You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slalsd.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle() continue;
  234. #define myceiling(w) {ceil(w)}
  235. #define myhuge(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* Table of constant values */
  484. static integer c__1 = 1;
  485. static real c_b6 = 0.f;
  486. static integer c__0 = 0;
  487. static real c_b11 = 1.f;
  488. /* > \brief \b SLALSD uses the singular value decomposition of A to solve the least squares problem. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download SLALSD + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsd.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsd.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsd.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE SLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  507. /* RANK, WORK, IWORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  510. /* REAL RCOND */
  511. /* INTEGER IWORK( * ) */
  512. /* REAL B( LDB, * ), D( * ), E( * ), WORK( * ) */
  513. /* > \par Purpose: */
  514. /* ============= */
  515. /* > */
  516. /* > \verbatim */
  517. /* > */
  518. /* > SLALSD uses the singular value decomposition of A to solve the least */
  519. /* > squares problem of finding X to minimize the Euclidean norm of each */
  520. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  521. /* > are N-by-NRHS. The solution X overwrites B. */
  522. /* > */
  523. /* > The singular values of A smaller than RCOND times the largest */
  524. /* > singular value are treated as zero in solving the least squares */
  525. /* > problem; in this case a minimum norm solution is returned. */
  526. /* > The actual singular values are returned in D in ascending order. */
  527. /* > */
  528. /* > This code makes very mild assumptions about floating point */
  529. /* > arithmetic. It will work on machines with a guard digit in */
  530. /* > add/subtract, or on those binary machines without guard digits */
  531. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  532. /* > It could conceivably fail on hexadecimal or decimal machines */
  533. /* > without guard digits, but we know of none. */
  534. /* > \endverbatim */
  535. /* Arguments: */
  536. /* ========== */
  537. /* > \param[in] UPLO */
  538. /* > \verbatim */
  539. /* > UPLO is CHARACTER*1 */
  540. /* > = 'U': D and E define an upper bidiagonal matrix. */
  541. /* > = 'L': D and E define a lower bidiagonal matrix. */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] SMLSIZ */
  545. /* > \verbatim */
  546. /* > SMLSIZ is INTEGER */
  547. /* > The maximum size of the subproblems at the bottom of the */
  548. /* > computation tree. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] N */
  552. /* > \verbatim */
  553. /* > N is INTEGER */
  554. /* > The dimension of the bidiagonal matrix. N >= 0. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] NRHS */
  558. /* > \verbatim */
  559. /* > NRHS is INTEGER */
  560. /* > The number of columns of B. NRHS must be at least 1. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in,out] D */
  564. /* > \verbatim */
  565. /* > D is REAL array, dimension (N) */
  566. /* > On entry D contains the main diagonal of the bidiagonal */
  567. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in,out] E */
  571. /* > \verbatim */
  572. /* > E is REAL array, dimension (N-1) */
  573. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  574. /* > On exit, E has been destroyed. */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[in,out] B */
  578. /* > \verbatim */
  579. /* > B is REAL array, dimension (LDB,NRHS) */
  580. /* > On input, B contains the right hand sides of the least */
  581. /* > squares problem. On output, B contains the solution X. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of B in the calling subprogram. */
  588. /* > LDB must be at least f2cmax(1,N). */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] RCOND */
  592. /* > \verbatim */
  593. /* > RCOND is REAL */
  594. /* > The singular values of A less than or equal to RCOND times */
  595. /* > the largest singular value are treated as zero in solving */
  596. /* > the least squares problem. If RCOND is negative, */
  597. /* > machine precision is used instead. */
  598. /* > For example, if diag(S)*X=B were the least squares problem, */
  599. /* > where diag(S) is a diagonal matrix of singular values, the */
  600. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  601. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  602. /* > RCOND*f2cmax(S). */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] RANK */
