You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqr3.c 39 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static logical c_true = TRUE_;
  489. static doublereal c_b17 = 0.;
  490. static doublereal c_b18 = 1.;
  491. static integer c__12 = 12;
  492. /* > \brief \b DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
  493. eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
  494. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download DLAQR3 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr3.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr3.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr3.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE DLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
  513. /* IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
  514. /* LDT, NV, WV, LDWV, WORK, LWORK ) */
  515. /* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
  516. /* $ LDZ, LWORK, N, ND, NH, NS, NV, NW */
  517. /* LOGICAL WANTT, WANTZ */
  518. /* DOUBLE PRECISION H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
  519. /* $ V( LDV, * ), WORK( * ), WV( LDWV, * ), */
  520. /* $ Z( LDZ, * ) */
  521. /* > \par Purpose: */
  522. /* ============= */
  523. /* > */
  524. /* > \verbatim */
  525. /* > */
  526. /* > Aggressive early deflation: */
  527. /* > */
  528. /* > DLAQR3 accepts as input an upper Hessenberg matrix */
  529. /* > H and performs an orthogonal similarity transformation */
  530. /* > designed to detect and deflate fully converged eigenvalues from */
  531. /* > a trailing principal submatrix. On output H has been over- */
  532. /* > written by a new Hessenberg matrix that is a perturbation of */
  533. /* > an orthogonal similarity transformation of H. It is to be */
  534. /* > hoped that the final version of H has many zero subdiagonal */
  535. /* > entries. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] WANTT */
  540. /* > \verbatim */
  541. /* > WANTT is LOGICAL */
  542. /* > If .TRUE., then the Hessenberg matrix H is fully updated */
  543. /* > so that the quasi-triangular Schur factor may be */
  544. /* > computed (in cooperation with the calling subroutine). */
  545. /* > If .FALSE., then only enough of H is updated to preserve */
  546. /* > the eigenvalues. */
  547. /* > \endverbatim */
  548. /* > */
  549. /* > \param[in] WANTZ */
  550. /* > \verbatim */
  551. /* > WANTZ is LOGICAL */
  552. /* > If .TRUE., then the orthogonal matrix Z is updated so */
  553. /* > so that the orthogonal Schur factor may be computed */
  554. /* > (in cooperation with the calling subroutine). */
  555. /* > If .FALSE., then Z is not referenced. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] N */
  559. /* > \verbatim */
  560. /* > N is INTEGER */
  561. /* > The order of the matrix H and (if WANTZ is .TRUE.) the */
  562. /* > order of the orthogonal matrix Z. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in] KTOP */
  566. /* > \verbatim */
  567. /* > KTOP is INTEGER */
  568. /* > It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
  569. /* > KBOT and KTOP together determine an isolated block */
  570. /* > along the diagonal of the Hessenberg matrix. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] KBOT */
  574. /* > \verbatim */
  575. /* > KBOT is INTEGER */
  576. /* > It is assumed without a check that either */
  577. /* > KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together */
  578. /* > determine an isolated block along the diagonal of the */
  579. /* > Hessenberg matrix. */
  580. /* > \endverbatim */
  581. /* > */
  582. /* > \param[in] NW */
  583. /* > \verbatim */
  584. /* > NW is INTEGER */
  585. /* > Deflation window size. 1 <= NW <= (KBOT-KTOP+1). */
  586. /* > \endverbatim */
