You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarfb.c 39 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static doublecomplex c_b1 = {1.,0.};
  487. static integer c__1 = 1;
  488. /* > \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. */
  489. /* =========== DOCUMENTATION =========== */
  490. /* Online html documentation available at */
  491. /* http://www.netlib.org/lapack/explore-html/ */
  492. /* > \htmlonly */
  493. /* > Download ZLARFB + dependencies */
  494. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.
  495. f"> */
  496. /* > [TGZ]</a> */
  497. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.
  498. f"> */
  499. /* > [ZIP]</a> */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.
  501. f"> */
  502. /* > [TXT]</a> */
  503. /* > \endhtmlonly */
  504. /* Definition: */
  505. /* =========== */
  506. /* SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
  507. /* T, LDT, C, LDC, WORK, LDWORK ) */
  508. /* CHARACTER DIRECT, SIDE, STOREV, TRANS */
  509. /* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
  510. /* COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ), */
  511. /* $ WORK( LDWORK, * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > ZLARFB applies a complex block reflector H or its transpose H**H to a */
  518. /* > complex M-by-N matrix C, from either the left or the right. */
  519. /* > \endverbatim */
  520. /* Arguments: */
  521. /* ========== */
  522. /* > \param[in] SIDE */
  523. /* > \verbatim */
  524. /* > SIDE is CHARACTER*1 */
  525. /* > = 'L': apply H or H**H from the Left */
  526. /* > = 'R': apply H or H**H from the Right */
  527. /* > \endverbatim */
  528. /* > */
  529. /* > \param[in] TRANS */
  530. /* > \verbatim */
  531. /* > TRANS is CHARACTER*1 */
  532. /* > = 'N': apply H (No transpose) */
  533. /* > = 'C': apply H**H (Conjugate transpose) */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] DIRECT */
  537. /* > \verbatim */
  538. /* > DIRECT is CHARACTER*1 */
  539. /* > Indicates how H is formed from a product of elementary */
  540. /* > reflectors */
  541. /* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
  542. /* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] STOREV */
  546. /* > \verbatim */
  547. /* > STOREV is CHARACTER*1 */
  548. /* > Indicates how the vectors which define the elementary */
  549. /* > reflectors are stored: */
  550. /* > = 'C': Columnwise */
  551. /* > = 'R': Rowwise */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] M */
  555. /* > \verbatim */
  556. /* > M is INTEGER */
  557. /* > The number of rows of the matrix C. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in] N */
  561. /* > \verbatim */
  562. /* > N is INTEGER */
  563. /* > The number of columns of the matrix C. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] K */
  567. /* > \verbatim */
  568. /* > K is INTEGER */
  569. /* > The order of the matrix T (= the number of elementary */
  570. /* > reflectors whose product defines the block reflector). */
  571. /* > If SIDE = 'L', M >= K >= 0; */
  572. /* > if SIDE = 'R', N >= K >= 0. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] V */
  576. /* > \verbatim */
  577. /* > V is COMPLEX*16 array, dimension */
  578. /* > (LDV,K) if STOREV = 'C' */
  579. /* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
  580. /* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
  581. /* > See Further Details. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDV */
  585. /* > \verbatim */
  586. /* > LDV is INTEGER */
  587. /* > The leading dimension of the array V. */
  588. /* > If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
  589. /* > if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
  590. /* > if STOREV = 'R', LDV >= K. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] T */
  594. /* > \verbatim */
  595. /* > T is COMPLEX*16 array, dimension (LDT,K) */
  596. /* > The triangular K-by-K matrix T in the representation of the */
  597. /* > block reflector. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in] LDT */
  601. /* > \verbatim */
