You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

stgex2.c 40 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__4 = 4;
  487. static real c_b5 = 0.f;
  488. static integer c__1 = 1;
  489. static integer c__2 = 2;
  490. static real c_b42 = 1.f;
  491. static real c_b48 = -1.f;
  492. static integer c__0 = 0;
  493. /* > \brief \b STGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogon
  494. al equivalence transformation. */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download STGEX2 + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgex2.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgex2.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgex2.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
  513. /* LDZ, J1, N1, N2, WORK, LWORK, INFO ) */
  514. /* LOGICAL WANTQ, WANTZ */
  515. /* INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2 */
  516. /* REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
  517. /* $ WORK( * ), Z( LDZ, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
  524. /* > of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
  525. /* > (A, B) by an orthogonal equivalence transformation. */
  526. /* > */
  527. /* > (A, B) must be in generalized real Schur canonical form (as returned */
  528. /* > by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
  529. /* > diagonal blocks. B is upper triangular. */
  530. /* > */
  531. /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
  532. /* > updated. */
  533. /* > */
  534. /* > Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T */
  535. /* > Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T */
  536. /* > */
  537. /* > \endverbatim */
  538. /* Arguments: */
  539. /* ========== */
  540. /* > \param[in] WANTQ */
  541. /* > \verbatim */
  542. /* > WANTQ is LOGICAL */
  543. /* > .TRUE. : update the left transformation matrix Q; */
  544. /* > .FALSE.: do not update Q. */
  545. /* > \endverbatim */
  546. /* > */
  547. /* > \param[in] WANTZ */
  548. /* > \verbatim */
  549. /* > WANTZ is LOGICAL */
  550. /* > .TRUE. : update the right transformation matrix Z; */
  551. /* > .FALSE.: do not update Z. */
  552. /* > \endverbatim */
  553. /* > */
  554. /* > \param[in] N */
  555. /* > \verbatim */
  556. /* > N is INTEGER */
  557. /* > The order of the matrices A and B. N >= 0. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[in,out] A */
  561. /* > \verbatim */
  562. /* > A is REAL array, dimension (LDA,N) */
  563. /* > On entry, the matrix A in the pair (A, B). */
  564. /* > On exit, the updated matrix A. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDA */
  568. /* > \verbatim */
  569. /* > LDA is INTEGER */
  570. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in,out] B */
  574. /* > \verbatim */
  575. /* > B is REAL array, dimension (LDB,N) */
  576. /* > On entry, the matrix B in the pair (A, B). */
  577. /* > On exit, the updated matrix B. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDB */
  581. /* > \verbatim */
  582. /* > LDB is INTEGER */
  583. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] Q */
  587. /* > \verbatim */
  588. /* > Q is REAL array, dimension (LDQ,N) */
  589. /* > On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
  590. /* > On exit, the updated matrix Q. */
  591. /* > Not referenced if WANTQ = .FALSE.. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in] LDQ */
  595. /* > \verbatim */
  596. /* > LDQ is INTEGER */
  597. /* > The leading dimension of the array Q. LDQ >= 1. */
  598. /* > If WANTQ = .TRUE., LDQ >= N. */
  599. /* > \endverbatim */
  600. /* > */
  601. /* > \param[in,out] Z */
  602. /* > \verbatim */
  603. /* > Z is REAL array, dimension (LDZ,N) */
  604. /* > On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
  605. /* > On exit, the updated matrix Z. */
  606. /* > Not referenced if WANTZ = .FALSE.. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[in] LDZ */
  610. /* > \verbatim */
  611. /* > LDZ is INTEGER */
  612. /* > The leading dimension of the array Z. LDZ >= 1. */
  613. /* > If WANTZ = .TRUE., LDZ >= N. */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] J1 */
  617. /* > \verbatim */
  618. /* > J1 is INTEGER */
  619. /* > The index to the first block (A11, B11). 1 <= J1 <= N. */
  620. /* > \endverbatim */
  621. /* > */
  622. /* > \param[in] N1 */