  587. /* > */
  588. /* > \param[in,out] H */
  589. /* > \verbatim */
  590. /* > H is DOUBLE PRECISION array, dimension (LDH,N) */
  591. /* > On input the initial N-by-N section of H stores the */
  592. /* > Hessenberg matrix undergoing aggressive early deflation. */
  593. /* > On output H has been transformed by an orthogonal */
  594. /* > similarity transformation, perturbed, and the returned */
  595. /* > to Hessenberg form that (it is to be hoped) has some */
  596. /* > zero subdiagonal entries. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDH */
  600. /* > \verbatim */
  601. /* > LDH is INTEGER */
  602. /* > Leading dimension of H just as declared in the calling */
  603. /* > subroutine. N <= LDH */
  604. /* > \endverbatim */
  605. /* > */
  606. /* > \param[in] ILOZ */
  607. /* > \verbatim */
  608. /* > ILOZ is INTEGER */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] IHIZ */
  612. /* > \verbatim */
  613. /* > IHIZ is INTEGER */
  614. /* > Specify the rows of Z to which transformations must be */
  615. /* > applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
  616. /* > \endverbatim */
  617. /* > */
  618. /* > \param[in,out] Z */
  619. /* > \verbatim */
  620. /* > Z is DOUBLE PRECISION array, dimension (LDZ,N) */
  621. /* > IF WANTZ is .TRUE., then on output, the orthogonal */
  622. /* > similarity transformation mentioned above has been */
  623. /* > accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
  624. /* > If WANTZ is .FALSE., then Z is unreferenced. */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[in] LDZ */
  628. /* > \verbatim */
  629. /* > LDZ is INTEGER */
  630. /* > The leading dimension of Z just as declared in the */
  631. /* > calling subroutine. 1 <= LDZ. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] NS */
  635. /* > \verbatim */
  636. /* > NS is INTEGER */
  637. /* > The number of unconverged (ie approximate) eigenvalues */
  638. /* > returned in SR and SI that may be used as shifts by the */
  639. /* > calling subroutine. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] ND */
  643. /* > \verbatim */
  644. /* > ND is INTEGER */
  645. /* > The number of converged eigenvalues uncovered by this */
  646. /* > subroutine. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] SR */
  650. /* > \verbatim */
  651. /* > SR is DOUBLE PRECISION array, dimension (KBOT) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] SI */
  655. /* > \verbatim */
  656. /* > SI is DOUBLE PRECISION array, dimension (KBOT) */
  657. /* > On output, the real and imaginary parts of approximate */
  658. /* > eigenvalues that may be used for shifts are stored in */
  659. /* > SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
  660. /* > SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
  661. /* > The real and imaginary parts of converged eigenvalues */
  662. /* > are stored in SR(KBOT-ND+1) through SR(KBOT) and */
  663. /* > SI(KBOT-ND+1) through SI(KBOT), respectively. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] V */
  667. /* > \verbatim */
  668. /* > V is DOUBLE PRECISION array, dimension (LDV,NW) */
  669. /* > An NW-by-NW work array. */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[in] LDV */
  673. /* > \verbatim */
  674. /* > LDV is INTEGER */
  675. /* > The leading dimension of V just as declared in the */
  676. /* > calling subroutine. NW <= LDV */
  677. /* > \endverbatim */
  678. /* > */
  679. /* > \param[in] NH */
  680. /* > \verbatim */
  681. /* > NH is INTEGER */
  682. /* > The number of columns of T. NH >= NW. */
  683. /* > \endverbatim */
  684. /* > */
  685. /* > \param[out] T */
  686. /* > \verbatim */
  687. /* > T is DOUBLE PRECISION array, dimension (LDT,NW) */
  688. /* > \endverbatim */
