You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztrevc.c 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b2 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* > \brief \b ZTREVC */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZTREVC + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrevc.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrevc.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrevc.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
  507. /* LDVR, MM, M, WORK, RWORK, INFO ) */
  508. /* CHARACTER HOWMNY, SIDE */
  509. /* INTEGER INFO, LDT, LDVL, LDVR, M, MM, N */
  510. /* LOGICAL SELECT( * ) */
  511. /* DOUBLE PRECISION RWORK( * ) */
  512. /* COMPLEX*16 T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
  513. /* $ WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > */
  519. /* > ZTREVC computes some or all of the right and/or left eigenvectors of */
  520. /* > a complex upper triangular matrix T. */
  521. /* > Matrices of this type are produced by the Schur factorization of */
  522. /* > a complex general matrix: A = Q*T*Q**H, as computed by ZHSEQR. */
  523. /* > */
  524. /* > The right eigenvector x and the left eigenvector y of T corresponding */
  525. /* > to an eigenvalue w are defined by: */
  526. /* > */
  527. /* > T*x = w*x, (y**H)*T = w*(y**H) */
  528. /* > */
  529. /* > where y**H denotes the conjugate transpose of the vector y. */
  530. /* > The eigenvalues are not input to this routine, but are read directly */
  531. /* > from the diagonal of T. */
  532. /* > */
  533. /* > This routine returns the matrices X and/or Y of right and left */
  534. /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
  535. /* > input matrix. If Q is the unitary factor that reduces a matrix A to */
  536. /* > Schur form T, then Q*X and Q*Y are the matrices of right and left */
  537. /* > eigenvectors of A. */
  538. /* > \endverbatim */
  539. /* Arguments: */
  540. /* ========== */
  541. /* > \param[in] SIDE */
  542. /* > \verbatim */
  543. /* > SIDE is CHARACTER*1 */
  544. /* > = 'R': compute right eigenvectors only; */
  545. /* > = 'L': compute left eigenvectors only; */
  546. /* > = 'B': compute both right and left eigenvectors. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] HOWMNY */
  550. /* > \verbatim */
  551. /* > HOWMNY is CHARACTER*1 */
  552. /* > = 'A': compute all right and/or left eigenvectors; */
  553. /* > = 'B': compute all right and/or left eigenvectors, */
  554. /* > backtransformed using the matrices supplied in */
  555. /* > VR and/or VL; */
  556. /* > = 'S': compute selected right and/or left eigenvectors, */
  557. /* > as indicated by the logical array SELECT. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] SELECT */
  561. /* > \verbatim */
  562. /* > SELECT is LOGICAL array, dimension (N) */
  563. /* > If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
  564. /* > computed. */
  565. /* > The eigenvector corresponding to the j-th eigenvalue is */
  566. /* > computed if SELECT(j) = .TRUE.. */
  567. /* > Not referenced if HOWMNY = 'A' or 'B'. */
  568. /* > \endverbatim */
  569. /* > */
  570. /* > \param[in] N */
  571. /* > \verbatim */
  572. /* > N is INTEGER */
  573. /* > The order of the matrix T. N >= 0. */
  574. /* > \endverbatim */
  575. /* > */
  576. /* > \param[in,out] T */
  577. /* > \verbatim */
  578. /* > T is COMPLEX*16 array, dimension (LDT,N) */
  579. /* > The upper triangular matrix T. T is modified, but restored */
  580. /* > on exit. */
  581. /* > \endverbatim */
  582. /* > */
  583. /* > \param[in] LDT */
  584. /* > \verbatim */
  585. /* > LDT is INTEGER */