  602. /* > LDT is INTEGER */
  603. /* > The leading dimension of the array T. LDT >= K. */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in,out] C */
  607. /* > \verbatim */
  608. /* > C is COMPLEX*16 array, dimension (LDC,N) */
  609. /* > On entry, the M-by-N matrix C. */
  610. /* > On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDC */
  614. /* > \verbatim */
  615. /* > LDC is INTEGER */
  616. /* > The leading dimension of the array C. LDC >= f2cmax(1,M). */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[out] WORK */
  620. /* > \verbatim */
  621. /* > WORK is COMPLEX*16 array, dimension (LDWORK,K) */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in] LDWORK */
  625. /* > \verbatim */
  626. /* > LDWORK is INTEGER */
  627. /* > The leading dimension of the array WORK. */
  628. /* > If SIDE = 'L', LDWORK >= f2cmax(1,N); */
  629. /* > if SIDE = 'R', LDWORK >= f2cmax(1,M). */
  630. /* > \endverbatim */
  631. /* Authors: */
  632. /* ======== */
  633. /* > \author Univ. of Tennessee */
  634. /* > \author Univ. of California Berkeley */
  635. /* > \author Univ. of Colorado Denver */
  636. /* > \author NAG Ltd. */
  637. /* > \date June 2013 */
  638. /* > \ingroup complex16OTHERauxiliary */
  639. /* > \par Further Details: */
  640. /* ===================== */
  641. /* > */
  642. /* > \verbatim */
  643. /* > */
  644. /* > The shape of the matrix V and the storage of the vectors which define */
  645. /* > the H(i) is best illustrated by the following example with n = 5 and */
  646. /* > k = 3. The elements equal to 1 are not stored; the corresponding */
  647. /* > array elements are modified but restored on exit. The rest of the */
  648. /* > array is not used. */
  649. /* > */
  650. /* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
  651. /* > */
  652. /* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
  653. /* > ( v1 1 ) ( 1 v2 v2 v2 ) */
  654. /* > ( v1 v2 1 ) ( 1 v3 v3 ) */
  655. /* > ( v1 v2 v3 ) */
  656. /* > ( v1 v2 v3 ) */
  657. /* > */
  658. /* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
  659. /* > */
  660. /* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
  661. /* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
  662. /* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
  663. /* > ( 1 v3 ) */
  664. /* > ( 1 ) */
  665. /* > \endverbatim */
  666. /* > */
  667. /* ===================================================================== */
  668. /* Subroutine */ void zlarfb_(char *side, char *trans, char *direct, char *
  669. storev, integer *m, integer *n, integer *k, doublecomplex *v, integer
  670. *ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer *
  671. ldc, doublecomplex *work, integer *ldwork)
  672. {
  673. /* System generated locals */
  674. integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
  675. work_offset, i__1, i__2, i__3, i__4, i__5;
  676. doublecomplex z__1, z__2;
  677. /* Local variables */
  678. integer i__, j;
  679. extern logical lsame_(char *, char *);
  680. extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *,
  681. integer *, doublecomplex *, doublecomplex *, integer *,
  682. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  683. integer *), zcopy_(integer *, doublecomplex *,
  684. integer *, doublecomplex *, integer *), ztrmm_(char *, char *,
  685. char *, char *, integer *, integer *, doublecomplex *,
  686. doublecomplex *, integer *, doublecomplex *, integer *), zlacgv_(integer *, doublecomplex *,
  687. integer *);
  688. char transt[1];
  689. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  690. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  691. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  692. /* June 2013 */
  693. /* ===================================================================== */
  694. /* Quick return if possible */
  695. /* Parameter adjustments */
  696. v_dim1 = *ldv;
  697. v_offset = 1 + v_dim1 * 1;
  698. v -= v_offset;
  699. t_dim1 = *ldt;
  700. t_offset = 1 + t_dim1 * 1;
  701. t -= t_offset;
  702. c_dim1 = *ldc;
  703. c_offset = 1 + c_dim1 * 1;
  704. c__ -= c_offset;
