You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarfb_gett.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static real c_b9 = 1.f;
  488. static real c_b21 = -1.f;
  489. /* > \brief \b SLARFB_GETT */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download SLARFB_GETT + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb_
  496. gett.f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb_
  499. gett.f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb_
  502. gett.f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE SLARFB_GETT( IDENT, M, N, K, T, LDT, A, LDA, B, LDB, */
  508. /* $ WORK, LDWORK ) */
  509. /* IMPLICIT NONE */
  510. /* CHARACTER IDENT */
  511. /* INTEGER K, LDA, LDB, LDT, LDWORK, M, N */
  512. /* REAL A( LDA, * ), B( LDB, * ), T( LDT, * ), */
  513. /* $ WORK( LDWORK, * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > SLARFB_GETT applies a real Householder block reflector H from the */
  520. /* > left to a real (K+M)-by-N "triangular-pentagonal" matrix */
  521. /* > composed of two block matrices: an upper trapezoidal K-by-N matrix A */
  522. /* > stored in the array A, and a rectangular M-by-(N-K) matrix B, stored */
  523. /* > in the array B. The block reflector H is stored in a compact */
  524. /* > WY-representation, where the elementary reflectors are in the */
  525. /* > arrays A, B and T. See Further Details section. */
  526. /* > \endverbatim */
  527. /* Arguments: */
  528. /* ========== */
  529. /* > \param[in] IDENT */
  530. /* > \verbatim */
  531. /* > IDENT is CHARACTER*1 */
  532. /* > If IDENT = not 'I', or not 'i', then V1 is unit */
  533. /* > lower-triangular and stored in the left K-by-K block of */
  534. /* > the input matrix A, */
  535. /* > If IDENT = 'I' or 'i', then V1 is an identity matrix and */
  536. /* > not stored. */
  537. /* > See Further Details section. */
  538. /* > \endverbatim */
  539. /* > */
  540. /* > \param[in] M */
  541. /* > \verbatim */
  542. /* > M is INTEGER */
  543. /* > The number of rows of the matrix B. */
  544. /* > M >= 0. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] N */
  548. /* > \verbatim */
  549. /* > N is INTEGER */
  550. /* > The number of columns of the matrices A and B. */
  551. /* > N >= 0. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] K */
  555. /* > \verbatim */
  556. /* > K is INTEGER */
  557. /* > The number or rows of the matrix A. */
  558. /* > K is also order of the matrix T, i.e. the number of */
  559. /* > elementary reflectors whose product defines the block */
  560. /* > reflector. 0 <= K <= N. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] T */
  564. /* > \verbatim */
  565. /* > T is REAL array, dimension (LDT,K) */
  566. /* > The upper-triangular K-by-K matrix T in the representation */
  567. /* > of the block reflector. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] LDT */
  571. /* > \verbatim */
  572. /* > LDT is INTEGER */
  573. /* > The leading dimension of the array T. LDT >= K. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] A */
  577. /* > \verbatim */
  578. /* > A is REAL array, dimension (LDA,N) */
  579. /* > */
  580. /* > On entry: */
  581. /* > a) In the K-by-N upper-trapezoidal part A: input matrix A. */
  582. /* > b) In the columns below the diagonal: columns of V1 */
  583. /* > (ones are not stored on the diagonal). */
  584. /* > */
  585. /* > On exit: */
  586. /* > A is overwritten by rectangular K-by-N product H*A. */
  587. /* > */
  588. /* > See Further Details section. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[in] LDA */