  586. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  587. /* > \endverbatim */
  588. /* > */
  589. /* > \param[in,out] VL */
  590. /* > \verbatim */
  591. /* > VL is COMPLEX*16 array, dimension (LDVL,MM) */
  592. /* > On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
  593. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  594. /* > Schur vectors returned by ZHSEQR). */
  595. /* > On exit, if SIDE = 'L' or 'B', VL contains: */
  596. /* > if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
  597. /* > if HOWMNY = 'B', the matrix Q*Y; */
  598. /* > if HOWMNY = 'S', the left eigenvectors of T specified by */
  599. /* > SELECT, stored consecutively in the columns */
  600. /* > of VL, in the same order as their */
  601. /* > eigenvalues. */
  602. /* > Not referenced if SIDE = 'R'. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in] LDVL */
  606. /* > \verbatim */
  607. /* > LDVL is INTEGER */
  608. /* > The leading dimension of the array VL. LDVL >= 1, and if */
  609. /* > SIDE = 'L' or 'B', LDVL >= N. */
  610. /* > \endverbatim */
  611. /* > */
  612. /* > \param[in,out] VR */
  613. /* > \verbatim */
  614. /* > VR is COMPLEX*16 array, dimension (LDVR,MM) */
  615. /* > On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
  616. /* > contain an N-by-N matrix Q (usually the unitary matrix Q of */
  617. /* > Schur vectors returned by ZHSEQR). */
  618. /* > On exit, if SIDE = 'R' or 'B', VR contains: */
  619. /* > if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
  620. /* > if HOWMNY = 'B', the matrix Q*X; */
  621. /* > if HOWMNY = 'S', the right eigenvectors of T specified by */
  622. /* > SELECT, stored consecutively in the columns */
  623. /* > of VR, in the same order as their */
  624. /* > eigenvalues. */
  625. /* > Not referenced if SIDE = 'L'. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDVR */
  629. /* > \verbatim */
  630. /* > LDVR is INTEGER */
  631. /* > The leading dimension of the array VR. LDVR >= 1, and if */
  632. /* > SIDE = 'R' or 'B'; LDVR >= N. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] MM */
  636. /* > \verbatim */
  637. /* > MM is INTEGER */
  638. /* > The number of columns in the arrays VL and/or VR. MM >= M. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[out] M */
  642. /* > \verbatim */
  643. /* > M is INTEGER */
  644. /* > The number of columns in the arrays VL and/or VR actually */
  645. /* > used to store the eigenvectors. If HOWMNY = 'A' or 'B', M */
  646. /* > is set to N. Each selected eigenvector occupies one */
  647. /* > column. */
  648. /* > \endverbatim */
  649. /* > */
  650. /* > \param[out] WORK */
  651. /* > \verbatim */
  652. /* > WORK is COMPLEX*16 array, dimension (2*N) */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[out] RWORK */
  656. /* > \verbatim */
  657. /* > RWORK is DOUBLE PRECISION array, dimension (N) */
  658. /* > \endverbatim */
  659. /* > */
  660. /* > \param[out] INFO */
  661. /* > \verbatim */
  662. /* > INFO is INTEGER */
  663. /* > = 0: successful exit */
  664. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  665. /* > \endverbatim */
  666. /* Authors: */
  667. /* ======== */
  668. /* > \author Univ. of Tennessee */
  669. /* > \author Univ. of California Berkeley */
  670. /* > \author Univ. of Colorado Denver */
  671. /* > \author NAG Ltd. */
  672. /* > \date November 2017 */
  673. /* > \ingroup complex16OTHERcomputational */
  674. /* > \par Further Details: */
  675. /* ===================== */
  676. /* > */
  677. /* > \verbatim */
  678. /* > */
  679. /* > The algorithm used in this program is basically backward (forward) */
  680. /* > substitution, with scaling to make the the code robust against */