  623. /* > \verbatim */
  624. /* > N1 is INTEGER */
  625. /* > The order of the first block (A11, B11). N1 = 0, 1 or 2. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] N2 */
  629. /* > \verbatim */
  630. /* > N2 is INTEGER */
  631. /* > The order of the second block (A22, B22). N2 = 0, 1 or 2. */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[out] WORK */
  635. /* > \verbatim */
  636. /* > WORK is REAL array, dimension (MAX(1,LWORK)). */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in] LWORK */
  640. /* > \verbatim */
  641. /* > LWORK is INTEGER */
  642. /* > The dimension of the array WORK. */
  643. /* > LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
  644. /* > \endverbatim */
  645. /* > */
  646. /* > \param[out] INFO */
  647. /* > \verbatim */
  648. /* > INFO is INTEGER */
  649. /* > =0: Successful exit */
  650. /* > >0: If INFO = 1, the transformed matrix (A, B) would be */
  651. /* > too far from generalized Schur form; the blocks are */
  652. /* > not swapped and (A, B) and (Q, Z) are unchanged. */
  653. /* > The problem of swapping is too ill-conditioned. */
  654. /* > <0: If INFO = -16: LWORK is too small. Appropriate value */
  655. /* > for LWORK is returned in WORK(1). */
  656. /* > \endverbatim */
  657. /* Authors: */
  658. /* ======== */
  659. /* > \author Univ. of Tennessee */
  660. /* > \author Univ. of California Berkeley */
  661. /* > \author Univ. of Colorado Denver */
  662. /* > \author NAG Ltd. */
  663. /* > \date June 2017 */
  664. /* > \ingroup realGEauxiliary */
  665. /* > \par Further Details: */
  666. /* ===================== */
  667. /* > */
  668. /* > In the current code both weak and strong stability tests are */
  669. /* > performed. The user can omit the strong stability test by changing */
  670. /* > the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
  671. /* > details. */
  672. /* > \par Contributors: */
  673. /* ================== */
  674. /* > */
  675. /* > Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
  676. /* > Umea University, S-901 87 Umea, Sweden. */
  677. /* > \par References: */
  678. /* ================ */
  679. /* > */
  680. /* > \verbatim */
  681. /* > */
  682. /* > [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
  683. /* > Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
  684. /* > M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
  685. /* > Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
  686. /* > */
  687. /* > [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
  688. /* > Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
  689. /* > Estimation: Theory, Algorithms and Software, */
  690. /* > Report UMINF - 94.04, Department of Computing Science, Umea */
  691. /* > University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
  692. /* > Note 87. To appear in Numerical Algorithms, 1996. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* ===================================================================== */
  696. /* Subroutine */ void stgex2_(logical *wantq, logical *wantz, integer *n, real
  697. *a, integer *lda, real *b, integer *ldb, real *q, integer *ldq, real *
  698. z__, integer *ldz, integer *j1, integer *n1, integer *n2, real *work,
  699. integer *lwork, integer *info)
  700. {
  701. /* System generated locals */
  702. integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
  703. z_offset, i__1, i__2;
  704. real r__1;
  705. /* Local variables */
  706. logical weak;
  707. real ddum;
  708. integer idum;
  709. real taul[4], dsum, taur[4], scpy[16] /* was [4][4] */, tcpy[16]
  710. /* was [4][4] */;
  711. extern /* Subroutine */ void srot_(integer *, real *, integer *, real *,
  712. integer *, real *, real *);
  713. real f, g;
  714. integer i__, m;
  715. real s[16] /* was [4][4] */, t[16] /* was [4][4] */, scale, bqra21,
  716. brqa21;
  717. extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
  718. real licop[16] /* was [4][4] */;
  719. integer linfo;
  720. extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *,
  721. integer *, real *, real *, integer *, real *, integer *, real *,
  722. real *, integer *);
  723. real ircop[16] /* was [4][4] */, dnorm;
  724. integer iwork[4];
  725. extern /* Subroutine */ void slagv2_(real *, integer *, real *, integer *,
  726. real *, real *, real *, real *, real *, real *, real *), sgeqr2_(
