You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlalsd.c 33 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static doublereal c_b6 = 0.;
  488. static integer c__0 = 0;
  489. static doublereal c_b11 = 1.;
  490. /* > \brief \b DLALSD uses the singular value decomposition of A to solve the least squares problem. */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download DLALSD + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlalsd.
  497. f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlalsd.
  500. f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlalsd.
  503. f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE DLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND, */
  509. /* RANK, WORK, IWORK, INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ */
  512. /* DOUBLE PRECISION RCOND */
  513. /* INTEGER IWORK( * ) */
  514. /* DOUBLE PRECISION B( LDB, * ), D( * ), E( * ), WORK( * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DLALSD uses the singular value decomposition of A to solve the least */
  521. /* > squares problem of finding X to minimize the Euclidean norm of each */
  522. /* > column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
  523. /* > are N-by-NRHS. The solution X overwrites B. */
  524. /* > */
  525. /* > The singular values of A smaller than RCOND times the largest */
  526. /* > singular value are treated as zero in solving the least squares */
  527. /* > problem; in this case a minimum norm solution is returned. */
  528. /* > The actual singular values are returned in D in ascending order. */
  529. /* > */
  530. /* > This code makes very mild assumptions about floating point */
  531. /* > arithmetic. It will work on machines with a guard digit in */
  532. /* > add/subtract, or on those binary machines without guard digits */
  533. /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
  534. /* > It could conceivably fail on hexadecimal or decimal machines */
  535. /* > without guard digits, but we know of none. */
  536. /* > \endverbatim */
  537. /* Arguments: */
  538. /* ========== */
  539. /* > \param[in] UPLO */
  540. /* > \verbatim */
  541. /* > UPLO is CHARACTER*1 */
  542. /* > = 'U': D and E define an upper bidiagonal matrix. */
  543. /* > = 'L': D and E define a lower bidiagonal matrix. */
  544. /* > \endverbatim */
  545. /* > */
  546. /* > \param[in] SMLSIZ */
  547. /* > \verbatim */
  548. /* > SMLSIZ is INTEGER */
  549. /* > The maximum size of the subproblems at the bottom of the */
  550. /* > computation tree. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] N */
  554. /* > \verbatim */
  555. /* > N is INTEGER */
  556. /* > The dimension of the bidiagonal matrix. N >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] NRHS */
  560. /* > \verbatim */
  561. /* > NRHS is INTEGER */
  562. /* > The number of columns of B. NRHS must be at least 1. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] D */
  566. /* > \verbatim */
  567. /* > D is DOUBLE PRECISION array, dimension (N) */
  568. /* > On entry D contains the main diagonal of the bidiagonal */
  569. /* > matrix. On exit, if INFO = 0, D contains its singular values. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in,out] E */
  573. /* > \verbatim */
  574. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  575. /* > Contains the super-diagonal entries of the bidiagonal matrix. */
  576. /* > On exit, E has been destroyed. */
  577. /* > \endverbatim */
  578. /* > */
  579. /* > \param[in,out] B */
  580. /* > \verbatim */
  581. /* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
  582. /* > On input, B contains the right hand sides of the least */
  583. /* > squares problem. On output, B contains the solution X. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] LDB */
  587. /* > \verbatim */
  588. /* > LDB is INTEGER */
  589. /* > The leading dimension of B in the calling subprogram. */
  590. /* > LDB must be at least f2cmax(1,N). */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] RCOND */
  594. /* > \verbatim */
  595. /* > RCOND is DOUBLE PRECISION */
  596. /* > The singular values of A less than or equal to RCOND times */
  597. /* > the largest singular value are treated as zero in solving */
  598. /* > the least squares problem. If RCOND is negative, */
  599. /* > machine precision is used instead. */
  600. /* > For example, if diag(S)*X=B were the least squares problem, */
  601. /* > where diag(S) is a diagonal matrix of singular values, the */
  602. /* > solution would be X(i) = B(i) / S(i) if S(i) is greater than */
  603. /* > RCOND*f2cmax(S), and X(i) = 0 if S(i) is less than or equal to */
  604. /* > RCOND*f2cmax(S). */
  605. /* > \endverbatim */
  606. /* > */