  681. /* > possible overflow. */
  682. /* > */
  683. /* > Each eigenvector is normalized so that the element of largest */
  684. /* > magnitude has magnitude 1; here the magnitude of a complex number */
  685. /* > (x,y) is taken to be |x| + |y|. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* ===================================================================== */
  689. /* Subroutine */ void ztrevc_(char *side, char *howmny, logical *select,
  690. integer *n, doublecomplex *t, integer *ldt, doublecomplex *vl,
  691. integer *ldvl, doublecomplex *vr, integer *ldvr, integer *mm, integer
  692. *m, doublecomplex *work, doublereal *rwork, integer *info)
  693. {
  694. /* System generated locals */
  695. integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
  696. i__2, i__3, i__4, i__5;
  697. doublereal d__1, d__2, d__3;
  698. doublecomplex z__1, z__2;
  699. /* Local variables */
  700. logical allv;
  701. doublereal unfl, ovfl, smin;
  702. logical over;
  703. integer i__, j, k;
  704. doublereal scale;
  705. extern logical lsame_(char *, char *);
  706. doublereal remax;
  707. logical leftv, bothv;
  708. extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
  709. doublecomplex *, doublecomplex *, integer *, doublecomplex *,
  710. integer *, doublecomplex *, doublecomplex *, integer *);
  711. logical somev;
  712. extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *,
  713. doublecomplex *, integer *), dlabad_(doublereal *, doublereal *);
  714. integer ii, ki;
  715. extern doublereal dlamch_(char *);
  716. integer is;
  717. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  718. extern void zdscal_(
  719. integer *, doublereal *, doublecomplex *, integer *);
  720. extern integer izamax_(integer *, doublecomplex *, integer *);
  721. logical rightv;
  722. extern doublereal dzasum_(integer *, doublecomplex *, integer *);
  723. doublereal smlnum;
  724. extern /* Subroutine */ void zlatrs_(char *, char *, char *, char *,
  725. integer *, doublecomplex *, integer *, doublecomplex *,
  726. doublereal *, doublereal *, integer *);
  727. doublereal ulp;
  728. /* -- LAPACK computational routine (version 3.8.0) -- */
  729. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  730. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  731. /* November 2017 */
  732. /* ===================================================================== */
  733. /* Decode and test the input parameters */
  734. /* Parameter adjustments */
  735. --select;
  736. t_dim1 = *ldt;
  737. t_offset = 1 + t_dim1 * 1;
  738. t -= t_offset;
  739. vl_dim1 = *ldvl;
  740. vl_offset = 1 + vl_dim1 * 1;
  741. vl -= vl_offset;
  742. vr_dim1 = *ldvr;
  743. vr_offset = 1 + vr_dim1 * 1;
  744. vr -= vr_offset;
  745. --work;
  746. --rwork;
  747. /* Function Body */
  748. bothv = lsame_(side, "B");
  749. rightv = lsame_(side, "R") || bothv;
  750. leftv = lsame_(side, "L") || bothv;
  751. allv = lsame_(howmny, "A");
  752. over = lsame_(howmny, "B");
  753. somev = lsame_(howmny, "S");
  754. /* Set M to the number of columns required to store the selected */
  755. /* eigenvectors. */
  756. if (somev) {
  757. *m = 0;
  758. i__1 = *n;
  759. for (j = 1; j <= i__1; ++j) {
  760. if (select[j]) {
  761. ++(*m);
  762. }
  763. /* L10: */
  764. }
  765. } else {
  766. *m = *n;
  767. }
  768. *info = 0;
  769. if (! rightv && ! leftv) {
  770. *info = -1;
  771. } else if (! allv && ! over && ! somev) {
  772. *info = -2;
  773. } else if (*n < 0) {
  774. *info = -4;
  775. } else if (*ldt < f2cmax(1,*n)) {
  776. *info = -6;
  777. } else if (*ldvl < 1 || leftv && *ldvl < *n) {
  778. *info = -8;