  727. integer *, integer *, real *, integer *, real *, real *, integer *
  728. ), sgerq2_(integer *, integer *, real *, integer *, real *, real *
  729. , integer *);
  730. real be[2], ai[2];
  731. extern /* Subroutine */ void sorg2r_(integer *, integer *, integer *, real
  732. *, integer *, real *, real *, integer *), sorgr2_(integer *,
  733. integer *, integer *, real *, integer *, real *, real *, integer *
  734. );
  735. real ar[2], sa, sb, li[16] /* was [4][4] */;
  736. extern /* Subroutine */ void sorm2r_(char *, char *, integer *, integer *,
  737. integer *, real *, integer *, real *, real *, integer *, real *,
  738. integer *), sormr2_(char *, char *, integer *,
  739. integer *, integer *, real *, integer *, real *, real *, integer *
  740. , real *, integer *);
  741. real dscale, ir[16] /* was [4][4] */;
  742. extern /* Subroutine */ void stgsy2_(char *, integer *, integer *, integer
  743. *, real *, integer *, real *, integer *, real *, integer *, real *
  744. , integer *, real *, integer *, real *, integer *, real *, real *,
  745. real *, integer *, integer *, integer *);
  746. real ss;
  747. extern real slamch_(char *);
  748. real ws;
  749. extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *,
  750. integer *, real *, integer *), slartg_(real *, real *,
  751. real *, real *, real *);
  752. real thresh;
  753. extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *,
  754. real *, real *, integer *), slassq_(integer *, real *,
  755. integer *, real *, real *);
  756. real smlnum;
  757. logical strong;
  758. real eps;
  759. /* -- LAPACK auxiliary routine (version 3.7.1) -- */
  760. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  761. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  762. /* June 2017 */
  763. /* ===================================================================== */
  764. /* Replaced various illegal calls to SCOPY by calls to SLASET, or by DO */
  765. /* loops. Sven Hammarling, 1/5/02. */
  766. /* Parameter adjustments */
  767. a_dim1 = *lda;
  768. a_offset = 1 + a_dim1 * 1;
  769. a -= a_offset;
  770. b_dim1 = *ldb;
  771. b_offset = 1 + b_dim1 * 1;
  772. b -= b_offset;
  773. q_dim1 = *ldq;
  774. q_offset = 1 + q_dim1 * 1;
  775. q -= q_offset;
  776. z_dim1 = *ldz;
  777. z_offset = 1 + z_dim1 * 1;
  778. z__ -= z_offset;
  779. --work;
  780. /* Function Body */
  781. *info = 0;
  782. /* Quick return if possible */
  783. if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
  784. return;
  785. }
  786. if (*n1 > *n || *j1 + *n1 > *n) {
  787. return;
  788. }
  789. m = *n1 + *n2;
  790. /* Computing MAX */
  791. i__1 = *n * m, i__2 = m * m << 1;
  792. if (*lwork < f2cmax(i__1,i__2)) {
  793. *info = -16;
  794. /* Computing MAX */
  795. i__1 = *n * m, i__2 = m * m << 1;
  796. work[1] = (real) f2cmax(i__1,i__2);
  797. return;
  798. }
  799. weak = FALSE_;
  800. strong = FALSE_;
  801. /* Make a local copy of selected block */
  802. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
  803. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
  804. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
  805. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
  806. /* Compute threshold for testing acceptance of swapping. */
  807. eps = slamch_("P");
  808. smlnum = slamch_("S") / eps;
  809. dscale = 0.f;
  810. dsum = 1.f;
  811. slacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
  812. i__1 = m * m;
  813. slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  814. slacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
  815. i__1 = m * m;
  816. slassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
  817. dnorm = dscale * sqrt(dsum);
  818. /* THRES has been changed from */
  819. /* THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
  820. /* to */
  821. /* THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
  822. /* on 04/01/10. */
  823. /* "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
  824. /* Jim Demmel and Guillaume Revy. See forum post 1783. */
  825. /* Computing MAX */
  826. r__1 = eps * 20.f * dnorm;
  827. thresh = f2cmax(r__1,smlnum);
  828. if (m == 2) {
  829. /* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
  830. /* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
  831. /* using Givens rotations and perform the swap tentatively. */