  705. work_dim1 = *ldwork;
  706. work_offset = 1 + work_dim1 * 1;
  707. work -= work_offset;
  708. /* Function Body */
  709. if (*m <= 0 || *n <= 0) {
  710. return;
  711. }
  712. if (lsame_(trans, "N")) {
  713. *(unsigned char *)transt = 'C';
  714. } else {
  715. *(unsigned char *)transt = 'N';
  716. }
  717. if (lsame_(storev, "C")) {
  718. if (lsame_(direct, "F")) {
  719. /* Let V = ( V1 ) (first K rows) */
  720. /* ( V2 ) */
  721. /* where V1 is unit lower triangular. */
  722. if (lsame_(side, "L")) {
  723. /* Form H * C or H**H * C where C = ( C1 ) */
  724. /* ( C2 ) */
  725. /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
  726. /* W := C1**H */
  727. i__1 = *k;
  728. for (j = 1; j <= i__1; ++j) {
  729. zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  730. &c__1);
  731. zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
  732. /* L10: */
  733. }
  734. /* W := W * V1 */
  735. ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1,
  736. &v[v_offset], ldv, &work[work_offset], ldwork);
  737. if (*m > *k) {
  738. /* W := W + C2**H * V2 */
  739. i__1 = *m - *k;
  740. zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
  741. &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 +
  742. v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
  743. }
  744. /* W := W * T**H or W * T */
  745. ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
  746. t_offset], ldt, &work[work_offset], ldwork);
  747. /* C := C - V * W**H */
  748. if (*m > *k) {
  749. /* C2 := C2 - V2 * W**H */
  750. i__1 = *m - *k;
  751. z__1.r = -1., z__1.i = 0.;
  752. zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
  753. &z__1, &v[*k + 1 + v_dim1], ldv, &work[
  754. work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1]
  755. , ldc);
  756. }
  757. /* W := W * V1**H */
  758. ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
  759. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  760. /* C1 := C1 - W**H */
  761. i__1 = *k;
  762. for (j = 1; j <= i__1; ++j) {
  763. i__2 = *n;
  764. for (i__ = 1; i__ <= i__2; ++i__) {
  765. i__3 = j + i__ * c_dim1;
  766. i__4 = j + i__ * c_dim1;
  767. d_cnjg(&z__2, &work[i__ + j * work_dim1]);
  768. z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
  769. z__2.i;
  770. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  771. /* L20: */
  772. }
  773. /* L30: */
  774. }
  775. } else if (lsame_(side, "R")) {
  776. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  777. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  778. /* W := C1 */
  779. i__1 = *k;
  780. for (j = 1; j <= i__1; ++j) {
  781. zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  782. work_dim1 + 1], &c__1);
  783. /* L40: */
  784. }
  785. /* W := W * V1 */
  786. ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1,
  787. &v[v_offset], ldv, &work[work_offset], ldwork);
  788. if (*n > *k) {
  789. /* W := W + C2 * V2 */
  790. i__1 = *n - *k;
  791. zgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
  792. &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 +
  793. v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
  794. }
  795. /* W := W * T or W * T**H */
  796. ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
  797. t_offset], ldt, &work[work_offset], ldwork);
  798. /* C := C - W * V**H */
  799. if (*n > *k) {
  800. /* C2 := C2 - W * V2**H */
  801. i__1 = *n - *k;
  802. z__1.r = -1., z__1.i = 0.;
  803. zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
  804. &z__1, &work[work_offset], ldwork, &v[*k + 1 +
  805. v_dim1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
  806. ldc);
  807. }
  808. /* W := W * V1**H */
  809. ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
  810. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  811. /* C1 := C1 - W */
  812. i__1 = *k;
  813. for (j = 1; j <= i__1; ++j) {
  814. i__2 = *m;
  815. for (i__ = 1; i__ <= i__2; ++i__) {
  816. i__3 = i__ + j * c_dim1;
  817. i__4 = i__ + j * c_dim1;
  818. i__5 = i__ + j * work_dim1;
  819. z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
  820. i__4].i - work[i__5].i;