  606. /* > \verbatim */
  607. /* > RANK is INTEGER */
  608. /* > The number of singular values of A greater than RCOND times */
  609. /* > the largest singular value. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[out] WORK */
  613. /* > \verbatim */
  614. /* > WORK is REAL array, dimension at least */
  615. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
  616. /* > where NLVL = f2cmax(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] IWORK */
  620. /* > \verbatim */
  621. /* > IWORK is INTEGER array, dimension at least */
  622. /* > (3*N*NLVL + 11*N) */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[out] INFO */
  626. /* > \verbatim */
  627. /* > INFO is INTEGER */
  628. /* > = 0: successful exit. */
  629. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  630. /* > > 0: The algorithm failed to compute a singular value while */
  631. /* > working on the submatrix lying in rows and columns */
  632. /* > INFO/(N+1) through MOD(INFO,N+1). */
  633. /* > \endverbatim */
  634. /* Authors: */
  635. /* ======== */
  636. /* > \author Univ. of Tennessee */
  637. /* > \author Univ. of California Berkeley */
  638. /* > \author Univ. of Colorado Denver */
  639. /* > \author NAG Ltd. */
  640. /* > \date December 2016 */
  641. /* > \ingroup realOTHERcomputational */
  642. /* > \par Contributors: */
  643. /* ================== */
  644. /* > */
  645. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  646. /* > California at Berkeley, USA \n */
  647. /* > Osni Marques, LBNL/NERSC, USA \n */
  648. /* ===================================================================== */
  649. /* Subroutine */ void slalsd_(char *uplo, integer *smlsiz, integer *n, integer
  650. *nrhs, real *d__, real *e, real *b, integer *ldb, real *rcond,
  651. integer *rank, real *work, integer *iwork, integer *info)
  652. {
  653. /* System generated locals */
  654. integer b_dim1, b_offset, i__1, i__2;
  655. real r__1;
  656. /* Local variables */
  657. integer difl, difr;
  658. real rcnd;
  659. integer perm, nsub, nlvl, sqre, bxst;
  660. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  661. integer *, real *, real *);
  662. integer c__, i__, j, k;
  663. real r__;
  664. integer s, u, z__;
  665. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  666. integer *, real *, real *, integer *, real *, integer *, real *,
  667. real *, integer *);
  668. integer poles, sizei, nsize;
  669. extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *,
  670. integer *);
  671. integer nwork, icmpq1, icmpq2;
  672. real cs;
  673. integer bx;
  674. real sn;
  675. integer st;
  676. extern real slamch_(char *);
  677. extern /* Subroutine */ void slasda_(integer *, integer *, integer *,
  678. integer *, real *, real *, real *, integer *, real *, integer *,
  679. real *, real *, real *, real *, integer *, integer *, integer *,
  680. integer *, real *, real *, real *, real *, integer *, integer *);
  681. integer vt;
  682. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  683. extern void slalsa_(
  684. integer *, integer *, integer *, integer *, real *, integer *,
  685. real *, integer *, real *, integer *, real *, integer *, real *,
  686. real *, real *, real *, integer *, integer *, integer *, integer *
  687. , real *, real *, real *, real *, integer *, integer *), slascl_(
  688. char *, integer *, integer *, real *, real *, integer *, integer *
  689. , real *, integer *, integer *);
  690. integer givcol;
  691. extern integer isamax_(integer *, real *, integer *);
  692. extern /* Subroutine */ void slasdq_(char *, integer *, integer *, integer
  693. *, integer *, integer *, real *, real *, real *, integer *, real *
  694. , integer *, real *, integer *, real *, integer *),
  695. slacpy_(char *, integer *, integer *, real *, integer *, real *,
  696. integer *), slartg_(real *, real *, real *, real *, real *
  697. ), slaset_(char *, integer *, integer *, real *, real *, real *,
  698. integer *);
  699. real orgnrm;
  700. integer givnum;
  701. extern real slanst_(char *, integer *, real *, real *);
  702. extern /* Subroutine */ void slasrt_(char *, integer *, real *, integer *);
  703. integer givptr, nm1, smlszp, st1;
  704. real eps;
  705. integer iwk;
  706. real tol;
  707. /* -- LAPACK computational routine (version 3.7.0) -- */
  708. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  709. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  710. /* December 2016 */
