You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cbdsqr.c 41 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* -- translated by f2c (version 20000121).
  486. You must link the resulting object file with the libraries:
  487. -lf2c -lm (in that order)
  488. */
  489. /* Table of constant values */
  490. static doublereal c_b15 = -.125;
  491. static integer c__1 = 1;
  492. static real c_b49 = 1.f;
  493. static real c_b72 = -1.f;
  494. /* > \brief \b CBDSQR */
  495. /* =========== DOCUMENTATION =========== */
  496. /* Online html documentation available at */
  497. /* http://www.netlib.org/lapack/explore-html/ */
  498. /* > \htmlonly */
  499. /* > Download CBDSQR + dependencies */
  500. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbdsqr.
  501. f"> */
  502. /* > [TGZ]</a> */
  503. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbdsqr.
  504. f"> */
  505. /* > [ZIP]</a> */
  506. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbdsqr.
  507. f"> */
  508. /* > [TXT]</a> */
  509. /* > \endhtmlonly */
  510. /* Definition: */
  511. /* =========== */
  512. /* SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U, */
  513. /* LDU, C, LDC, RWORK, INFO ) */
  514. /* CHARACTER UPLO */
  515. /* INTEGER INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU */
  516. /* REAL D( * ), E( * ), RWORK( * ) */
  517. /* COMPLEX C( LDC, * ), U( LDU, * ), VT( LDVT, * ) */
  518. /* > \par Purpose: */
  519. /* ============= */
  520. /* > */
  521. /* > \verbatim */
  522. /* > */
  523. /* > CBDSQR computes the singular values and, optionally, the right and/or */
  524. /* > left singular vectors from the singular value decomposition (SVD) of */
  525. /* > a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
  526. /* > zero-shift QR algorithm. The SVD of B has the form */
  527. /* > */
  528. /* > B = Q * S * P**H */
  529. /* > */
  530. /* > where S is the diagonal matrix of singular values, Q is an orthogonal */
  531. /* > matrix of left singular vectors, and P is an orthogonal matrix of */
  532. /* > right singular vectors. If left singular vectors are requested, this */
  533. /* > subroutine actually returns U*Q instead of Q, and, if right singular */
  534. /* > vectors are requested, this subroutine returns P**H*VT instead of */
  535. /* > P**H, for given complex input matrices U and VT. When U and VT are */
  536. /* > the unitary matrices that reduce a general matrix A to bidiagonal */
  537. /* > form: A = U*B*VT, as computed by CGEBRD, then */
  538. /* > */
  539. /* > A = (U*Q) * S * (P**H*VT) */
  540. /* > */
  541. /* > is the SVD of A. Optionally, the subroutine may also compute Q**H*C */
  542. /* > for a given complex input matrix C. */
  543. /* > */
  544. /* > See "Computing Small Singular Values of Bidiagonal Matrices With */
  545. /* > Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
  546. /* > LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
  547. /* > no. 5, pp. 873-912, Sept 1990) and */
  548. /* > "Accurate singular values and differential qd algorithms," by */
  549. /* > B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
  550. /* > Department, University of California at Berkeley, July 1992 */
  551. /* > for a detailed description of the algorithm. */
  552. /* > \endverbatim */
  553. /* Arguments: */
  554. /* ========== */
  555. /* > \param[in] UPLO */
  556. /* > \verbatim */
  557. /* > UPLO is CHARACTER*1 */
  558. /* > = 'U': B is upper bidiagonal; */
  559. /* > = 'L': B is lower bidiagonal. */
  560. /* > \endverbatim */
  561. /* > */
  562. /* > \param[in] N */
  563. /* > \verbatim */
  564. /* > N is INTEGER */
  565. /* > The order of the matrix B. N >= 0. */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] NCVT */
  569. /* > \verbatim */
  570. /* > NCVT is INTEGER */