  607. /* > \param[out] RANK */
  608. /* > \verbatim */
  609. /* > RANK is INTEGER */
  610. /* > The number of singular values of A greater than RCOND times */
  611. /* > the largest singular value. */
  612. /* > \endverbatim */
  613. /* > */
  614. /* > \param[out] WORK */
  615. /* > \verbatim */
  616. /* > WORK is DOUBLE PRECISION array, dimension at least */
  617. /* > (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
  618. /* > where NLVL = f2cmax(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
  619. /* > \endverbatim */
  620. /* > */
  621. /* > \param[out] IWORK */
  622. /* > \verbatim */
  623. /* > IWORK is INTEGER array, dimension at least */
  624. /* > (3*N*NLVL + 11*N) */
  625. /* > \endverbatim */
  626. /* > */
  627. /* > \param[out] INFO */
  628. /* > \verbatim */
  629. /* > INFO is INTEGER */
  630. /* > = 0: successful exit. */
  631. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  632. /* > > 0: The algorithm failed to compute a singular value while */
  633. /* > working on the submatrix lying in rows and columns */
  634. /* > INFO/(N+1) through MOD(INFO,N+1). */
  635. /* > \endverbatim */
  636. /* Authors: */
  637. /* ======== */
  638. /* > \author Univ. of Tennessee */
  639. /* > \author Univ. of California Berkeley */
  640. /* > \author Univ. of Colorado Denver */
  641. /* > \author NAG Ltd. */
  642. /* > \date December 2016 */
  643. /* > \ingroup doubleOTHERcomputational */
  644. /* > \par Contributors: */
  645. /* ================== */
  646. /* > */
  647. /* > Ming Gu and Ren-Cang Li, Computer Science Division, University of */
  648. /* > California at Berkeley, USA \n */
  649. /* > Osni Marques, LBNL/NERSC, USA \n */
  650. /* ===================================================================== */
  651. /* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
  652. *nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
  653. doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
  654. integer *info)
  655. {
  656. /* System generated locals */
  657. integer b_dim1, b_offset, i__1, i__2;
  658. doublereal d__1;
  659. /* Local variables */
  660. integer difl, difr;
  661. doublereal rcnd;
  662. integer perm, nsub;
  663. extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
  664. doublereal *, integer *, doublereal *, doublereal *);
  665. integer nlvl, sqre, bxst, c__, i__, j, k;
  666. doublereal r__;
  667. integer s, u;
  668. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  669. integer *, doublereal *, doublereal *, integer *, doublereal *,
  670. integer *, doublereal *, doublereal *, integer *);
  671. integer z__;
  672. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  673. doublereal *, integer *);
  674. integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
  675. doublereal cs;
  676. extern doublereal dlamch_(char *);
  677. extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
  678. integer *, doublereal *, doublereal *, doublereal *, integer *,
  679. doublereal *, integer *, doublereal *, doublereal *, doublereal *,
  680. doublereal *, integer *, integer *, integer *, integer *,
  681. doublereal *, doublereal *, doublereal *, doublereal *, integer *,
  682. integer *);
  683. integer bx;
  684. extern /* Subroutine */ int dlalsa_(integer *, integer *, integer *,
  685. integer *, doublereal *, integer *, doublereal *, integer *,
  686. doublereal *, integer *, doublereal *, integer *, doublereal *,
  687. doublereal *, doublereal *, doublereal *, integer *, integer *,
  688. integer *, integer *, doublereal *, doublereal *, doublereal *,
  689. doublereal *, integer *, integer *);
  690. doublereal sn;
  691. extern /* Subroutine */ int dlascl_(char *, integer *, integer *,
  692. doublereal *, doublereal *, integer *, integer *, doublereal *,
  693. integer *, integer *);
  694. extern integer idamax_(integer *, doublereal *, integer *);
  695. integer st;
  696. extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
  697. *, integer *, integer *, doublereal *, doublereal *, doublereal *,
  698. integer *, doublereal *, integer *, doublereal *, integer *,
  699. doublereal *, integer *);
  700. integer vt;
  701. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  702. doublereal *, integer *, doublereal *, integer *),
  703. dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
  704. doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
  705. doublereal *, doublereal *, integer *), xerbla_(char *,
  706. integer *, ftnlen);
  707. integer givcol;
  708. extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
  709. extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
  710. integer *);
  711. doublereal orgnrm;
  712. integer givnum, givptr, nm1, smlszp, st1;