  711. /* ===================================================================== */
  712. /* Test the input parameters. */
  713. /* Parameter adjustments */
  714. --d__;
  715. --e;
  716. b_dim1 = *ldb;
  717. b_offset = 1 + b_dim1 * 1;
  718. b -= b_offset;
  719. --work;
  720. --iwork;
  721. /* Function Body */
  722. *info = 0;
  723. if (*n < 0) {
  724. *info = -3;
  725. } else if (*nrhs < 1) {
  726. *info = -4;
  727. } else if (*ldb < 1 || *ldb < *n) {
  728. *info = -8;
  729. }
  730. if (*info != 0) {
  731. i__1 = -(*info);
  732. xerbla_("SLALSD", &i__1, (ftnlen)6);
  733. return;
  734. }
  735. eps = slamch_("Epsilon");
  736. /* Set up the tolerance. */
  737. if (*rcond <= 0.f || *rcond >= 1.f) {
  738. rcnd = eps;
  739. } else {
  740. rcnd = *rcond;
  741. }
  742. *rank = 0;
  743. /* Quick return if possible. */
  744. if (*n == 0) {
  745. return;
  746. } else if (*n == 1) {
  747. if (d__[1] == 0.f) {
  748. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  749. } else {
  750. *rank = 1;
  751. slascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
  752. b_offset], ldb, info);
  753. d__[1] = abs(d__[1]);
  754. }
  755. return;
  756. }
  757. /* Rotate the matrix if it is lower bidiagonal. */
  758. if (*(unsigned char *)uplo == 'L') {
  759. i__1 = *n - 1;
  760. for (i__ = 1; i__ <= i__1; ++i__) {
  761. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  762. d__[i__] = r__;
  763. e[i__] = sn * d__[i__ + 1];
  764. d__[i__ + 1] = cs * d__[i__ + 1];
  765. if (*nrhs == 1) {
  766. srot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  767. c__1, &cs, &sn);
  768. } else {
  769. work[(i__ << 1) - 1] = cs;
  770. work[i__ * 2] = sn;
  771. }
  772. /* L10: */
  773. }
  774. if (*nrhs > 1) {
  775. i__1 = *nrhs;
  776. for (i__ = 1; i__ <= i__1; ++i__) {
  777. i__2 = *n - 1;
  778. for (j = 1; j <= i__2; ++j) {
  779. cs = work[(j << 1) - 1];
  780. sn = work[j * 2];
  781. srot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
  782. b_dim1], &c__1, &cs, &sn);
  783. /* L20: */
  784. }
  785. /* L30: */
  786. }
  787. }
  788. }
  789. /* Scale. */
  790. nm1 = *n - 1;
  791. orgnrm = slanst_("M", n, &d__[1], &e[1]);
  792. if (orgnrm == 0.f) {
  793. slaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  794. return;
  795. }
  796. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
  797. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
  798. info);
  799. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  800. /* the problem with another solver. */
  801. if (*n <= *smlsiz) {
  802. nwork = *n * *n + 1;
  803. slaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
  804. slasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
  805. work[1], n, &b[b_offset], ldb, &work[nwork], info);
  806. if (*info != 0) {
  807. return;
  808. }
  809. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  810. i__1 = *n;
  811. for (i__ = 1; i__ <= i__1; ++i__) {
  812. if (d__[i__] <= tol) {
  813. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
  814. } else {
  815. slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
  816. i__ + b_dim1], ldb, info);
  817. ++(*rank);
  818. }
  819. /* L40: */
  820. }
  821. sgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
  822. c_b6, &work[nwork], n);
  823. slacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
  824. /* Unscale. */
  825. slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
  826. info);
  827. slasrt_("D", n, &d__[1], info);
  828. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
  829. ldb, info);
  830. return;
  831. }
  832. /* Book-keeping and setting up some constants. */
  833. nlvl = (integer) (log((real) (*n) / (real) (*smlsiz + 1)) / log(2.f)) + 1;
  834. smlszp = *smlsiz + 1;
  835. u = 1;
  836. vt = *smlsiz * *n + 1;
  837. difl = vt + smlszp * *n;
  838. difr = difl + nlvl * *n;
  839. z__ = difr + (nlvl * *n << 1);
  840. c__ = z__ + nlvl * *n;
  841. s = c__ + *n;
  842. poles = s + *n;
  843. givnum = poles + (nlvl << 1) * *n;
  844. bx = givnum + (nlvl << 1) * *n;
  845. nwork = bx + *n * *nrhs;
  846. sizei = *n + 1;
  847. k = sizei + *n;
  848. givptr = k + *n;
  849. perm = givptr + *n;
  850. givcol = perm + nlvl * *n;
  851. iwk = givcol + (nlvl * *n << 1);
  852. st = 1;
  853. sqre = 0;
  854. icmpq1 = 1;
  855. icmpq2 = 0;
  856. nsub = 0;
  857. i__1 = *n;
  858. for (i__ = 1; i__ <= i__1; ++i__) {
  859. if ((r__1 = d__[i__], abs(r__1)) < eps) {
  860. d__[i__] = r_sign(&eps, &d__[i__]);
  861. }
  862. /* L50: */
  863. }
  864. i__1 = nm1;
  865. for (i__ = 1; i__ <= i__1; ++i__) {
