integer *ldv, integer *nh, doublecomplex *t,
  745. integer *ldt, integer *nv, doublecomplex *wv, integer *ldwv,
  746. doublecomplex *work, integer *lwork)
  747. {
  748. /* System generated locals */
  749. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  750. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  751. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  752. doublecomplex z__1, z__2;
  753. /* Local variables */
  754. doublecomplex beta;
  755. integer kcol, info, nmin, ifst, ilst, ltop, krow, i__, j;
  756. doublecomplex s;
  757. extern /* Subroutine */ void zlarf_(char *, integer *, integer *,
  758. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  759. integer *, doublecomplex *);
  760. integer infqr;
  761. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  762. integer *, doublecomplex *, doublecomplex *, integer *,
  763. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  764. integer *);
  765. integer kwtop;
  766. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  767. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *),
  768. zlaqr4_(logical *, logical *, integer *, integer *, integer *,
  769. doublecomplex *, integer *, doublecomplex *, integer *, integer *,
  770. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  771. );
  772. extern doublereal dlamch_(char *);
  773. integer jw;
  774. doublereal safmin, safmax;
  775. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  776. integer *, integer *, ftnlen, ftnlen);
  777. extern /* Subroutine */ void zgehrd_(integer *, integer *, integer *,
  778. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  779. integer *, integer *), zlarfg_(integer *, doublecomplex *,
  780. doublecomplex *, integer *, doublecomplex *), zlahqr_(logical *,
  781. logical *, integer *, integer *, integer *, doublecomplex *,
  782. integer *, doublecomplex *, integer *, integer *, doublecomplex *,
  783. integer *, integer *), zlacpy_(char *, integer *, integer *,
  784. doublecomplex *, integer *, doublecomplex *, integer *),
  785. zlaset_(char *, integer *, integer *, doublecomplex *,
  786. doublecomplex *, doublecomplex *, integer *);
  787. doublereal smlnum;
  788. extern /* Subroutine */ void ztrexc_(char *, integer *, doublecomplex *,
  789. integer *, doublecomplex *, integer *, integer *, integer *,
  790. integer *);
  791. integer lwkopt;
  792. extern /* Subroutine */ void zunmhr_(char *, char *, integer *, integer *,
  793. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  794. doublecomplex *, integer *, doublecomplex *, integer *, integer *
  795. );
  796. doublereal foo;
  797. integer kln;
  798. doublecomplex tau;
  799. integer knt;
  800. doublereal ulp;
  801. integer lwk1, lwk2, lwk3;
  802. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  803. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  804. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  805. /* June 2016 */
  806. /* ================================================================ */
  807. /* ==== Estimate optimal workspace. ==== */
  808. /* Parameter adjustments */
  809. h_dim1 = *ldh;
  810. h_offset = 1 + h_dim1 * 1;
  811. h__ -= h_offset;
  812. z_dim1 = *ldz;
  813. z_offset = 1 + z_dim1 * 1;
  814. z__ -= z_offset;
  815. --sh;
  816. v_dim1 = *ldv;
  817. v_offset = 1 + v_dim1 * 1;
  818. v -= v_offset;
  819. t_dim1 = *ldt;
  820. t_offset = 1 + t_dim1 * 1;
  821. t -= t_offset;
  822. wv_dim1 = *ldwv;
  823. wv_offset = 1 + wv_dim1 * 1;
  824. wv -= wv_offset;
  825. --work;