  592. /* > \verbatim */
  593. /* > LDB is INTEGER */
  594. /* > The leading dimension of the array A. LDA >= f2cmax(1,K). */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in,out] B */
  598. /* > \verbatim */
  599. /* > B is REAL array, dimension (LDB,N) */
  600. /* > */
  601. /* > On entry: */
  602. /* > a) In the M-by-(N-K) right block: input matrix B. */
  603. /* > b) In the M-by-N left block: columns of V2. */
  604. /* > */
  605. /* > On exit: */
  606. /* > B is overwritten by rectangular M-by-N product H*B. */
  607. /* > */
  608. /* > See Further Details section. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDB */
  612. /* > \verbatim */
  613. /* > LDB is INTEGER */
  614. /* > The leading dimension of the array B. LDB >= f2cmax(1,M). */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] WORK */
  618. /* > \verbatim */
  619. /* > WORK is REAL array, */
  620. /* > dimension (LDWORK,f2cmax(K,N-K)) */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDWORK */
  624. /* > \verbatim */
  625. /* > LDWORK is INTEGER */
  626. /* > The leading dimension of the array WORK. LDWORK>=f2cmax(1,K). */
  627. /* > */
  628. /* > \endverbatim */
  629. /* Authors: */
  630. /* ======== */
  631. /* > \author Univ. of Tennessee */
  632. /* > \author Univ. of California Berkeley */
  633. /* > \author Univ. of Colorado Denver */
  634. /* > \author NAG Ltd. */
  635. /* > \ingroup singleOTHERauxiliary */
  636. /* > \par Contributors: */
  637. /* ================== */
  638. /* > */
  639. /* > \verbatim */
  640. /* > */
  641. /* > November 2020, Igor Kozachenko, */
  642. /* > Computer Science Division, */
  643. /* > University of California, Berkeley */
  644. /* > */
  645. /* > \endverbatim */
  646. /* > \par Further Details: */
  647. /* ===================== */
  648. /* > */
  649. /* > \verbatim */
  650. /* > */
  651. /* > (1) Description of the Algebraic Operation. */
  652. /* > */
  653. /* > The matrix A is a K-by-N matrix composed of two column block */
  654. /* > matrices, A1, which is K-by-K, and A2, which is K-by-(N-K): */
  655. /* > A = ( A1, A2 ). */
  656. /* > The matrix B is an M-by-N matrix composed of two column block */
  657. /* > matrices, B1, which is M-by-K, and B2, which is M-by-(N-K): */
  658. /* > B = ( B1, B2 ). */
  659. /* > */
  660. /* > Perform the operation: */
  661. /* > */
  662. /* > ( A_out ) := H * ( A_in ) = ( I - V * T * V**T ) * ( A_in ) = */
  663. /* > ( B_out ) ( B_in ) ( B_in ) */
  664. /* > = ( I - ( V1 ) * T * ( V1**T, V2**T ) ) * ( A_in ) */
  665. /* > ( V2 ) ( B_in ) */
  666. /* > On input: */
  667. /* > */
  668. /* > a) ( A_in ) consists of two block columns: */
  669. /* > ( B_in ) */
  670. /* > */
  671. /* > ( A_in ) = (( A1_in ) ( A2_in )) = (( A1_in ) ( A2_in )) */
  672. /* > ( B_in ) (( B1_in ) ( B2_in )) (( 0 ) ( B2_in )), */
  673. /* > */
  674. /* > where the column blocks are: */
  675. /* > */
  676. /* > ( A1_in ) is a K-by-K upper-triangular matrix stored in the */
  677. /* > upper triangular part of the array A(1:K,1:K). */
  678. /* > ( B1_in ) is an M-by-K rectangular ZERO matrix and not stored. */
  679. /* > */
  680. /* > ( A2_in ) is a K-by-(N-K) rectangular matrix stored */
  681. /* > in the array A(1:K,K+1:N). */
  682. /* > ( B2_in ) is an M-by-(N-K) rectangular matrix stored */
  683. /* > in the array B(1:M,K+1:N). */
  684. /* > */
  685. /* > b) V = ( V1 ) */
  686. /* > ( V2 ) */
  687. /* > */
  688. /* > where: */
  689. /* > 1) if IDENT == 'I',V1 is a K-by-K identity matrix, not stored; */