  832. f = s[5] * t[0] - t[5] * s[0];
  833. g = s[5] * t[4] - t[5] * s[4];
  834. sb = abs(t[5]);
  835. sa = abs(s[5]);
  836. slartg_(&f, &g, &ir[4], ir, &ddum);
  837. ir[1] = -ir[4];
  838. ir[5] = ir[0];
  839. srot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
  840. srot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
  841. if (sa >= sb) {
  842. slartg_(s, &s[1], li, &li[1], &ddum);
  843. } else {
  844. slartg_(t, &t[1], li, &li[1], &ddum);
  845. }
  846. srot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
  847. srot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
  848. li[5] = li[0];
  849. li[4] = -li[1];
  850. /* Weak stability test: */
  851. /* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
  852. ws = abs(s[1]) + abs(t[1]);
  853. weak = ws <= thresh;
  854. if (! weak) {
  855. goto L70;
  856. }
  857. if (TRUE_) {
  858. /* Strong stability test: */
  859. /* F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A, B))) */
  860. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  861. + 1], &m);
  862. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  863. work[1], &m);
  864. sgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  865. c_b42, &work[m * m + 1], &m);
  866. dscale = 0.f;
  867. dsum = 1.f;
  868. i__1 = m * m;
  869. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  870. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  871. + 1], &m);
  872. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  873. work[1], &m);
  874. sgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  875. c_b42, &work[m * m + 1], &m);
  876. i__1 = m * m;
  877. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  878. ss = dscale * sqrt(dsum);
  879. strong = ss <= thresh;
  880. if (! strong) {
  881. goto L70;
  882. }
  883. }
  884. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  885. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  886. i__1 = *j1 + 1;
  887. srot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
  888. &c__1, ir, &ir[1]);
  889. i__1 = *j1 + 1;
  890. srot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
  891. &c__1, ir, &ir[1]);
  892. i__1 = *n - *j1 + 1;
  893. srot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
  894. lda, li, &li[1]);
  895. i__1 = *n - *j1 + 1;
  896. srot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
  897. ldb, li, &li[1]);
  898. /* Set N1-by-N2 (2,1) - blocks to ZERO. */
  899. a[*j1 + 1 + *j1 * a_dim1] = 0.f;
  900. b[*j1 + 1 + *j1 * b_dim1] = 0.f;
  901. /* Accumulate transformations into Q and Z if requested. */
  902. if (*wantz) {
  903. srot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
  904. 1], &c__1, ir, &ir[1]);
  905. }
  906. if (*wantq) {
  907. srot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
  908. &c__1, li, &li[1]);
  909. }
  910. /* Exit with INFO = 0 if swap was successfully performed. */
  911. return;
  912. } else {
  913. /* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
  914. /* and 2-by-2 blocks. */
  915. /* Solve the generalized Sylvester equation */
  916. /* S11 * R - L * S22 = SCALE * S12 */
  917. /* T11 * R - L * T22 = SCALE * T12 */
  918. /* for R and L. Solutions in LI and IR. */
  919. slacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
  920. slacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
  921. *n1 + 1 << 2) - 5], &c__4);
  922. stgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
  923. , &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
  924. t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
  925. dsum, &dscale, iwork, &idum, &linfo);
  926. /* Compute orthogonal matrix QL: */
  927. /* QL**T * LI = [ TL ] */
  928. /* [ 0 ] */
  929. /* where */
  930. /* LI = [ -L ] */
  931. /* [ SCALE * identity(N2) ] */
  932. i__1 = *n2;
  933. for (i__ = 1; i__ <= i__1; ++i__) {
  934. sscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
  935. li[*n1 + i__ + (i__ << 2) - 5] = scale;
  936. /* L10: */
  937. }
  938. sgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
  939. if (linfo != 0) {
  940. goto L70;
  941. }
  942. sorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
  943. if (linfo != 0) {
  944. goto L70;
  945. }
  946. /* Compute orthogonal matrix RQ: */
  947. /* IR * RQ**T = [ 0 TR], */
  948. /* where IR = [ SCALE * identity(N1), R ] */