  689. /* > */
  690. /* > \param[in] LDT */
  691. /* > \verbatim */
  692. /* > LDT is INTEGER */
  693. /* > The leading dimension of T just as declared in the */
  694. /* > calling subroutine. NW <= LDT */
  695. /* > \endverbatim */
  696. /* > */
  697. /* > \param[in] NV */
  698. /* > \verbatim */
  699. /* > NV is INTEGER */
  700. /* > The number of rows of work array WV available for */
  701. /* > workspace. NV >= NW. */
  702. /* > \endverbatim */
  703. /* > */
  704. /* > \param[out] WV */
  705. /* > \verbatim */
  706. /* > WV is DOUBLE PRECISION array, dimension (LDWV,NW) */
  707. /* > \endverbatim */
  708. /* > */
  709. /* > \param[in] LDWV */
  710. /* > \verbatim */
  711. /* > LDWV is INTEGER */
  712. /* > The leading dimension of W just as declared in the */
  713. /* > calling subroutine. NW <= LDV */
  714. /* > \endverbatim */
  715. /* > */
  716. /* > \param[out] WORK */
  717. /* > \verbatim */
  718. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  719. /* > On exit, WORK(1) is set to an estimate of the optimal value */
  720. /* > of LWORK for the given values of N, NW, KTOP and KBOT. */
  721. /* > \endverbatim */
  722. /* > */
  723. /* > \param[in] LWORK */
  724. /* > \verbatim */
  725. /* > LWORK is INTEGER */
  726. /* > The dimension of the work array WORK. LWORK = 2*NW */
  727. /* > suffices, but greater efficiency may result from larger */
  728. /* > values of LWORK. */
  729. /* > */
  730. /* > If LWORK = -1, then a workspace query is assumed; DLAQR3 */
  731. /* > only estimates the optimal workspace size for the given */
  732. /* > values of N, NW, KTOP and KBOT. The estimate is returned */
  733. /* > in WORK(1). No error message related to LWORK is issued */
  734. /* > by XERBLA. Neither H nor Z are accessed. */
  735. /* > \endverbatim */
  736. /* Authors: */
  737. /* ======== */
  738. /* > \author Univ. of Tennessee */
  739. /* > \author Univ. of California Berkeley */
  740. /* > \author Univ. of Colorado Denver */
  741. /* > \author NAG Ltd. */
  742. /* > \date June 2016 */
  743. /* > \ingroup doubleOTHERauxiliary */
  744. /* > \par Contributors: */
  745. /* ================== */
  746. /* > */
  747. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  748. /* > University of Kansas, USA */
  749. /* > */
  750. /* ===================================================================== */
  751. /* Subroutine */ void dlaqr3_(logical *wantt, logical *wantz, integer *n,
  752. integer *ktop, integer *kbot, integer *nw, doublereal *h__, integer *
  753. ldh, integer *iloz, integer *ihiz, doublereal *z__, integer *ldz,
  754. integer *ns, integer *nd, doublereal *sr, doublereal *si, doublereal *
  755. v, integer *ldv, integer *nh, doublereal *t, integer *ldt, integer *
  756. nv, doublereal *wv, integer *ldwv, doublereal *work, integer *lwork)
  757. {
  758. /* System generated locals */
  759. integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1,
  760. wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
  761. doublereal d__1, d__2, d__3, d__4, d__5, d__6;
  762. /* Local variables */
  763. doublereal beta;
  764. integer kend, kcol, info, nmin, ifst, ilst, ltop, krow, i__, j, k;
  765. doublereal s;
  766. extern /* Subroutine */ void dlarf_(char *, integer *, integer *,
  767. doublereal *, integer *, doublereal *, doublereal *, integer *,
  768. doublereal *), dgemm_(char *, char *, integer *, integer *
  769. , integer *, doublereal *, doublereal *, integer *, doublereal *,
  770. integer *, doublereal *, doublereal *, integer *);
  771. logical bulge;
  772. extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *,
  773. doublereal *, integer *);
  774. integer infqr, kwtop;
  775. extern /* Subroutine */ void dlanv2_(doublereal *, doublereal *,