  713. doublereal eps;
  714. integer iwk;
  715. doublereal tol;
  716. /* -- LAPACK computational routine (version 3.7.0) -- */
  717. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  718. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  719. /* December 2016 */
  720. /* ===================================================================== */
  721. /* Test the input parameters. */
  722. /* Parameter adjustments */
  723. --d__;
  724. --e;
  725. b_dim1 = *ldb;
  726. b_offset = 1 + b_dim1 * 1;
  727. b -= b_offset;
  728. --work;
  729. --iwork;
  730. /* Function Body */
  731. *info = 0;
  732. if (*n < 0) {
  733. *info = -3;
  734. } else if (*nrhs < 1) {
  735. *info = -4;
  736. } else if (*ldb < 1 || *ldb < *n) {
  737. *info = -8;
  738. }
  739. if (*info != 0) {
  740. i__1 = -(*info);
  741. xerbla_("DLALSD", &i__1, (ftnlen)6);
  742. return 0;
  743. }
  744. eps = dlamch_("Epsilon");
  745. /* Set up the tolerance. */
  746. if (*rcond <= 0. || *rcond >= 1.) {
  747. rcnd = eps;
  748. } else {
  749. rcnd = *rcond;
  750. }
  751. *rank = 0;
  752. /* Quick return if possible. */
  753. if (*n == 0) {
  754. return 0;
  755. } else if (*n == 1) {
  756. if (d__[1] == 0.) {
  757. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  758. } else {
  759. *rank = 1;
  760. dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
  761. b_offset], ldb, info);
  762. d__[1] = abs(d__[1]);
  763. }
  764. return 0;
  765. }
  766. /* Rotate the matrix if it is lower bidiagonal. */
  767. if (*(unsigned char *)uplo == 'L') {
  768. i__1 = *n - 1;
  769. for (i__ = 1; i__ <= i__1; ++i__) {
  770. dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  771. d__[i__] = r__;
  772. e[i__] = sn * d__[i__ + 1];
  773. d__[i__ + 1] = cs * d__[i__ + 1];
  774. if (*nrhs == 1) {
  775. drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
  776. c__1, &cs, &sn);
  777. } else {
  778. work[(i__ << 1) - 1] = cs;
  779. work[i__ * 2] = sn;
  780. }
  781. /* L10: */
  782. }
  783. if (*nrhs > 1) {
  784. i__1 = *nrhs;
  785. for (i__ = 1; i__ <= i__1; ++i__) {
  786. i__2 = *n - 1;
  787. for (j = 1; j <= i__2; ++j) {
  788. cs = work[(j << 1) - 1];
  789. sn = work[j * 2];
  790. drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
  791. b_dim1], &c__1, &cs, &sn);
  792. /* L20: */
  793. }
  794. /* L30: */
  795. }
  796. }
  797. }
  798. /* Scale. */
  799. nm1 = *n - 1;
  800. orgnrm = dlanst_("M", n, &d__[1], &e[1]);
  801. if (orgnrm == 0.) {
  802. dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
  803. return 0;
  804. }
  805. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
  806. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
  807. info);
  808. /* If N is smaller than the minimum divide size SMLSIZ, then solve */
  809. /* the problem with another solver. */
  810. if (*n <= *smlsiz) {
  811. nwork = *n * *n + 1;
  812. dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
  813. dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
  814. work[1], n, &b[b_offset], ldb, &work[nwork], info);
  815. if (*info != 0) {
  816. return 0;
  817. }
  818. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  819. i__1 = *n;
  820. for (i__ = 1; i__ <= i__1; ++i__) {
  821. if (d__[i__] <= tol) {
  822. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
  823. } else {
  824. dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
  825. i__ + b_dim1], ldb, info);
  826. ++(*rank);
  827. }
  828. /* L40: */
  829. }
  830. dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
  831. c_b6, &work[nwork], n);
  832. dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
  833. /* Unscale. */
  834. dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
  835. info);
  836. dlasrt_("D", n, &d__[1], info);
  837. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
  838. ldb, info);
  839. return 0;
  840. }
  841. /* Book-keeping and setting up some constants. */
  842. nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
  843. log(2.)) + 1;
  844. smlszp = *smlsiz + 1;
  845. u = 1;
  846. vt = *smlsiz * *n + 1;
  847. difl = vt + smlszp * *n;
  848. difr = difl + nlvl * *n;
  849. z__ = difr + (nlvl * *n << 1);
  850. c__ = z__ + nlvl * *n;
  851. s = c__ + *n;
  852. poles = s + *n;
  853. givnum = poles + (nlvl << 1) * *n;
  854. bx = givnum + (nlvl << 1) * *n;
  855. nwork = bx + *n * *nrhs;
  856. sizei = *n + 1;
  857. k = sizei + *n;
  858. givptr = k + *n;
  859. perm = givptr + *n;
  860. givcol = perm + nlvl * *n;
  861. iwk = givcol + (nlvl * *n << 1);
  862. st = 1;
  863. sqre = 0;
  864. icmpq1 = 1;
  865. icmpq2 = 0;
  866. nsub = 0;
  867. i__1 = *n;
  868. for (i__ = 1; i__ <= i__1; ++i__) {