  571. /* > The number of columns of the matrix VT. NCVT >= 0. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] NRU */
  575. /* > \verbatim */
  576. /* > NRU is INTEGER */
  577. /* > The number of rows of the matrix U. NRU >= 0. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] NCC */
  581. /* > \verbatim */
  582. /* > NCC is INTEGER */
  583. /* > The number of columns of the matrix C. NCC >= 0. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in,out] D */
  587. /* > \verbatim */
  588. /* > D is REAL array, dimension (N) */
  589. /* > On entry, the n diagonal elements of the bidiagonal matrix B. */
  590. /* > On exit, if INFO=0, the singular values of B in decreasing */
  591. /* > order. */
  592. /* > \endverbatim */
  593. /* > */
  594. /* > \param[in,out] E */
  595. /* > \verbatim */
  596. /* > E is REAL array, dimension (N-1) */
  597. /* > On entry, the N-1 offdiagonal elements of the bidiagonal */
  598. /* > matrix B. */
  599. /* > On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
  600. /* > will contain the diagonal and superdiagonal elements of a */
  601. /* > bidiagonal matrix orthogonally equivalent to the one given */
  602. /* > as input. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[in,out] VT */
  606. /* > \verbatim */
  607. /* > VT is COMPLEX array, dimension (LDVT, NCVT) */
  608. /* > On entry, an N-by-NCVT matrix VT. */
  609. /* > On exit, VT is overwritten by P**H * VT. */
  610. /* > Not referenced if NCVT = 0. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDVT */
  614. /* > \verbatim */
  615. /* > LDVT is INTEGER */
  616. /* > The leading dimension of the array VT. */
  617. /* > LDVT >= f2cmax(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] U */
  621. /* > \verbatim */
  622. /* > U is COMPLEX array, dimension (LDU, N) */
  623. /* > On entry, an NRU-by-N matrix U. */
  624. /* > On exit, U is overwritten by U * Q. */
  625. /* > Not referenced if NRU = 0. */
  626. /* > \endverbatim */
  627. /* > */
  628. /* > \param[in] LDU */
  629. /* > \verbatim */
  630. /* > LDU is INTEGER */
  631. /* > The leading dimension of the array U. LDU >= f2cmax(1,NRU). */
  632. /* > \endverbatim */
  633. /* > */
  634. /* > \param[in,out] C */
  635. /* > \verbatim */
  636. /* > C is COMPLEX array, dimension (LDC, NCC) */
  637. /* > On entry, an N-by-NCC matrix C. */
  638. /* > On exit, C is overwritten by Q**H * C. */
  639. /* > Not referenced if NCC = 0. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[in] LDC */
  643. /* > \verbatim */
  644. /* > LDC is INTEGER */
  645. /* > The leading dimension of the array C. */
  646. /* > LDC >= f2cmax(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[out] RWORK */
  650. /* > \verbatim */
  651. /* > RWORK is REAL array, dimension (4*N) */
  652. /* > \endverbatim */
  653. /* > */
  654. /* > \param[out] INFO */
  655. /* > \verbatim */
  656. /* > INFO is INTEGER */
  657. /* > = 0: successful exit */
  658. /* > < 0: If INFO = -i, the i-th argument had an illegal value */
  659. /* > > 0: the algorithm did not converge; D and E contain the */
  660. /* > elements of a bidiagonal matrix which is orthogonally */
  661. /* > similar to the input matrix B; if INFO = i, i */
  662. /* > elements of E have not converged to zero. */
  663. /* > \endverbatim */
  664. /* > \par Internal Parameters: */
  665. /* ========================= */
  666. /* > */
  667. /* > \verbatim */
  668. /* > TOLMUL REAL, default = f2cmax(10,f2cmin(100,EPS**(-1/8))) */
  669. /* > TOLMUL controls the convergence criterion of the QR loop. */
  670. /* > If it is positive, TOLMUL*EPS is the desired relative */
  671. /* > precision in the computed singular values. */
  672. /* > If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
  673. /* > desired absolute accuracy in the computed singular */
  674. /* > values (corresponds to relative accuracy */