  776. doublereal *, doublereal *, doublereal *, doublereal *,
  777. doublereal *, doublereal *, doublereal *, doublereal *), dlaqr4_(
  778. logical *, logical *, integer *, integer *, integer *, doublereal
  779. *, integer *, doublereal *, doublereal *, integer *, integer *,
  780. doublereal *, integer *, doublereal *, integer *, integer *);
  781. doublereal aa, bb, cc;
  782. extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
  783. doublereal dd, cs;
  784. extern doublereal dlamch_(char *);
  785. extern /* Subroutine */ void dgehrd_(integer *, integer *, integer *,
  786. doublereal *, integer *, doublereal *, doublereal *, integer *,
  787. integer *), dlarfg_(integer *, doublereal *, doublereal *,
  788. integer *, doublereal *);
  789. doublereal sn;
  790. integer jw;
  791. extern /* Subroutine */ void dlahqr_(logical *, logical *, integer *,
  792. integer *, integer *, doublereal *, integer *, doublereal *,
  793. doublereal *, integer *, integer *, doublereal *, integer *,
  794. integer *), dlacpy_(char *, integer *, integer *, doublereal *,
  795. integer *, doublereal *, integer *);
  796. doublereal safmin, safmax;
  797. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  798. integer *, integer *, ftnlen, ftnlen);
  799. extern /* Subroutine */ void dlaset_(char *, integer *, integer *,
  800. doublereal *, doublereal *, doublereal *, integer *),
  801. dtrexc_(char *, integer *, doublereal *, integer *, doublereal *,
  802. integer *, integer *, integer *, doublereal *, integer *),
  803. dormhr_(char *, char *, integer *, integer *, integer *, integer
  804. *, doublereal *, integer *, doublereal *, doublereal *, integer *,
  805. doublereal *, integer *, integer *);
  806. logical sorted;
  807. doublereal smlnum;
  808. integer lwkopt;
  809. doublereal evi, evk, foo;
  810. integer kln;
  811. doublereal tau, ulp;
  812. integer lwk1, lwk2, lwk3;
  813. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  814. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  815. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  816. /* June 2016 */
  817. /* ================================================================ */
  818. /* ==== Estimate optimal workspace. ==== */
  819. /* Parameter adjustments */
  820. h_dim1 = *ldh;
  821. h_offset = 1 + h_dim1 * 1;
  822. h__ -= h_offset;
  823. z_dim1 = *ldz;
  824. z_offset = 1 + z_dim1 * 1;
  825. z__ -= z_offset;
  826. --sr;
  827. --si;
  828. v_dim1 = *ldv;
  829. v_offset = 1 + v_dim1 * 1;
  830. v -= v_offset;
  831. t_dim1 = *ldt;
  832. t_offset = 1 + t_dim1 * 1;
  833. t -= t_offset;
  834. wv_dim1 = *ldwv;
  835. wv_offset = 1 + wv_dim1 * 1;
  836. wv -= wv_offset;
  837. --work;
  838. /* Function Body */
  839. /* Computing MIN */
  840. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  841. jw = f2cmin(i__1,i__2);
  842. if (jw <= 2) {
  843. lwkopt = 1;
  844. } else {
  845. /* ==== Workspace query call to DGEHRD ==== */
  846. i__1 = jw - 1;
  847. dgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
  848. c_n1, &info);
  849. lwk1 = (integer) work[1];
  850. /* ==== Workspace query call to DORMHR ==== */
  851. i__1 = jw - 1;
  852. dormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
  853. &v[v_offset], ldv, &work[1], &c_n1, &info);
  854. lwk2 = (integer) work[1];
  855. /* ==== Workspace query call to DLAQR4 ==== */
  856. dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1],
  857. &si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &
  858. infqr);
  859. lwk3 = (integer) work[1];
  860. /* ==== Optimal workspace ==== */
  861. /* Computing MAX */
  862. i__1 = jw + f2cmax(lwk1,lwk2);
  863. lwkopt = f2cmax(i__1,lwk3);
  864. }
  865. /* ==== Quick return in case of workspace query. ==== */