  690. /* > 2) if IDENT != 'I',V1 is a K-by-K unit lower-triangular matrix, */
  691. /* > stored in the lower-triangular part of the array */
  692. /* > A(1:K,1:K) (ones are not stored), */
  693. /* > and V2 is an M-by-K rectangular stored the array B(1:M,1:K), */
  694. /* > (because on input B1_in is a rectangular zero */
  695. /* > matrix that is not stored and the space is */
  696. /* > used to store V2). */
  697. /* > */
  698. /* > c) T is a K-by-K upper-triangular matrix stored */
  699. /* > in the array T(1:K,1:K). */
  700. /* > */
  701. /* > On output: */
  702. /* > */
  703. /* > a) ( A_out ) consists of two block columns: */
  704. /* > ( B_out ) */
  705. /* > */
  706. /* > ( A_out ) = (( A1_out ) ( A2_out )) */
  707. /* > ( B_out ) (( B1_out ) ( B2_out )), */
  708. /* > */
  709. /* > where the column blocks are: */
  710. /* > */
  711. /* > ( A1_out ) is a K-by-K square matrix, or a K-by-K */
  712. /* > upper-triangular matrix, if V1 is an */
  713. /* > identity matrix. AiOut is stored in */
  714. /* > the array A(1:K,1:K). */
  715. /* > ( B1_out ) is an M-by-K rectangular matrix stored */
  716. /* > in the array B(1:M,K:N). */
  717. /* > */
  718. /* > ( A2_out ) is a K-by-(N-K) rectangular matrix stored */
  719. /* > in the array A(1:K,K+1:N). */
  720. /* > ( B2_out ) is an M-by-(N-K) rectangular matrix stored */
  721. /* > in the array B(1:M,K+1:N). */
  722. /* > */
  723. /* > */
  724. /* > The operation above can be represented as the same operation */
  725. /* > on each block column: */
  726. /* > */
  727. /* > ( A1_out ) := H * ( A1_in ) = ( I - V * T * V**T ) * ( A1_in ) */
  728. /* > ( B1_out ) ( 0 ) ( 0 ) */
  729. /* > */
  730. /* > ( A2_out ) := H * ( A2_in ) = ( I - V * T * V**T ) * ( A2_in ) */
  731. /* > ( B2_out ) ( B2_in ) ( B2_in ) */
  732. /* > */
  733. /* > If IDENT != 'I': */
  734. /* > */
  735. /* > The computation for column block 1: */
  736. /* > */
  737. /* > A1_out: = A1_in - V1*T*(V1**T)*A1_in */
  738. /* > */
  739. /* > B1_out: = - V2*T*(V1**T)*A1_in */
  740. /* > */
  741. /* > The computation for column block 2, which exists if N > K: */
  742. /* > */
  743. /* > A2_out: = A2_in - V1*T*( (V1**T)*A2_in + (V2**T)*B2_in ) */
  744. /* > */
  745. /* > B2_out: = B2_in - V2*T*( (V1**T)*A2_in + (V2**T)*B2_in ) */
  746. /* > */
  747. /* > If IDENT == 'I': */
  748. /* > */
  749. /* > The operation for column block 1: */
  750. /* > */
  751. /* > A1_out: = A1_in - V1*T**A1_in */
  752. /* > */
  753. /* > B1_out: = - V2*T**A1_in */
  754. /* > */
  755. /* > The computation for column block 2, which exists if N > K: */
  756. /* > */
  757. /* > A2_out: = A2_in - T*( A2_in + (V2**T)*B2_in ) */
  758. /* > */
  759. /* > B2_out: = B2_in - V2*T*( A2_in + (V2**T)*B2_in ) */
  760. /* > */
  761. /* > (2) Description of the Algorithmic Computation. */
  762. /* > */
  763. /* > In the first step, we compute column block 2, i.e. A2 and B2. */
  764. /* > Here, we need to use the K-by-(N-K) rectangular workspace */
  765. /* > matrix W2 that is of the same size as the matrix A2. */
  766. /* > W2 is stored in the array WORK(1:K,1:(N-K)). */
  767. /* > */
  768. /* > In the second step, we compute column block 1, i.e. A1 and B1. */
  769. /* > Here, we need to use the K-by-K square workspace matrix W1 */
  770. /* > that is of the same size as the as the matrix A1. */
  771. /* > W1 is stored in the array WORK(1:K,1:K). */
  772. /* > */
  773. /* > NOTE: Hence, in this routine, we need the workspace array WORK */
  774. /* > only of size WORK(1:K,1:f2cmax(K,N-K)) so it can hold both W2 from */