  675. /* > abs(TOLMUL*EPS) in the largest singular value. */
  676. /* > abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
  677. /* > between 10 (for fast convergence) and .1/EPS */
  678. /* > (for there to be some accuracy in the results). */
  679. /* > Default is to lose at either one eighth or 2 of the */
  680. /* > available decimal digits in each computed singular value */
  681. /* > (whichever is smaller). */
  682. /* > */
  683. /* > MAXITR INTEGER, default = 6 */
  684. /* > MAXITR controls the maximum number of passes of the */
  685. /* > algorithm through its inner loop. The algorithms stops */
  686. /* > (and so fails to converge) if the number of passes */
  687. /* > through the inner loop exceeds MAXITR*N**2. */
  688. /* > \endverbatim */
  689. /* Authors: */
  690. /* ======== */
  691. /* > \author Univ. of Tennessee */
  692. /* > \author Univ. of California Berkeley */
  693. /* > \author Univ. of Colorado Denver */
  694. /* > \author NAG Ltd. */
  695. /* > \date December 2016 */
  696. /* > \ingroup complexOTHERcomputational */
  697. /* ===================================================================== */
  698. /* Subroutine */ int cbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
  699. nru, integer *ncc, real *d__, real *e, complex *vt, integer *ldvt,
  700. complex *u, integer *ldu, complex *c__, integer *ldc, real *rwork,
  701. integer *info)
  702. {
  703. /* System generated locals */
  704. integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
  705. i__2;
  706. real r__1, r__2, r__3, r__4;
  707. doublereal d__1;
  708. /* Local variables */
  709. real abse;
  710. integer idir;
  711. real abss;
  712. integer oldm;
  713. real cosl;
  714. integer isub, iter;
  715. real unfl, sinl, cosr, smin, smax, sinr;
  716. extern /* Subroutine */ int slas2_(real *, real *, real *, real *, real *)
  717. ;
  718. real f, g, h__;
  719. integer i__, j, m;
  720. real r__;
  721. extern logical lsame_(char *, char *);
  722. real oldcs;
  723. extern /* Subroutine */ int clasr_(char *, char *, char *, integer *,
  724. integer *, real *, real *, complex *, integer *);
  725. integer oldll;
  726. real shift, sigmn, oldsn;
  727. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  728. complex *, integer *);
  729. integer maxit;
  730. real sminl, sigmx;
  731. logical lower;
  732. extern /* Subroutine */ int csrot_(integer *, complex *, integer *,
  733. complex *, integer *, real *, real *), slasq1_(integer *, real *,
  734. real *, real *, integer *), slasv2_(real *, real *, real *, real *
  735. , real *, real *, real *, real *, real *);
  736. real cs;
  737. integer ll;
  738. real sn, mu;
  739. extern real slamch_(char *);
  740. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  741. *), xerbla_(char *, integer *, ftnlen);
  742. real sminoa;
  743. extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
  744. );
  745. real thresh;
  746. logical rotate;
  747. integer nm1;
  748. real tolmul;
  749. integer nm12, nm13, lll;
  750. real eps, sll, tol;
  751. /* -- LAPACK computational routine (version 3.7.0) -- */
  752. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  753. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  754. /* December 2016 */
  755. /* ===================================================================== */
  756. /* Test the input parameters. */
  757. /* Parameter adjustments */
  758. --d__;
  759. --e;
  760. vt_dim1 = *ldvt;
  761. vt_offset = 1 + vt_dim1 * 1;
  762. vt -= vt_offset;
  763. u_dim1 = *ldu;
  764. u_offset = 1 + u_dim1 * 1;
  765. u -= u_offset;
  766. c_dim1 = *ldc;
  767. c_offset = 1 + c_dim1 * 1;
  768. c__ -= c_offset;
  769. --rwork;
  770. /* Function Body */
  771. *info = 0;
  772. lower = lsame_(uplo, "L");
  773. if (! lsame_(uplo, "U") && ! lower) {