  779. } else if (*ldvr < 1 || rightv && *ldvr < *n) {
  780. *info = -10;
  781. } else if (*mm < *m) {
  782. *info = -11;
  783. }
  784. if (*info != 0) {
  785. i__1 = -(*info);
  786. xerbla_("ZTREVC", &i__1, (ftnlen)6);
  787. return;
  788. }
  789. /* Quick return if possible. */
  790. if (*n == 0) {
  791. return;
  792. }
  793. /* Set the constants to control overflow. */
  794. unfl = dlamch_("Safe minimum");
  795. ovfl = 1. / unfl;
  796. dlabad_(&unfl, &ovfl);
  797. ulp = dlamch_("Precision");
  798. smlnum = unfl * (*n / ulp);
  799. /* Store the diagonal elements of T in working array WORK. */
  800. i__1 = *n;
  801. for (i__ = 1; i__ <= i__1; ++i__) {
  802. i__2 = i__ + *n;
  803. i__3 = i__ + i__ * t_dim1;
  804. work[i__2].r = t[i__3].r, work[i__2].i = t[i__3].i;
  805. /* L20: */
  806. }
  807. /* Compute 1-norm of each column of strictly upper triangular */
  808. /* part of T to control overflow in triangular solver. */
  809. rwork[1] = 0.;
  810. i__1 = *n;
  811. for (j = 2; j <= i__1; ++j) {
  812. i__2 = j - 1;
  813. rwork[j] = dzasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
  814. /* L30: */
  815. }
  816. if (rightv) {
  817. /* Compute right eigenvectors. */
  818. is = *m;
  819. for (ki = *n; ki >= 1; --ki) {
  820. if (somev) {
  821. if (! select[ki]) {
  822. goto L80;
  823. }
  824. }
  825. /* Computing MAX */
  826. i__1 = ki + ki * t_dim1;
  827. d__3 = ulp * ((d__1 = t[i__1].r, abs(d__1)) + (d__2 = d_imag(&t[
  828. ki + ki * t_dim1]), abs(d__2)));
  829. smin = f2cmax(d__3,smlnum);
  830. work[1].r = 1., work[1].i = 0.;
  831. /* Form right-hand side. */
  832. i__1 = ki - 1;
  833. for (k = 1; k <= i__1; ++k) {
  834. i__2 = k;
  835. i__3 = k + ki * t_dim1;
  836. z__1.r = -t[i__3].r, z__1.i = -t[i__3].i;
  837. work[i__2].r = z__1.r, work[i__2].i = z__1.i;
  838. /* L40: */
  839. }
  840. /* Solve the triangular system: */
  841. /* (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK. */
  842. i__1 = ki - 1;
  843. for (k = 1; k <= i__1; ++k) {
  844. i__2 = k + k * t_dim1;
  845. i__3 = k + k * t_dim1;
  846. i__4 = ki + ki * t_dim1;
  847. z__1.r = t[i__3].r - t[i__4].r, z__1.i = t[i__3].i - t[i__4]
  848. .i;
  849. t[i__2].r = z__1.r, t[i__2].i = z__1.i;
  850. i__2 = k + k * t_dim1;
  851. if ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
  852. t_dim1]), abs(d__2)) < smin) {
  853. i__3 = k + k * t_dim1;
  854. t[i__3].r = smin, t[i__3].i = 0.;
  855. }
  856. /* L50: */
  857. }
  858. if (ki > 1) {
  859. i__1 = ki - 1;
  860. zlatrs_("Upper", "No transpose", "Non-unit", "Y", &i__1, &t[
  861. t_offset], ldt, &work[1], &scale, &rwork[1], info);
  862. i__1 = ki;
  863. work[i__1].r = scale, work[i__1].i = 0.;
  864. }
  865. /* Copy the vector x or Q*x to VR and normalize. */
  866. if (! over) {
  867. zcopy_(&ki, &work[1], &c__1, &vr[is * vr_dim1 + 1], &c__1);
  868. ii = izamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
  869. i__1 = ii + is * vr_dim1;
  870. remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
  871. &vr[ii + is * vr_dim1]), abs(d__2)));
  872. zdscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
  873. i__1 = *n;
  874. for (k = ki + 1; k <= i__1; ++k) {
  875. i__2 = k + is * vr_dim1;
  876. vr[i__2].r = 0., vr[i__2].i = 0.;
  877. /* L60: */
  878. }
  879. } else {
  880. if (ki > 1) {
  881. i__1 = ki - 1;
  882. z__1.r = scale, z__1.i = 0.;
  883. zgemv_("N", n, &i__1, &c_b2, &vr[vr_offset], ldvr, &work[
  884. 1], &c__1, &z__1, &vr[ki * vr_dim1 + 1], &c__1);
  885. }
  886. ii = izamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
  887. i__1 = ii + ki * vr_dim1;
  888. remax = 1. / ((d__1 = vr[i__1].r, abs(d__1)) + (d__2 = d_imag(