  949. i__1 = *n1;
  950. for (i__ = 1; i__ <= i__1; ++i__) {
  951. ir[*n2 + i__ + (i__ << 2) - 5] = scale;
  952. /* L20: */
  953. }
  954. sgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
  955. if (linfo != 0) {
  956. goto L70;
  957. }
  958. sorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
  959. if (linfo != 0) {
  960. goto L70;
  961. }
  962. /* Perform the swapping tentatively: */
  963. sgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  964. work[1], &m);
  965. sgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  966. s, &c__4);
  967. sgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  968. work[1], &m);
  969. sgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
  970. t, &c__4);
  971. slacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
  972. slacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
  973. slacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
  974. slacpy_("F", &m, &m, li, &c__4, licop, &c__4);
  975. /* Triangularize the B-part by an RQ factorization. */
  976. /* Apply transformation (from left) to A-part, giving S. */
  977. sgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
  978. if (linfo != 0) {
  979. goto L70;
  980. }
  981. sormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
  982. linfo);
  983. if (linfo != 0) {
  984. goto L70;
  985. }
  986. sormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
  987. linfo);
  988. if (linfo != 0) {
  989. goto L70;
  990. }
  991. /* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
  992. dscale = 0.f;
  993. dsum = 1.f;
  994. i__1 = *n2;
  995. for (i__ = 1; i__ <= i__1; ++i__) {
  996. slassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
  997. /* L30: */
  998. }
  999. brqa21 = dscale * sqrt(dsum);
  1000. /* Triangularize the B-part by a QR factorization. */
  1001. /* Apply transformation (from right) to A-part, giving S. */
  1002. sgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
  1003. if (linfo != 0) {
  1004. goto L70;
  1005. }
  1006. sorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
  1007. , info);
  1008. sorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
  1009. 1], info);
  1010. if (linfo != 0) {
  1011. goto L70;
  1012. }
  1013. /* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
  1014. dscale = 0.f;
  1015. dsum = 1.f;
  1016. i__1 = *n2;
  1017. for (i__ = 1; i__ <= i__1; ++i__) {
  1018. slassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
  1019. dsum);
  1020. /* L40: */
  1021. }
  1022. bqra21 = dscale * sqrt(dsum);
  1023. /* Decide which method to use. */
  1024. /* Weak stability test: */
  1025. /* F-norm(S21) <= O(EPS * F-norm((S, T))) */
  1026. if (bqra21 <= brqa21 && bqra21 <= thresh) {
  1027. slacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
  1028. slacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
  1029. slacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
  1030. slacpy_("F", &m, &m, licop, &c__4, li, &c__4);
  1031. } else if (brqa21 >= thresh) {
  1032. goto L70;
  1033. }
  1034. /* Set lower triangle of B-part to zero */
  1035. i__1 = m - 1;
  1036. i__2 = m - 1;
  1037. slaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
  1038. if (TRUE_) {
  1039. /* Strong stability test: */
  1040. /* F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B))) */
  1041. slacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
  1042. + 1], &m);
  1043. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
  1044. work[1], &m);
  1045. sgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1046. c_b42, &work[m * m + 1], &m);
  1047. dscale = 0.f;
  1048. dsum = 1.f;
  1049. i__1 = m * m;
  1050. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1051. slacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
  1052. + 1], &m);
  1053. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
  1054. work[1], &m);
  1055. sgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
  1056. c_b42, &work[m * m + 1], &m);
  1057. i__1 = m * m;
  1058. slassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
  1059. ss = dscale * sqrt(dsum);
  1060. strong = ss <= thresh;
  1061. if (! strong) {
  1062. goto L70;
  1063. }
  1064. }
  1065. /* If the swap is accepted ("weakly" and "strongly"), apply the */
  1066. /* transformations and set N1-by-N2 (2,1)-block to zero. */