  775. /* > the first step and W1 from the second step. */
  776. /* > */
  777. /* > Case (A), when V1 is unit lower-triangular, i.e. IDENT != 'I', */
  778. /* > more computations than in the Case (B). */
  779. /* > */
  780. /* > if( IDENT != 'I' ) then */
  781. /* > if ( N > K ) then */
  782. /* > (First Step - column block 2) */
  783. /* > col2_(1) W2: = A2 */
  784. /* > col2_(2) W2: = (V1**T) * W2 = (unit_lower_tr_of_(A1)**T) * W2 */
  785. /* > col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 */
  786. /* > col2_(4) W2: = T * W2 */
  787. /* > col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 */
  788. /* > col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 */
  789. /* > col2_(7) A2: = A2 - W2 */
  790. /* > else */
  791. /* > (Second Step - column block 1) */
  792. /* > col1_(1) W1: = A1 */
  793. /* > col1_(2) W1: = (V1**T) * W1 = (unit_lower_tr_of_(A1)**T) * W1 */
  794. /* > col1_(3) W1: = T * W1 */
  795. /* > col1_(4) B1: = - V2 * W1 = - B1 * W1 */
  796. /* > col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 */
  797. /* > col1_(6) square A1: = A1 - W1 */
  798. /* > end if */
  799. /* > end if */
  800. /* > */
  801. /* > Case (B), when V1 is an identity matrix, i.e. IDENT == 'I', */
  802. /* > less computations than in the Case (A) */
  803. /* > */
  804. /* > if( IDENT == 'I' ) then */
  805. /* > if ( N > K ) then */
  806. /* > (First Step - column block 2) */
  807. /* > col2_(1) W2: = A2 */
  808. /* > col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 */
  809. /* > col2_(4) W2: = T * W2 */
  810. /* > col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 */
  811. /* > col2_(7) A2: = A2 - W2 */
  812. /* > else */
  813. /* > (Second Step - column block 1) */
  814. /* > col1_(1) W1: = A1 */
  815. /* > col1_(3) W1: = T * W1 */
  816. /* > col1_(4) B1: = - V2 * W1 = - B1 * W1 */
  817. /* > col1_(6) upper-triangular_of_(A1): = A1 - W1 */
  818. /* > end if */
  819. /* > end if */
  820. /* > */
  821. /* > Combine these cases (A) and (B) together, this is the resulting */
  822. /* > algorithm: */
  823. /* > */
  824. /* > if ( N > K ) then */
  825. /* > */
  826. /* > (First Step - column block 2) */
  827. /* > */
  828. /* > col2_(1) W2: = A2 */
  829. /* > if( IDENT != 'I' ) then */
  830. /* > col2_(2) W2: = (V1**T) * W2 */
  831. /* > = (unit_lower_tr_of_(A1)**T) * W2 */
  832. /* > end if */
  833. /* > col2_(3) W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2] */
  834. /* > col2_(4) W2: = T * W2 */
  835. /* > col2_(5) B2: = B2 - V2 * W2 = B2 - B1 * W2 */
  836. /* > if( IDENT != 'I' ) then */
  837. /* > col2_(6) W2: = V1 * W2 = unit_lower_tr_of_(A1) * W2 */
  838. /* > end if */
  839. /* > col2_(7) A2: = A2 - W2 */
  840. /* > */
  841. /* > else */
  842. /* > */
  843. /* > (Second Step - column block 1) */
  844. /* > */
  845. /* > col1_(1) W1: = A1 */
  846. /* > if( IDENT != 'I' ) then */
  847. /* > col1_(2) W1: = (V1**T) * W1 */
  848. /* > = (unit_lower_tr_of_(A1)**T) * W1 */
  849. /* > end if */
  850. /* > col1_(3) W1: = T * W1 */
  851. /* > col1_(4) B1: = - V2 * W1 = - B1 * W1 */
  852. /* > if( IDENT != 'I' ) then */
  853. /* > col1_(5) square W1: = V1 * W1 = unit_lower_tr_of_(A1) * W1 */
  854. /* > col1_(6_a) below_diag_of_(A1): = - below_diag_of_(W1) */
  855. /* > end if */
  856. /* > col1_(6_b) up_tr_of_(A1): = up_tr_of_(A1) - up_tr_of_(W1) */
  857. /* > */
  858. /* > end if */
  859. /* > */
  860. /* > \endverbatim */
  861. /* > */
  862. /* ===================================================================== */