  821. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  822. /* L50: */
  823. }
  824. /* L60: */
  825. }
  826. }
  827. } else {
  828. /* Let V = ( V1 ) */
  829. /* ( V2 ) (last K rows) */
  830. /* where V2 is unit upper triangular. */
  831. if (lsame_(side, "L")) {
  832. /* Form H * C or H**H * C where C = ( C1 ) */
  833. /* ( C2 ) */
  834. /* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
  835. /* W := C2**H */
  836. i__1 = *k;
  837. for (j = 1; j <= i__1; ++j) {
  838. zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  839. work_dim1 + 1], &c__1);
  840. zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
  841. /* L70: */
  842. }
  843. /* W := W * V2 */
  844. ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1,
  845. &v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
  846. ldwork);
  847. if (*m > *k) {
  848. /* W := W + C1**H * V1 */
  849. i__1 = *m - *k;
  850. zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
  851. &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
  852. c_b1, &work[work_offset], ldwork);
  853. }
  854. /* W := W * T**H or W * T */
  855. ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
  856. t_offset], ldt, &work[work_offset], ldwork);
  857. /* C := C - V * W**H */
  858. if (*m > *k) {
  859. /* C1 := C1 - V1 * W**H */
  860. i__1 = *m - *k;
  861. z__1.r = -1., z__1.i = 0.;
  862. zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
  863. &z__1, &v[v_offset], ldv, &work[work_offset],
  864. ldwork, &c_b1, &c__[c_offset], ldc);
  865. }
  866. /* W := W * V2**H */
  867. ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
  868. &c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[
  869. work_offset], ldwork);
  870. /* C2 := C2 - W**H */
  871. i__1 = *k;
  872. for (j = 1; j <= i__1; ++j) {
  873. i__2 = *n;
  874. for (i__ = 1; i__ <= i__2; ++i__) {
  875. i__3 = *m - *k + j + i__ * c_dim1;
  876. i__4 = *m - *k + j + i__ * c_dim1;
  877. d_cnjg(&z__2, &work[i__ + j * work_dim1]);
  878. z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
  879. z__2.i;
  880. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  881. /* L80: */
  882. }
  883. /* L90: */
  884. }
  885. } else if (lsame_(side, "R")) {
  886. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  887. /* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
  888. /* W := C2 */
  889. i__1 = *k;
  890. for (j = 1; j <= i__1; ++j) {
  891. zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  892. j * work_dim1 + 1], &c__1);
  893. /* L100: */
  894. }
  895. /* W := W * V2 */
  896. ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1,
  897. &v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
  898. ldwork);
  899. if (*n > *k) {
  900. /* W := W + C1 * V1 */
  901. i__1 = *n - *k;
  902. zgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
  903. &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &
  904. work[work_offset], ldwork)
  905. ;
  906. }
  907. /* W := W * T or W * T**H */
  908. ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
  909. t_offset], ldt, &work[work_offset], ldwork);
  910. /* C := C - W * V**H */
  911. if (*n > *k) {
  912. /* C1 := C1 - W * V1**H */
  913. i__1 = *n - *k;
  914. z__1.r = -1., z__1.i = 0.;
  915. zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
  916. &z__1, &work[work_offset], ldwork, &v[v_offset],
  917. ldv, &c_b1, &c__[c_offset], ldc);
  918. }
  919. /* W := W * V2**H */
  920. ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
  921. &c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[
  922. work_offset], ldwork);
  923. /* C2 := C2 - W */
  924. i__1 = *k;
  925. for (j = 1; j <= i__1; ++j) {
  926. i__2 = *m;
  927. for (i__ = 1; i__ <= i__2; ++i__) {
  928. i__3 = i__ + (*n - *k + j) * c_dim1;
  929. i__4 = i__ + (*n - *k + j) * c_dim1;
  930. i__5 = i__ + j * work_dim1;
  931. z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
  932. i__4].i - work[i__5].i;
  933. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  934. /* L110: */
  935. }
  936. /* L120: */
  937. }
  938. }
  939. }