  866. if (*lwork == -1) {
  867. work[1] = (doublereal) lwkopt;
  868. return;
  869. }
  870. /* ==== Nothing to do ... */
  871. /* ... for an empty active block ... ==== */
  872. *ns = 0;
  873. *nd = 0;
  874. work[1] = 1.;
  875. if (*ktop > *kbot) {
  876. return;
  877. }
  878. /* ... nor for an empty deflation window. ==== */
  879. if (*nw < 1) {
  880. return;
  881. }
  882. /* ==== Machine constants ==== */
  883. safmin = dlamch_("SAFE MINIMUM");
  884. safmax = 1. / safmin;
  885. dlabad_(&safmin, &safmax);
  886. ulp = dlamch_("PRECISION");
  887. smlnum = safmin * ((doublereal) (*n) / ulp);
  888. /* ==== Setup deflation window ==== */
  889. /* Computing MIN */
  890. i__1 = *nw, i__2 = *kbot - *ktop + 1;
  891. jw = f2cmin(i__1,i__2);
  892. kwtop = *kbot - jw + 1;
  893. if (kwtop == *ktop) {
  894. s = 0.;
  895. } else {
  896. s = h__[kwtop + (kwtop - 1) * h_dim1];
  897. }
  898. if (*kbot == kwtop) {
  899. /* ==== 1-by-1 deflation window: not much to do ==== */
  900. sr[kwtop] = h__[kwtop + kwtop * h_dim1];
  901. si[kwtop] = 0.;
  902. *ns = 1;
  903. *nd = 0;
  904. /* Computing MAX */
  905. d__2 = smlnum, d__3 = ulp * (d__1 = h__[kwtop + kwtop * h_dim1], abs(
  906. d__1));
  907. if (abs(s) <= f2cmax(d__2,d__3)) {
  908. *ns = 0;
  909. *nd = 1;
  910. if (kwtop > *ktop) {
  911. h__[kwtop + (kwtop - 1) * h_dim1] = 0.;
  912. }
  913. }
  914. work[1] = 1.;
  915. return;
  916. }
  917. /* ==== Convert to spike-triangular form. (In case of a */
  918. /* . rare QR failure, this routine continues to do */
  919. /* . aggressive early deflation using that part of */
  920. /* . the deflation window that converged using INFQR */
  921. /* . here and there to keep track.) ==== */
  922. dlacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset],
  923. ldt);
  924. i__1 = jw - 1;
  925. i__2 = *ldh + 1;
  926. i__3 = *ldt + 1;
  927. dcopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
  928. i__3);
  929. dlaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);
  930. nmin = ilaenv_(&c__12, "DLAQR3", "SV", &jw, &c__1, &jw, lwork, (ftnlen)6,
  931. (ftnlen)2);
  932. if (jw > nmin) {
  933. dlaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
  934. kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1],
  935. lwork, &infqr);
  936. } else {
  937. dlahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
  938. kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
  939. }
  940. /* ==== DTREXC needs a clean margin near the diagonal ==== */
  941. i__1 = jw - 3;
  942. for (j = 1; j <= i__1; ++j) {
  943. t[j + 2 + j * t_dim1] = 0.;
  944. t[j + 3 + j * t_dim1] = 0.;
  945. /* L10: */
  946. }
  947. if (jw > 2) {
  948. t[jw + (jw - 2) * t_dim1] = 0.;
  949. }
  950. /* ==== Deflation detection loop ==== */
  951. *ns = jw;
  952. ilst = infqr + 1;
  953. L20:
  954. if (ilst <= *ns) {
  955. if (*ns == 1) {
  956. bulge = FALSE_;
  957. } else {
  958. bulge = t[*ns + (*ns - 1) * t_dim1] != 0.;
  959. }
  960. /* ==== Small spike tip test for deflation ==== */
  961. if (! bulge) {
  962. /* ==== Real eigenvalue ==== */
  963. foo = (d__1 = t[*ns + *ns * t_dim1], abs(d__1));
  964. if (foo == 0.) {
  965. foo = abs(s);
  966. }
  967. /* Computing MAX */
  968. d__2 = smlnum, d__3 = ulp * foo;
  969. if ((d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)) <= f2cmax(d__2,d__3))
  970. {
  971. /* ==== Deflatable ==== */
  972. --(*ns);
  973. } else {
  974. /* ==== Undeflatable. Move it up out of the way. */
  975. /* . (DTREXC can not fail in this case.) ==== */
  976. ifst = *ns;
  977. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  978. &ilst, &work[1], &info);
  979. ++ilst;
  980. }
  981. } else {
  982. /* ==== Complex conjugate pair ==== */