  863. /* Subroutine */ void slarfb_gett_(char *ident, integer *m, integer *n,
  864. integer *k, real *t, integer *ldt, real *a, integer *lda, real *b,
  865. integer *ldb, real *work, integer *ldwork)
  866. {
  867. /* System generated locals */
  868. integer a_dim1, a_offset, b_dim1, b_offset, t_dim1, t_offset, work_dim1,
  869. work_offset, i__1, i__2;
  870. /* Local variables */
  871. integer i__, j;
  872. extern logical lsame_(char *, char *);
  873. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  874. integer *, real *, real *, integer *, real *, integer *, real *,
  875. real *, integer *), scopy_(integer *, real *,
  876. integer *, real *, integer *), strmm_(char *, char *, char *,
  877. char *, integer *, integer *, real *, real *, integer *, real *,
  878. integer *);
  879. logical lnotident;
  880. /* -- LAPACK auxiliary routine -- */
  881. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  882. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  883. /* ===================================================================== */
  884. /* Quick return if possible */
  885. /* Parameter adjustments */
  886. t_dim1 = *ldt;
  887. t_offset = 1 + t_dim1 * 1;
  888. t -= t_offset;
  889. a_dim1 = *lda;
  890. a_offset = 1 + a_dim1 * 1;
  891. a -= a_offset;
  892. b_dim1 = *ldb;
  893. b_offset = 1 + b_dim1 * 1;
  894. b -= b_offset;
  895. work_dim1 = *ldwork;
  896. work_offset = 1 + work_dim1 * 1;
  897. work -= work_offset;
  898. /* Function Body */
  899. if (*m < 0 || *n <= 0 || *k == 0 || *k > *n) {
  900. return;
  901. }
  902. lnotident = ! lsame_(ident, "I");
  903. /* ------------------------------------------------------------------ */
  904. /* First Step. Computation of the Column Block 2: */
  905. /* ( A2 ) := H * ( A2 ) */
  906. /* ( B2 ) ( B2 ) */
  907. /* ------------------------------------------------------------------ */
  908. if (*n > *k) {
  909. /* col2_(1) Compute W2: = A2. Therefore, copy A2 = A(1:K, K+1:N) */
  910. /* into W2=WORK(1:K, 1:N-K) column-by-column. */
  911. i__1 = *n - *k;
  912. for (j = 1; j <= i__1; ++j) {
  913. scopy_(k, &a[(*k + j) * a_dim1 + 1], &c__1, &work[j * work_dim1 +
  914. 1], &c__1);
  915. }
  916. if (lnotident) {
  917. /* col2_(2) Compute W2: = (V1**T) * W2 = (A1**T) * W2, */
  918. /* V1 is not an identy matrix, but unit lower-triangular */
  919. /* V1 stored in A1 (diagonal ones are not stored). */
  920. i__1 = *n - *k;
  921. strmm_("L", "L", "T", "U", k, &i__1, &c_b9, &a[a_offset], lda, &
  922. work[work_offset], ldwork);
  923. }
  924. /* col2_(3) Compute W2: = W2 + (V2**T) * B2 = W2 + (B1**T) * B2 */
  925. /* V2 stored in B1. */
  926. if (*m > 0) {
  927. i__1 = *n - *k;
  928. sgemm_("T", "N", k, &i__1, m, &c_b9, &b[b_offset], ldb, &b[(*k +
  929. 1) * b_dim1 + 1], ldb, &c_b9, &work[work_offset], ldwork);
  930. }
  931. /* col2_(4) Compute W2: = T * W2, */
  932. /* T is upper-triangular. */
  933. i__1 = *n - *k;
  934. strmm_("L", "U", "N", "N", k, &i__1, &c_b9, &t[t_offset], ldt, &work[
  935. work_offset], ldwork);
  936. /* col2_(5) Compute B2: = B2 - V2 * W2 = B2 - B1 * W2, */
  937. /* V2 stored in B1. */
  938. if (*m > 0) {
  939. i__1 = *n - *k;
  940. sgemm_("N", "N", m, &i__1, k, &c_b21, &b[b_offset], ldb, &work[
  941. work_offset], ldwork, &c_b9, &b[(*k + 1) * b_dim1 + 1],
  942. ldb);
  943. }
  944. if (lnotident) {
  945. /* col2_(6) Compute W2: = V1 * W2 = A1 * W2, */
  946. /* V1 is not an identity matrix, but unit lower-triangular, */
  947. /* V1 stored in A1 (diagonal ones are not stored). */
  948. i__1 = *n - *k;