  940. } else if (lsame_(storev, "R")) {
  941. if (lsame_(direct, "F")) {
  942. /* Let V = ( V1 V2 ) (V1: first K columns) */
  943. /* where V1 is unit upper triangular. */
  944. if (lsame_(side, "L")) {
  945. /* Form H * C or H**H * C where C = ( C1 ) */
  946. /* ( C2 ) */
  947. /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
  948. /* W := C1**H */
  949. i__1 = *k;
  950. for (j = 1; j <= i__1; ++j) {
  951. zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
  952. &c__1);
  953. zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
  954. /* L130: */
  955. }
  956. /* W := W * V1**H */
  957. ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k,
  958. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  959. if (*m > *k) {
  960. /* W := W + C2**H * V2**H */
  961. i__1 = *m - *k;
  962. zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
  963. &i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[(*k
  964. + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
  965. , ldwork);
  966. }
  967. /* W := W * T**H or W * T */
  968. ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
  969. t_offset], ldt, &work[work_offset], ldwork);
  970. /* C := C - V**H * W**H */
  971. if (*m > *k) {
  972. /* C2 := C2 - V2**H * W**H */
  973. i__1 = *m - *k;
  974. z__1.r = -1., z__1.i = 0.;
  975. zgemm_("Conjugate transpose", "Conjugate transpose", &
  976. i__1, n, k, &z__1, &v[(*k + 1) * v_dim1 + 1], ldv,
  977. &work[work_offset], ldwork, &c_b1, &c__[*k + 1 +
  978. c_dim1], ldc);
  979. }
  980. /* W := W * V1 */
  981. ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1,
  982. &v[v_offset], ldv, &work[work_offset], ldwork);
  983. /* C1 := C1 - W**H */
  984. i__1 = *k;
  985. for (j = 1; j <= i__1; ++j) {
  986. i__2 = *n;
  987. for (i__ = 1; i__ <= i__2; ++i__) {
  988. i__3 = j + i__ * c_dim1;
  989. i__4 = j + i__ * c_dim1;
  990. d_cnjg(&z__2, &work[i__ + j * work_dim1]);
  991. z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
  992. z__2.i;
  993. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  994. /* L140: */
  995. }
  996. /* L150: */
  997. }
  998. } else if (lsame_(side, "R")) {
  999. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  1000. /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
  1001. /* W := C1 */
  1002. i__1 = *k;
  1003. for (j = 1; j <= i__1; ++j) {
  1004. zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
  1005. work_dim1 + 1], &c__1);
  1006. /* L160: */
  1007. }
  1008. /* W := W * V1**H */
  1009. ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k,
  1010. &c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
  1011. if (*n > *k) {
  1012. /* W := W + C2 * V2**H */
  1013. i__1 = *n - *k;
  1014. zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
  1015. &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k
  1016. + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
  1017. , ldwork);
  1018. }
  1019. /* W := W * T or W * T**H */
  1020. ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
  1021. t_offset], ldt, &work[work_offset], ldwork);
  1022. /* C := C - W * V */
  1023. if (*n > *k) {
  1024. /* C2 := C2 - W * V2 */
  1025. i__1 = *n - *k;
  1026. z__1.r = -1., z__1.i = 0.;
  1027. zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
  1028. &work[work_offset], ldwork, &v[(*k + 1) * v_dim1
  1029. + 1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
  1030. ldc);
  1031. }
  1032. /* W := W * V1 */
  1033. ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1,
  1034. &v[v_offset], ldv, &work[work_offset], ldwork);
  1035. /* C1 := C1 - W */
  1036. i__1 = *k;
  1037. for (j = 1; j <= i__1; ++j) {
  1038. i__2 = *m;
  1039. for (i__ = 1; i__ <= i__2; ++i__) {
  1040. i__3 = i__ + j * c_dim1;
  1041. i__4 = i__ + j * c_dim1;
  1042. i__5 = i__ + j * work_dim1;
  1043. z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
  1044. i__4].i - work[i__5].i;
  1045. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  1046. /* L170: */
  1047. }
  1048. /* L180: */
  1049. }
  1050. }
  1051. } else {
  1052. /* Let V = ( V1 V2 ) (V2: last K columns) */