  1067. slaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
  1068. /* copy back M-by-M diagonal block starting at index J1 of (A, B) */
  1069. slacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
  1070. ;
  1071. slacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
  1072. ;
  1073. slaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
  1074. /* Standardize existing 2-by-2 blocks. */
  1075. slaset_("Full", &m, &m, &c_b5, &c_b5, &work[1], &m);
  1076. work[1] = 1.f;
  1077. t[0] = 1.f;
  1078. idum = *lwork - m * m - 2;
  1079. if (*n2 > 1) {
  1080. slagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
  1081. ar, ai, be, &work[1], &work[2], t, &t[1]);
  1082. work[m + 1] = -work[2];
  1083. work[m + 2] = work[1];
  1084. t[*n2 + (*n2 << 2) - 5] = t[0];
  1085. t[4] = -t[1];
  1086. }
  1087. work[m * m] = 1.f;
  1088. t[m + (m << 2) - 5] = 1.f;
  1089. if (*n1 > 1) {
  1090. slagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
  1091. (*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
  1092. &work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
  1093. n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
  1094. work[m * m] = work[*n2 * m + *n2 + 1];
  1095. work[m * m - 1] = -work[*n2 * m + *n2 + 2];
  1096. t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
  1097. t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
  1098. }
  1099. sgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
  1100. n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
  1101. slacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
  1102. a_dim1], lda);
  1103. sgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
  1104. n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
  1105. slacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
  1106. b_dim1], ldb);
  1107. sgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
  1108. work[m * m + 1], &m);
  1109. slacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
  1110. sgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
  1111. lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1112. n2);
  1113. slacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
  1114. lda);
  1115. sgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
  1116. ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
  1117. n2);
  1118. slacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
  1119. ldb);
  1120. sgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
  1121. work[1], &m);
  1122. slacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
  1123. /* Accumulate transformations into Q and Z if requested. */
  1124. if (*wantq) {
  1125. sgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
  1126. &c__4, &c_b5, &work[1], n);
  1127. slacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
  1128. }
  1129. if (*wantz) {
  1130. sgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
  1131. ir, &c__4, &c_b5, &work[1], n);
  1132. slacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
  1133. }
  1134. /* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
  1135. /* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
  1136. i__ = *j1 + m;
  1137. if (i__ <= *n) {
  1138. i__1 = *n - i__ + 1;
  1139. sgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
  1140. a_dim1], lda, &c_b5, &work[1], &m);
  1141. i__1 = *n - i__ + 1;
  1142. slacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
  1143. lda);
  1144. i__1 = *n - i__ + 1;
  1145. sgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
  1146. b_dim1], ldb, &c_b5, &work[1], &m);
  1147. i__1 = *n - i__ + 1;
  1148. slacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
  1149. ldb);
  1150. }
  1151. i__ = *j1 - 1;
  1152. if (i__ > 0) {
  1153. sgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
  1154. ir, &c__4, &c_b5, &work[1], &i__);
  1155. slacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
  1156. lda);
  1157. sgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
  1158. ir, &c__4, &c_b5, &work[1], &i__);
  1159. slacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
  1160. ldb);
  1161. }
  1162. /* Exit with INFO = 0 if swap was successfully performed. */
  1163. return;
  1164. }
  1165. /* Exit with INFO = 1 if swap was rejected. */
  1166. L70:
  1167. *info = 1;
  1168. return;
  1169. /* End of STGEX2 */
  1170. } /* stgex2_ */