  949. strmm_("L", "L", "N", "U", k, &i__1, &c_b9, &a[a_offset], lda, &
  950. work[work_offset], ldwork);
  951. }
  952. /* col2_(7) Compute A2: = A2 - W2 = */
  953. /* = A(1:K, K+1:N-K) - WORK(1:K, 1:N-K), */
  954. /* column-by-column. */
  955. i__1 = *n - *k;
  956. for (j = 1; j <= i__1; ++j) {
  957. i__2 = *k;
  958. for (i__ = 1; i__ <= i__2; ++i__) {
  959. a[i__ + (*k + j) * a_dim1] -= work[i__ + j * work_dim1];
  960. }
  961. }
  962. }
  963. /* ------------------------------------------------------------------ */
  964. /* Second Step. Computation of the Column Block 1: */
  965. /* ( A1 ) := H * ( A1 ) */
  966. /* ( B1 ) ( 0 ) */
  967. /* ------------------------------------------------------------------ */
  968. /* col1_(1) Compute W1: = A1. Copy the upper-triangular */
  969. /* A1 = A(1:K, 1:K) into the upper-triangular */
  970. /* W1 = WORK(1:K, 1:K) column-by-column. */
  971. i__1 = *k;
  972. for (j = 1; j <= i__1; ++j) {
  973. scopy_(&j, &a[j * a_dim1 + 1], &c__1, &work[j * work_dim1 + 1], &c__1)
  974. ;
  975. }
  976. /* Set the subdiagonal elements of W1 to zero column-by-column. */
  977. i__1 = *k - 1;
  978. for (j = 1; j <= i__1; ++j) {
  979. i__2 = *k;
  980. for (i__ = j + 1; i__ <= i__2; ++i__) {
  981. work[i__ + j * work_dim1] = 0.f;
  982. }
  983. }
  984. if (lnotident) {
  985. /* col1_(2) Compute W1: = (V1**T) * W1 = (A1**T) * W1, */
  986. /* V1 is not an identity matrix, but unit lower-triangular */
  987. /* V1 stored in A1 (diagonal ones are not stored), */
  988. /* W1 is upper-triangular with zeroes below the diagonal. */
  989. strmm_("L", "L", "T", "U", k, k, &c_b9, &a[a_offset], lda, &work[
  990. work_offset], ldwork);
  991. }
  992. /* col1_(3) Compute W1: = T * W1, */
  993. /* T is upper-triangular, */
  994. /* W1 is upper-triangular with zeroes below the diagonal. */
  995. strmm_("L", "U", "N", "N", k, k, &c_b9, &t[t_offset], ldt, &work[
  996. work_offset], ldwork);
  997. /* col1_(4) Compute B1: = - V2 * W1 = - B1 * W1, */
  998. /* V2 = B1, W1 is upper-triangular with zeroes below the diagonal. */
  999. if (*m > 0) {
  1000. strmm_("R", "U", "N", "N", m, k, &c_b21, &work[work_offset], ldwork, &
  1001. b[b_offset], ldb);
  1002. }
  1003. if (lnotident) {
  1004. /* col1_(5) Compute W1: = V1 * W1 = A1 * W1, */
  1005. /* V1 is not an identity matrix, but unit lower-triangular */
  1006. /* V1 stored in A1 (diagonal ones are not stored), */
  1007. /* W1 is upper-triangular on input with zeroes below the diagonal, */
  1008. /* and square on output. */
  1009. strmm_("L", "L", "N", "U", k, k, &c_b9, &a[a_offset], lda, &work[
  1010. work_offset], ldwork);
  1011. /* col1_(6) Compute A1: = A1 - W1 = A(1:K, 1:K) - WORK(1:K, 1:K) */
  1012. /* column-by-column. A1 is upper-triangular on input. */
  1013. /* If IDENT, A1 is square on output, and W1 is square, */
  1014. /* if NOT IDENT, A1 is upper-triangular on output, */
  1015. /* W1 is upper-triangular. */
  1016. /* col1_(6)_a Compute elements of A1 below the diagonal. */
  1017. i__1 = *k - 1;
  1018. for (j = 1; j <= i__1; ++j) {
  1019. i__2 = *k;
  1020. for (i__ = j + 1; i__ <= i__2; ++i__) {
  1021. a[i__ + j * a_dim1] = -work[i__ + j * work_dim1];
  1022. }
  1023. }
  1024. }
  1025. /* col1_(6)_b Compute elements of A1 on and above the diagonal. */
  1026. i__1 = *k;
  1027. for (j = 1; j <= i__1; ++j) {
  1028. i__2 = j;
  1029. for (i__ = 1; i__ <= i__2; ++i__) {
  1030. a[i__ + j * a_dim1] -= work[i__ + j * work_dim1];
  1031. }
  1032. }
  1033. return;
  1034. /* End of SLARFB_GETT */
  1035. } /* slarfb_gett__ */