  1053. /* where V2 is unit lower triangular. */
  1054. if (lsame_(side, "L")) {
  1055. /* Form H * C or H**H * C where C = ( C1 ) */
  1056. /* ( C2 ) */
  1057. /* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
  1058. /* W := C2**H */
  1059. i__1 = *k;
  1060. for (j = 1; j <= i__1; ++j) {
  1061. zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
  1062. work_dim1 + 1], &c__1);
  1063. zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
  1064. /* L190: */
  1065. }
  1066. /* W := W * V2**H */
  1067. ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k,
  1068. &c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1069. work_offset], ldwork);
  1070. if (*m > *k) {
  1071. /* W := W + C1**H * V1**H */
  1072. i__1 = *m - *k;
  1073. zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
  1074. &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset],
  1075. ldv, &c_b1, &work[work_offset], ldwork);
  1076. }
  1077. /* W := W * T**H or W * T */
  1078. ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
  1079. t_offset], ldt, &work[work_offset], ldwork);
  1080. /* C := C - V**H * W**H */
  1081. if (*m > *k) {
  1082. /* C1 := C1 - V1**H * W**H */
  1083. i__1 = *m - *k;
  1084. z__1.r = -1., z__1.i = 0.;
  1085. zgemm_("Conjugate transpose", "Conjugate transpose", &
  1086. i__1, n, k, &z__1, &v[v_offset], ldv, &work[
  1087. work_offset], ldwork, &c_b1, &c__[c_offset], ldc);
  1088. }
  1089. /* W := W * V2 */
  1090. ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1,
  1091. &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
  1092. work_offset], ldwork);
  1093. /* C2 := C2 - W**H */
  1094. i__1 = *k;
  1095. for (j = 1; j <= i__1; ++j) {
  1096. i__2 = *n;
  1097. for (i__ = 1; i__ <= i__2; ++i__) {
  1098. i__3 = *m - *k + j + i__ * c_dim1;
  1099. i__4 = *m - *k + j + i__ * c_dim1;
  1100. d_cnjg(&z__2, &work[i__ + j * work_dim1]);
  1101. z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
  1102. z__2.i;
  1103. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  1104. /* L200: */
  1105. }
  1106. /* L210: */
  1107. }
  1108. } else if (lsame_(side, "R")) {
  1109. /* Form C * H or C * H**H where C = ( C1 C2 ) */
  1110. /* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
  1111. /* W := C2 */
  1112. i__1 = *k;
  1113. for (j = 1; j <= i__1; ++j) {
  1114. zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
  1115. j * work_dim1 + 1], &c__1);
  1116. /* L220: */
  1117. }
  1118. /* W := W * V2**H */
  1119. ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k,
  1120. &c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1121. work_offset], ldwork);
  1122. if (*n > *k) {
  1123. /* W := W + C1 * V1**H */
  1124. i__1 = *n - *k;
  1125. zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
  1126. &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
  1127. c_b1, &work[work_offset], ldwork);
  1128. }
  1129. /* W := W * T or W * T**H */
  1130. ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
  1131. t_offset], ldt, &work[work_offset], ldwork);
  1132. /* C := C - W * V */
  1133. if (*n > *k) {
  1134. /* C1 := C1 - W * V1 */
  1135. i__1 = *n - *k;
  1136. z__1.r = -1., z__1.i = 0.;
  1137. zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
  1138. &work[work_offset], ldwork, &v[v_offset], ldv, &
  1139. c_b1, &c__[c_offset], ldc)
  1140. ;
  1141. }
  1142. /* W := W * V2 */
  1143. ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1,
  1144. &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
  1145. work_offset], ldwork);
  1146. /* C1 := C1 - W */
  1147. i__1 = *k;
  1148. for (j = 1; j <= i__1; ++j) {
  1149. i__2 = *m;
  1150. for (i__ = 1; i__ <= i__2; ++i__) {
  1151. i__3 = i__ + (*n - *k + j) * c_dim1;
  1152. i__4 = i__ + (*n - *k + j) * c_dim1;
  1153. i__5 = i__ + j * work_dim1;
  1154. z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
  1155. i__4].i - work[i__5].i;
  1156. c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
  1157. /* L230: */
  1158. }
  1159. /* L240: */
  1160. }
  1161. }
  1162. }
  1163. }
  1164. return;
  1165. /* End of ZLARFB */
  1166. } /* zlarfb_ */