  826. /* Function Body */
  827. /* Computing MIN */
  828. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  829. jw = f2cmin(i__1,i__2);
  830. if (jw <= 2) {
  831. lwkopt = 1;
  832. } else {
  833. /* ==== Workspace query call to ZGEHRD ==== */
  834. i__1 = jw - 1;
  835. zgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  836. c_n1, &info);
  837. lwk1 = (integer) work[1].r;
  838. /* ==== Workspace query call to ZUNMHR ==== */
  839. i__1 = jw - 1;
  840. zunmhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  841. &v[v_offset], ldv, &work[1], &c_n1, &info);
  842. lwk2 = (integer) work[1].r;
  843. /* ==== Workspace query call to ZLAQR4 ==== */
  844. zlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[1],
  845. &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &infqr);
  846. lwk3 = (integer) work[1].r;
  847. /* ==== Optimal workspace ==== */
  848. /* Computing MAX */
  849. i__1 = jw + f2cmax(lwk1,lwk2);
  850. lwkopt = f2cmax(i__1,lwk3);
  851. }
  852. /* ==== Quick return in case of workspace query. ==== */
  853. if (*lwork == -1) {
  854. d__1 = (doublereal) lwkopt;
  855. z__1.r = d__1, z__1.i = 0.;
  856. work[1].r = z__1.r, work[1].i = z__1.i;
  857. return;
  858. }
  859. /* ==== Nothing to do ... */
  860. /* ... for an empty active block ... ==== */
  861. *ns = 0;
  862. *nd = 0;
  863. work[1].r = 1., work[1].i = 0.;
  864. if (*ktop > *kbot) {
  865. return;
  866. }
  867. /* ... nor for an empty deflation window. ==== */
  868. if (*nw < 1) {
  869. return;
  870. }
  871. /* ==== Machine constants ==== */
  872. safmin = dlamch_("SAFE MINIMUM");
  873. safmax = 1. / safmin;
  874. dlabad_(&safmin, &safmax);
  875. ulp = dlamch_("PRECISION");
  876. smlnum = safmin * ((doublereal) (*n) / ulp);
  877. /* ==== Setup deflation window ==== */
  878. /* Computing MIN */
  879. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  880. jw = f2cmin(i__1,i__2);
  881. kwtop = *kbot - jw + 1;
  882. if (kwtop == *ktop) {
  883. s.r = 0., s.i = 0.;
  884. } else {
  885. i__1 = kwtop + (kwtop - 1) * h_dim1;
  886. s.r = h__[i__1].r, s.i = h__[i__1].i;
  887. }
  888. if (*kbot == kwtop) {
  889. /* ==== 1-by-1 deflation window: not much to do ==== */
  890. i__1 = kwtop;
  891. i__2 = kwtop + kwtop * h_dim1;
  892. sh[i__1].r = h__[i__2].r, sh[i__1].i = h__[i__2].i;
  893. *ns = 1;
  894. *nd = 0;
  895. /* Computing MAX */
  896. i__1 = kwtop + kwtop * h_dim1;
  897. d__5 = smlnum, d__6 = ulp * ((d__1 = h__[i__1].r, abs(d__1)) + (d__2 =
  898. d_imag(&h__[kwtop + kwtop * h_dim1]), abs(d__2)));
  899. if ((d__3 = s.r, abs(d__3)) + (d__4 = d_imag(&s), abs(d__4)) <= f2cmax(
  900. d__5,d__6)) {
  901. *ns = 0;
  902. *nd = 1;
  903. if (kwtop > *ktop) {
  904. i__1 = kwtop + (kwtop - 1) * h_dim1;
  905. h__[i__1].r = 0., h__[i__1].i = 0.;
  906. }
  907. }
  908. work[1].r = 1., work[1].i = 0.;
  909. return;
  910. }
  911. /* ==== Convert to spike-triangular form. (In case of a */
  912. /* . rare QR failure, this routine continues to do */
  913. /* . aggressive early deflation using that part of */
  914. /* . the deflation window that converged using INFQR */
  915. /* . here and there to keep track.) ==== */
  916. zlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  917. ldt);
  918. i__1 = jw - 1;
  919. i__2 = *ldh + 1;
  920. i__3 = *ldt + 1;
  921. zcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  922. i__3);
  923. zlaset_("A", &jw, &jw, &c_b1, &c_b2, &v[v_offset], ldv);