  866. if ((r__1 = e[i__], abs(r__1)) < eps || i__ == nm1) {
  867. ++nsub;
  868. iwork[nsub] = st;
  869. /* Subproblem found. First determine its size and then */
  870. /* apply divide and conquer on it. */
  871. if (i__ < nm1) {
  872. /* A subproblem with E(I) small for I < NM1. */
  873. nsize = i__ - st + 1;
  874. iwork[sizei + nsub - 1] = nsize;
  875. } else if ((r__1 = e[i__], abs(r__1)) >= eps) {
  876. /* A subproblem with E(NM1) not too small but I = NM1. */
  877. nsize = *n - st + 1;
  878. iwork[sizei + nsub - 1] = nsize;
  879. } else {
  880. /* A subproblem with E(NM1) small. This implies an */
  881. /* 1-by-1 subproblem at D(N), which is not solved */
  882. /* explicitly. */
  883. nsize = i__ - st + 1;
  884. iwork[sizei + nsub - 1] = nsize;
  885. ++nsub;
  886. iwork[nsub] = *n;
  887. iwork[sizei + nsub - 1] = 1;
  888. scopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  889. }
  890. st1 = st - 1;
  891. if (nsize == 1) {
  892. /* This is a 1-by-1 subproblem and is not solved */
  893. /* explicitly. */
  894. scopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  895. } else if (nsize <= *smlsiz) {
  896. /* This is a small subproblem and is solved by SLASDQ. */
  897. slaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
  898. n);
  899. slasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
  900. st], &work[vt + st1], n, &work[nwork], n, &b[st +
  901. b_dim1], ldb, &work[nwork], info);
  902. if (*info != 0) {
  903. return;
  904. }
  905. slacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  906. st1], n);
  907. } else {
  908. /* A large problem. Solve it using divide and conquer. */
  909. slasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  910. work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
  911. work[difl + st1], &work[difr + st1], &work[z__ + st1],
  912. &work[poles + st1], &iwork[givptr + st1], &iwork[
  913. givcol + st1], n, &iwork[perm + st1], &work[givnum +
  914. st1], &work[c__ + st1], &work[s + st1], &work[nwork],
  915. &iwork[iwk], info);
  916. if (*info != 0) {
  917. return;
  918. }
  919. bxst = bx + st1;
  920. slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  921. work[bxst], n, &work[u + st1], n, &work[vt + st1], &
  922. iwork[k + st1], &work[difl + st1], &work[difr + st1],
  923. &work[z__ + st1], &work[poles + st1], &iwork[givptr +
  924. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
  925. work[givnum + st1], &work[c__ + st1], &work[s + st1],
  926. &work[nwork], &iwork[iwk], info);
  927. if (*info != 0) {
  928. return;
  929. }
  930. }
  931. st = i__ + 1;
  932. }
  933. /* L60: */
  934. }
  935. /* Apply the singular values and treat the tiny ones as zero. */
  936. tol = rcnd * (r__1 = d__[isamax_(n, &d__[1], &c__1)], abs(r__1));
  937. i__1 = *n;
  938. for (i__ = 1; i__ <= i__1; ++i__) {
  939. /* Some of the elements in D can be negative because 1-by-1 */
  940. /* subproblems were not solved explicitly. */
  941. if ((r__1 = d__[i__], abs(r__1)) <= tol) {
  942. slaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
  943. } else {
  944. ++(*rank);
  945. slascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
  946. bx + i__ - 1], n, info);
  947. }
  948. d__[i__] = (r__1 = d__[i__], abs(r__1));
  949. /* L70: */
  950. }
  951. /* Now apply back the right singular vectors. */
  952. icmpq2 = 1;
  953. i__1 = nsub;
  954. for (i__ = 1; i__ <= i__1; ++i__) {
  955. st = iwork[i__];
  956. st1 = st - 1;
  957. nsize = iwork[sizei + i__ - 1];
  958. bxst = bx + st1;
  959. if (nsize == 1) {
  960. scopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  961. } else if (nsize <= *smlsiz) {
  962. sgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
  963. &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
  964. } else {
  965. slalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  966. b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
  967. k + st1], &work[difl + st1], &work[difr + st1], &work[z__
  968. + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
  969. givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
  970. &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
  971. iwk], info);
  972. if (*info != 0) {
  973. return;
  974. }
  975. }
  976. /* L80: */
  977. }
  978. /* Unscale and sort the singular values. */
  979. slascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
  980. slasrt_("D", n, &d__[1], info);
  981. slascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
  982. info);
  983. return;
  984. /* End of SLALSD */
  985. } /* slalsd_ */