  983. foo = (d__3 = t[*ns + *ns * t_dim1], abs(d__3)) + sqrt((d__1 = t[*
  984. ns + (*ns - 1) * t_dim1], abs(d__1))) * sqrt((d__2 = t[*
  985. ns - 1 + *ns * t_dim1], abs(d__2)));
  986. if (foo == 0.) {
  987. foo = abs(s);
  988. }
  989. /* Computing MAX */
  990. d__3 = (d__1 = s * v[*ns * v_dim1 + 1], abs(d__1)), d__4 = (d__2 =
  991. s * v[(*ns - 1) * v_dim1 + 1], abs(d__2));
  992. /* Computing MAX */
  993. d__5 = smlnum, d__6 = ulp * foo;
  994. if (f2cmax(d__3,d__4) <= f2cmax(d__5,d__6)) {
  995. /* ==== Deflatable ==== */
  996. *ns += -2;
  997. } else {
  998. /* ==== Undeflatable. Move them up out of the way. */
  999. /* . Fortunately, DTREXC does the right thing with */
  1000. /* . ILST in case of a rare exchange failure. ==== */
  1001. ifst = *ns;
  1002. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1003. &ilst, &work[1], &info);
  1004. ilst += 2;
  1005. }
  1006. }
  1007. /* ==== End deflation detection loop ==== */
  1008. goto L20;
  1009. }
  1010. /* ==== Return to Hessenberg form ==== */
  1011. if (*ns == 0) {
  1012. s = 0.;
  1013. }
  1014. if (*ns < jw) {
  1015. /* ==== sorting diagonal blocks of T improves accuracy for */
  1016. /* . graded matrices. Bubble sort deals well with */
  1017. /* . exchange failures. ==== */
  1018. sorted = FALSE_;
  1019. i__ = *ns + 1;
  1020. L30:
  1021. if (sorted) {
  1022. goto L50;
  1023. }
  1024. sorted = TRUE_;
  1025. kend = i__ - 1;
  1026. i__ = infqr + 1;
  1027. if (i__ == *ns) {
  1028. k = i__ + 1;
  1029. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1030. k = i__ + 1;
  1031. } else {
  1032. k = i__ + 2;
  1033. }
  1034. L40:
  1035. if (k <= kend) {
  1036. if (k == i__ + 1) {
  1037. evi = (d__1 = t[i__ + i__ * t_dim1], abs(d__1));
  1038. } else {
  1039. evi = (d__3 = t[i__ + i__ * t_dim1], abs(d__3)) + sqrt((d__1 =
  1040. t[i__ + 1 + i__ * t_dim1], abs(d__1))) * sqrt((d__2 =
  1041. t[i__ + (i__ + 1) * t_dim1], abs(d__2)));
  1042. }
  1043. if (k == kend) {
  1044. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1045. } else if (t[k + 1 + k * t_dim1] == 0.) {
  1046. evk = (d__1 = t[k + k * t_dim1], abs(d__1));
  1047. } else {
  1048. evk = (d__3 = t[k + k * t_dim1], abs(d__3)) + sqrt((d__1 = t[
  1049. k + 1 + k * t_dim1], abs(d__1))) * sqrt((d__2 = t[k +
  1050. (k + 1) * t_dim1], abs(d__2)));
  1051. }
  1052. if (evi >= evk) {
  1053. i__ = k;
  1054. } else {
  1055. sorted = FALSE_;
  1056. ifst = i__;
  1057. ilst = k;
  1058. dtrexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
  1059. &ilst, &work[1], &info);
  1060. if (info == 0) {
  1061. i__ = ilst;
  1062. } else {
  1063. i__ = k;
  1064. }
  1065. }
  1066. if (i__ == kend) {
  1067. k = i__ + 1;
  1068. } else if (t[i__ + 1 + i__ * t_dim1] == 0.) {
  1069. k = i__ + 1;
  1070. } else {
  1071. k = i__ + 2;
  1072. }
  1073. goto L40;
  1074. }
  1075. goto L30;
  1076. L50:
  1077. ;
  1078. }
  1079. /* ==== Restore shift/eigenvalue array from T ==== */
  1080. i__ = jw;
  1081. L60:
  1082. if (i__ >= infqr + 1) {
  1083. if (i__ == infqr + 1) {
  1084. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1085. si[kwtop + i__ - 1] = 0.;
  1086. --i__;
  1087. } else if (t[i__ + (i__ - 1) * t_dim1] == 0.) {
  1088. sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
  1089. si[kwtop + i__ - 1] = 0.;
  1090. --i__;
  1091. } else {
  1092. aa = t[i__ - 1 + (i__ - 1) * t_dim1];
  1093. cc = t[i__ + (i__ - 1) * t_dim1];
  1094. bb = t[i__ - 1 + i__ * t_dim1];
  1095. dd = t[i__ + i__ * t_dim1];
  1096. dlanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__
  1097. - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
  1098. sn);
  1099. i__ += -2;
  1100. }
  1101. goto L60;
  1102. }
  1103. if (*ns < jw || s == 0.) {
  1104. if (*ns > 1 && s != 0.) {