  924. nmin = ilaenv_(&c__12, "ZLAQR3", "SV", &jw, &c__1, &jw, lwork, (ftnlen)6,
  925. (ftnlen)2);
  926. if (jw > nmin) {
  927. zlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
  928. kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], lwork, &
  929. infqr);
  930. } else {
  931. zlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sh[
  932. kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  933. }
  934. /* ==== Deflation detection loop ==== */
  935. *ns = jw;
  936. ilst = infqr + 1;
  937. i__1 = jw;
  938. for (knt = infqr + 1; knt <= i__1; ++knt) {
  939. /* ==== Small spike tip deflation test ==== */
  940. i__2 = *ns + *ns * t_dim1;
  941. foo = (d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[*ns + *ns *
  942. t_dim1]), abs(d__2));
  943. if (foo == 0.) {
  944. foo = (d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2));
  945. }
  946. i__2 = *ns * v_dim1 + 1;
  947. /* Computing MAX */
  948. d__5 = smlnum, d__6 = ulp * foo;
  949. if (((d__1 = s.r, abs(d__1)) + (d__2 = d_imag(&s), abs(d__2))) * ((
  950. d__3 = v[i__2].r, abs(d__3)) + (d__4 = d_imag(&v[*ns * v_dim1
  951. + 1]), abs(d__4))) <= f2cmax(d__5,d__6)) {
  952. /* ==== One more converged eigenvalue ==== */
  953. --(*ns);
  954. } else {
  955. /* ==== One undeflatable eigenvalue. Move it up out of the */
  956. /* . way. (ZTREXC can not fail in this case.) ==== */
  957. ifst = *ns;
  958. ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst, &
  959. ilst, &info);
  960. ++ilst;
  961. }
  962. /* L10: */
  963. }
  964. /* ==== Return to Hessenberg form ==== */
  965. if (*ns == 0) {
  966. s.r = 0., s.i = 0.;
  967. }
  968. if (*ns < jw) {
  969. /* ==== sorting the diagonal of T improves accuracy for */
  970. /* . graded matrices. ==== */
  971. i__1 = *ns;
  972. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  973. ifst = i__;
  974. i__2 = *ns;
  975. for (j = i__ + 1; j <= i__2; ++j) {
  976. i__3 = j + j * t_dim1;
  977. i__4 = ifst + ifst * t_dim1;
  978. if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[j + j *
  979. t_dim1]), abs(d__2)) > (d__3 = t[i__4].r, abs(d__3))
  980. + (d__4 = d_imag(&t[ifst + ifst * t_dim1]), abs(d__4))
  981. ) {
  982. ifst = j;
  983. }
  984. /* L20: */
  985. }
  986. ilst = i__;
  987. if (ifst != ilst) {
  988. ztrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  989. &ilst, &info);
  990. }
  991. /* L30: */
  992. }
  993. }
  994. /* ==== Restore shift/eigenvalue array from T ==== */
  995. i__1 = jw;
  996. for (i__ = infqr + 1; i__ <= i__1; ++i__) {
  997. i__2 = kwtop + i__ - 1;
  998. i__3 = i__ + i__ * t_dim1;
  999. sh[i__2].r = t[i__3].r, sh[i__2].i = t[i__3].i;
  1000. /* L40: */
  1001. }
  1002. if (*ns < jw || s.r == 0. && s.i == 0.) {
  1003. if (*ns > 1 && (s.r != 0. || s.i != 0.)) {
  1004. /* ==== Reflect spike back into lower triangle ==== */
  1005. zcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1006. i__1 = *ns;
  1007. for (i__ = 1; i__ <= i__1; ++i__) {
  1008. i__2 = i__;
  1009. d_cnjg(&z__1, &work[i__]);
  1010. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  1011. /* L50: */
  1012. }
  1013. beta.r = work[1].r, beta.i = work[1].i;
  1014. zlarfg_(ns, &beta, &work[2], &c__1, &tau);
  1015. work[1].r = 1., work[1].i = 0.;
  1016. i__1 = jw - 2;
  1017. i__2 = jw - 2;
  1018. zlaset_("L", &i__1, &i__2, &c_b1, &c_b1, &t[t_dim1 + 3], ldt);
  1019. d_cnjg(&z__1, &tau);
  1020. zlarf_("L", ns, &jw, &work[1], &c__1, &z__1, &t[t_offset], ldt, &
  1021. work[jw + 1]);