  889. &vr[ii + ki * vr_dim1]), abs(d__2)));
  890. zdscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
  891. }
  892. /* Set back the original diagonal elements of T. */
  893. i__1 = ki - 1;
  894. for (k = 1; k <= i__1; ++k) {
  895. i__2 = k + k * t_dim1;
  896. i__3 = k + *n;
  897. t[i__2].r = work[i__3].r, t[i__2].i = work[i__3].i;
  898. /* L70: */
  899. }
  900. --is;
  901. L80:
  902. ;
  903. }
  904. }
  905. if (leftv) {
  906. /* Compute left eigenvectors. */
  907. is = 1;
  908. i__1 = *n;
  909. for (ki = 1; ki <= i__1; ++ki) {
  910. if (somev) {
  911. if (! select[ki]) {
  912. goto L130;
  913. }
  914. }
  915. /* Computing MAX */
  916. i__2 = ki + ki * t_dim1;
  917. d__3 = ulp * ((d__1 = t[i__2].r, abs(d__1)) + (d__2 = d_imag(&t[
  918. ki + ki * t_dim1]), abs(d__2)));
  919. smin = f2cmax(d__3,smlnum);
  920. i__2 = *n;
  921. work[i__2].r = 1., work[i__2].i = 0.;
  922. /* Form right-hand side. */
  923. i__2 = *n;
  924. for (k = ki + 1; k <= i__2; ++k) {
  925. i__3 = k;
  926. d_cnjg(&z__2, &t[ki + k * t_dim1]);
  927. z__1.r = -z__2.r, z__1.i = -z__2.i;
  928. work[i__3].r = z__1.r, work[i__3].i = z__1.i;
  929. /* L90: */
  930. }
  931. /* Solve the triangular system: */
  932. /* (T(KI+1:N,KI+1:N) - T(KI,KI))**H * X = SCALE*WORK. */
  933. i__2 = *n;
  934. for (k = ki + 1; k <= i__2; ++k) {
  935. i__3 = k + k * t_dim1;
  936. i__4 = k + k * t_dim1;
  937. i__5 = ki + ki * t_dim1;
  938. z__1.r = t[i__4].r - t[i__5].r, z__1.i = t[i__4].i - t[i__5]
  939. .i;
  940. t[i__3].r = z__1.r, t[i__3].i = z__1.i;
  941. i__3 = k + k * t_dim1;
  942. if ((d__1 = t[i__3].r, abs(d__1)) + (d__2 = d_imag(&t[k + k *
  943. t_dim1]), abs(d__2)) < smin) {
  944. i__4 = k + k * t_dim1;
  945. t[i__4].r = smin, t[i__4].i = 0.;
  946. }
  947. /* L100: */
  948. }
  949. if (ki < *n) {
  950. i__2 = *n - ki;
  951. zlatrs_("Upper", "Conjugate transpose", "Non-unit", "Y", &
  952. i__2, &t[ki + 1 + (ki + 1) * t_dim1], ldt, &work[ki +
  953. 1], &scale, &rwork[1], info);
  954. i__2 = ki;
  955. work[i__2].r = scale, work[i__2].i = 0.;
  956. }
  957. /* Copy the vector x or Q*x to VL and normalize. */
  958. if (! over) {
  959. i__2 = *n - ki + 1;
  960. zcopy_(&i__2, &work[ki], &c__1, &vl[ki + is * vl_dim1], &c__1)
  961. ;
  962. i__2 = *n - ki + 1;
  963. ii = izamax_(&i__2, &vl[ki + is * vl_dim1], &c__1) + ki - 1;
  964. i__2 = ii + is * vl_dim1;
  965. remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
  966. &vl[ii + is * vl_dim1]), abs(d__2)));
  967. i__2 = *n - ki + 1;
  968. zdscal_(&i__2, &remax, &vl[ki + is * vl_dim1], &c__1);
  969. i__2 = ki - 1;
  970. for (k = 1; k <= i__2; ++k) {
  971. i__3 = k + is * vl_dim1;
  972. vl[i__3].r = 0., vl[i__3].i = 0.;
  973. /* L110: */
  974. }
  975. } else {
  976. if (ki < *n) {
  977. i__2 = *n - ki;
  978. z__1.r = scale, z__1.i = 0.;
  979. zgemv_("N", n, &i__2, &c_b2, &vl[(ki + 1) * vl_dim1 + 1],
  980. ldvl, &work[ki + 1], &c__1, &z__1, &vl[ki *
  981. vl_dim1 + 1], &c__1);
  982. }
  983. ii = izamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
  984. i__2 = ii + ki * vl_dim1;
  985. remax = 1. / ((d__1 = vl[i__2].r, abs(d__1)) + (d__2 = d_imag(
  986. &vl[ii + ki * vl_dim1]), abs(d__2)));
  987. zdscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
  988. }
  989. /* Set back the original diagonal elements of T. */
  990. i__2 = *n;
  991. for (k = ki + 1; k <= i__2; ++k) {
  992. i__3 = k + k * t_dim1;
  993. i__4 = k + *n;
  994. t[i__3].r = work[i__4].r, t[i__3].i = work[i__4].i;
  995. /* L120: */
  996. }
  997. ++is;
  998. L130:
  999. ;
  1000. }
  1001. }
  1002. return;
  1003. /* End of ZTREVC */
  1004. } /* ztrevc_ */