  1105. /* ==== Reflect spike back into lower triangle ==== */
  1106. dcopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
  1107. beta = work[1];
  1108. dlarfg_(ns, &beta, &work[2], &c__1, &tau);
  1109. work[1] = 1.;
  1110. i__1 = jw - 2;
  1111. i__2 = jw - 2;
  1112. dlaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);
  1113. dlarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1114. work[jw + 1]);
  1115. dlarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
  1116. work[jw + 1]);
  1117. dlarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
  1118. work[jw + 1]);
  1119. i__1 = *lwork - jw;
  1120. dgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
  1121. , &i__1, &info);
  1122. }
  1123. /* ==== Copy updated reduced window into place ==== */
  1124. if (kwtop > 1) {
  1125. h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
  1126. }
  1127. dlacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
  1128. , ldh);
  1129. i__1 = jw - 1;
  1130. i__2 = *ldt + 1;
  1131. i__3 = *ldh + 1;
  1132. dcopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
  1133. &i__3);
  1134. /* ==== Accumulate orthogonal matrix in order update */
  1135. /* . H and Z, if requested. ==== */
  1136. if (*ns > 1 && s != 0.) {
  1137. i__1 = *lwork - jw;
  1138. dormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
  1139. &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
  1140. }
  1141. /* ==== Update vertical slab in H ==== */
  1142. if (*wantt) {
  1143. ltop = 1;
  1144. } else {
  1145. ltop = *ktop;
  1146. }
  1147. i__1 = kwtop - 1;
  1148. i__2 = *nv;
  1149. for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1150. i__2) {
  1151. /* Computing MIN */
  1152. i__3 = *nv, i__4 = kwtop - krow;
  1153. kln = f2cmin(i__3,i__4);
  1154. dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop *
  1155. h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset],
  1156. ldwv);
  1157. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop *
  1158. h_dim1], ldh);
  1159. /* L70: */
  1160. }
  1161. /* ==== Update horizontal slab in H ==== */
  1162. if (*wantt) {
  1163. i__2 = *n;
  1164. i__1 = *nh;
  1165. for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2;
  1166. kcol += i__1) {
  1167. /* Computing MIN */
  1168. i__3 = *nh, i__4 = *n - kcol + 1;
  1169. kln = f2cmin(i__3,i__4);
  1170. dgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &
  1171. h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset],
  1172. ldt);
  1173. dlacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
  1174. h_dim1], ldh);
  1175. /* L80: */
  1176. }
  1177. }
  1178. /* ==== Update vertical slab in Z ==== */
  1179. if (*wantz) {
  1180. i__1 = *ihiz;
  1181. i__2 = *nv;
  1182. for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
  1183. i__2) {
  1184. /* Computing MIN */
  1185. i__3 = *nv, i__4 = *ihiz - krow + 1;
  1186. kln = f2cmin(i__3,i__4);
  1187. dgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop *
  1188. z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[
  1189. wv_offset], ldwv);
  1190. dlacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow +
  1191. kwtop * z_dim1], ldz);
  1192. /* L90: */
  1193. }
  1194. }
  1195. }
  1196. /* ==== Return the number of deflations ... ==== */
  1197. *nd = jw - *ns;
  1198. /* ==== ... and the number of shifts. (Subtracting */
  1199. /* . INFQR from the spike length takes care */
  1200. /* . of the case of a rare QR failure while */
  1201. /* . calculating eigenvalues of the deflation */
  1202. /* . window.) ==== */
  1203. *ns -= infqr;
  1204. /* ==== Return optimal workspace. ==== */
  1205. work[1] = (doublereal) lwkopt;
  1206. /* ==== End of DLAQR3 ==== */
  1207. return;
  1208. } /* dlaqr3_ */