  869. if ((d__1 = d__[i__], abs(d__1)) < eps) {
  870. d__[i__] = d_sign(&eps, &d__[i__]);
  871. }
  872. /* L50: */
  873. }
  874. i__1 = nm1;
  875. for (i__ = 1; i__ <= i__1; ++i__) {
  876. if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
  877. ++nsub;
  878. iwork[nsub] = st;
  879. /* Subproblem found. First determine its size and then */
  880. /* apply divide and conquer on it. */
  881. if (i__ < nm1) {
  882. /* A subproblem with E(I) small for I < NM1. */
  883. nsize = i__ - st + 1;
  884. iwork[sizei + nsub - 1] = nsize;
  885. } else if ((d__1 = e[i__], abs(d__1)) >= eps) {
  886. /* A subproblem with E(NM1) not too small but I = NM1. */
  887. nsize = *n - st + 1;
  888. iwork[sizei + nsub - 1] = nsize;
  889. } else {
  890. /* A subproblem with E(NM1) small. This implies an */
  891. /* 1-by-1 subproblem at D(N), which is not solved */
  892. /* explicitly. */
  893. nsize = i__ - st + 1;
  894. iwork[sizei + nsub - 1] = nsize;
  895. ++nsub;
  896. iwork[nsub] = *n;
  897. iwork[sizei + nsub - 1] = 1;
  898. dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
  899. }
  900. st1 = st - 1;
  901. if (nsize == 1) {
  902. /* This is a 1-by-1 subproblem and is not solved */
  903. /* explicitly. */
  904. dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
  905. } else if (nsize <= *smlsiz) {
  906. /* This is a small subproblem and is solved by DLASDQ. */
  907. dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
  908. n);
  909. dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
  910. st], &work[vt + st1], n, &work[nwork], n, &b[st +
  911. b_dim1], ldb, &work[nwork], info);
  912. if (*info != 0) {
  913. return 0;
  914. }
  915. dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
  916. st1], n);
  917. } else {
  918. /* A large problem. Solve it using divide and conquer. */
  919. dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
  920. work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
  921. work[difl + st1], &work[difr + st1], &work[z__ + st1],
  922. &work[poles + st1], &iwork[givptr + st1], &iwork[
  923. givcol + st1], n, &iwork[perm + st1], &work[givnum +
  924. st1], &work[c__ + st1], &work[s + st1], &work[nwork],
  925. &iwork[iwk], info);
  926. if (*info != 0) {
  927. return 0;
  928. }
  929. bxst = bx + st1;
  930. dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
  931. work[bxst], n, &work[u + st1], n, &work[vt + st1], &
  932. iwork[k + st1], &work[difl + st1], &work[difr + st1],
  933. &work[z__ + st1], &work[poles + st1], &iwork[givptr +
  934. st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
  935. work[givnum + st1], &work[c__ + st1], &work[s + st1],
  936. &work[nwork], &iwork[iwk], info);
  937. if (*info != 0) {
  938. return 0;
  939. }
  940. }
  941. st = i__ + 1;
  942. }
  943. /* L60: */
  944. }
  945. /* Apply the singular values and treat the tiny ones as zero. */
  946. tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
  947. i__1 = *n;
  948. for (i__ = 1; i__ <= i__1; ++i__) {
  949. /* Some of the elements in D can be negative because 1-by-1 */
  950. /* subproblems were not solved explicitly. */
  951. if ((d__1 = d__[i__], abs(d__1)) <= tol) {
  952. dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
  953. } else {
  954. ++(*rank);
  955. dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
  956. bx + i__ - 1], n, info);
  957. }
  958. d__[i__] = (d__1 = d__[i__], abs(d__1));
  959. /* L70: */
  960. }
  961. /* Now apply back the right singular vectors. */
  962. icmpq2 = 1;
  963. i__1 = nsub;
  964. for (i__ = 1; i__ <= i__1; ++i__) {
  965. st = iwork[i__];
  966. st1 = st - 1;
  967. nsize = iwork[sizei + i__ - 1];
  968. bxst = bx + st1;
  969. if (nsize == 1) {
  970. dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
  971. } else if (nsize <= *smlsiz) {
  972. dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
  973. &work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
  974. } else {
  975. dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
  976. b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
  977. k + st1], &work[difl + st1], &work[difr + st1], &work[z__
  978. + st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
  979. givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
  980. &work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
  981. iwk], info);
  982. if (*info != 0) {
  983. return 0;
  984. }
  985. }
  986. /* L80: */
  987. }
  988. /* Unscale and sort the singular values. */
  989. dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
  990. dlasrt_("D", n, &d__[1], info);
  991. dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
  992. info);
  993. return 0;
  994. /* End of DLALSD */
  995. } /* dlalsd_ */