  1022. zlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1023. work[jw + 1]);
  1024. zlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1025. work[jw + 1]);
  1026. i__1 = *lwork - jw;
  1027. zgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1028. , &i__1, &info);
  1029. }
  1030. /* ==== Copy updated reduced window into place ==== */
  1031. if (kwtop > 1) {
  1032. i__1 = kwtop + (kwtop - 1) * h_dim1;
  1033. d_cnjg(&z__2, &v[v_dim1 + 1]);
  1034. z__1.r = s.r * z__2.r - s.i * z__2.i, z__1.i = s.r * z__2.i + s.i
  1035. * z__2.r;
  1036. h__[i__1].r = z__1.r, h__[i__1].i = z__1.i;
  1037. }
  1038. zlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1039. , ldh);
  1040. i__1 = jw - 1;
  1041. i__2 = *ldt + 1;
  1042. i__3 = *ldh + 1;
  1043. zcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1044. &i__3);
  1045. /* ==== Accumulate orthogonal matrix in order update */
  1046. /* . H and Z, if requested. ==== */
  1047. if (*ns > 1 && (s.r != 0. || s.i != 0.)) {
  1048. i__1 = *lwork - jw;
  1049. zunmhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1050. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1051. }
  1052. /* ==== Update vertical slab in H ==== */
  1053. if (*wantt) {
  1054. ltop = 1;
  1055. } else {
  1056. ltop = *ktop;
  1057. }
  1058. i__1 = kwtop - 1;
  1059. i__2 = *nv;
  1060. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1061. i__2) {
  1062. /* Computing MIN */
  1063. i__3 = *nv, i__4 = kwtop - krow;
  1064. kln = f2cmin(i__3,i__4);
  1065. zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &h__[krow + kwtop *
  1066. h_dim1], ldh, &v[v_offset], ldv, &c_b1, &wv[wv_offset],
  1067. ldwv);
  1068. zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1069. h_dim1], ldh);
  1070. /* L60: */
  1071. }
  1072. /* ==== Update horizontal slab in H ==== */
  1073. if (*wantt) {
  1074. i__2 = *n;
  1075. i__1 = *nh;
  1076. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1077. kcol += i__1) {
  1078. /* Computing MIN */
  1079. i__3 = *nh, i__4 = *n - kcol + 1;
  1080. kln = f2cmin(i__3,i__4);
  1081. zgemm_("C", "N", &jw, &kln, &jw, &c_b2, &v[v_offset], ldv, &
  1082. h__[kwtop + kcol * h_dim1], ldh, &c_b1, &t[t_offset],
  1083. ldt);
  1084. zlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1085. h_dim1], ldh);
  1086. /* L70: */
  1087. }
  1088. }
  1089. /* ==== Update vertical slab in Z ==== */
  1090. if (*wantz) {
  1091. i__1 = *ihiz;
  1092. i__2 = *nv;
  1093. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1094. i__2) {
  1095. /* Computing MIN */
  1096. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1097. kln = f2cmin(i__3,i__4);
  1098. zgemm_("N", "N", &kln, &jw, &jw, &c_b2, &z__[krow + kwtop *
  1099. z_dim1], ldz, &v[v_offset], ldv, &c_b1, &wv[wv_offset]
  1100. , ldwv);
  1101. zlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1102. kwtop * z_dim1], ldz);
  1103. /* L80: */
  1104. }
  1105. }
  1106. }
  1107. /* ==== Return the number of deflations ... ==== */
  1108. *nd = jw - *ns;
  1109. /* ==== ... and the number of shifts. (Subtracting */
  1110. /* . INFQR from the spike length takes care */
  1111. /* . of the case of a rare QR failure while */
  1112. /* . calculating eigenvalues of the deflation */
  1113. /* . window.) ==== */
  1114. *ns -= infqr;
  1115. /* ==== Return optimal workspace. ==== */
  1116. d__1 = (doublereal) lwkopt;
  1117. z__1.r = d__1, z__1.i = 0.;
  1118. work[1].r = z__1.r, work[1].i = z__1.i;
  1119. /* ==== End of ZLAQR3 ==== */
  1120. return;
  1121. } /* zlaqr3_ */