  774. *info = -1;
  775. } else if (*n < 0) {
  776. *info = -2;
  777. } else if (*ncvt < 0) {
  778. *info = -3;
  779. } else if (*nru < 0) {
  780. *info = -4;
  781. } else if (*ncc < 0) {
  782. *info = -5;
  783. } else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < f2cmax(1,*n)) {
  784. *info = -9;
  785. } else if (*ldu < f2cmax(1,*nru)) {
  786. *info = -11;
  787. } else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < f2cmax(1,*n)) {
  788. *info = -13;
  789. }
  790. if (*info != 0) {
  791. i__1 = -(*info);
  792. xerbla_("CBDSQR", &i__1, (ftnlen)6);
  793. return 0;
  794. }
  795. if (*n == 0) {
  796. return 0;
  797. }
  798. if (*n == 1) {
  799. goto L160;
  800. }
  801. /* ROTATE is true if any singular vectors desired, false otherwise */
  802. rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
  803. /* If no singular vectors desired, use qd algorithm */
  804. if (! rotate) {
  805. slasq1_(n, &d__[1], &e[1], &rwork[1], info);
  806. /* If INFO equals 2, dqds didn't finish, try to finish */
  807. if (*info != 2) {
  808. return 0;
  809. }
  810. *info = 0;
  811. }
  812. nm1 = *n - 1;
  813. nm12 = nm1 + nm1;
  814. nm13 = nm12 + nm1;
  815. idir = 0;
  816. /* Get machine constants */
  817. eps = slamch_("Epsilon");
  818. unfl = slamch_("Safe minimum");
  819. /* If matrix lower bidiagonal, rotate to be upper bidiagonal */
  820. /* by applying Givens rotations on the left */
  821. if (lower) {
  822. i__1 = *n - 1;
  823. for (i__ = 1; i__ <= i__1; ++i__) {
  824. slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
  825. d__[i__] = r__;
  826. e[i__] = sn * d__[i__ + 1];
  827. d__[i__ + 1] = cs * d__[i__ + 1];
  828. rwork[i__] = cs;
  829. rwork[nm1 + i__] = sn;
  830. /* L10: */
  831. }
  832. /* Update singular vectors if desired */
  833. if (*nru > 0) {
  834. clasr_("R", "V", "F", nru, n, &rwork[1], &rwork[*n], &u[u_offset],
  835. ldu);
  836. }
  837. if (*ncc > 0) {
  838. clasr_("L", "V", "F", n, ncc, &rwork[1], &rwork[*n], &c__[
  839. c_offset], ldc);
  840. }
  841. }
  842. /* Compute singular values to relative accuracy TOL */
  843. /* (By setting TOL to be negative, algorithm will compute */
  844. /* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
  845. /* Computing MAX */
  846. /* Computing MIN */
  847. d__1 = (doublereal) eps;
  848. r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
  849. r__1 = 10.f, r__2 = f2cmin(r__3,r__4);
  850. tolmul = f2cmax(r__1,r__2);
  851. tol = tolmul * eps;
  852. /* Compute approximate maximum, minimum singular values */
  853. smax = 0.f;
  854. i__1 = *n;
  855. for (i__ = 1; i__ <= i__1; ++i__) {
  856. /* Computing MAX */
  857. r__2 = smax, r__3 = (r__1 = d__[i__], abs(r__1));
  858. smax = f2cmax(r__2,r__3);
  859. /* L20: */
  860. }
  861. i__1 = *n - 1;
  862. for (i__ = 1; i__ <= i__1; ++i__) {
  863. /* Computing MAX */
  864. r__2 = smax, r__3 = (r__1 = e[i__], abs(r__1));
  865. smax = f2cmax(r__2,r__3);
  866. /* L30: */
  867. }
  868. sminl = 0.f;
  869. if (tol >= 0.f) {
  870. /* Relative accuracy desired */
  871. sminoa = abs(d__[1]);
  872. if (sminoa == 0.f) {
  873. goto L50;
  874. }
  875. mu = sminoa;
  876. i__1 = *n;
  877. for (i__ = 2; i__ <= i__1; ++i__) {
  878. mu = (r__2 = d__[i__], abs(r__2)) * (mu / (mu + (r__1 = e[i__ - 1]
  879. , abs(r__1))));
  880. sminoa = f2cmin(sminoa,mu);
  881. if (sminoa == 0.f) {
  882. goto L50;
  883. }
  884. /* L40: */
  885. }
  886. L50:
  887. sminoa /= sqrt((real) (*n));
  888. /* Computing MAX */
  889. r__1 = tol * sminoa, r__2 = *n * 6 * *n * unfl;
  890. thresh = f2cmax(r__1,r__2);
  891. } else {
  892. /* Absolute accuracy desired */
  893. /* Computing MAX */
  894. r__1 = abs(tol) * smax, r__2 = *n * 6 * *n * unfl;
  895. thresh = f2cmax(r__1,r__2);
  896. }
  897. /* Prepare for main iteration loop for the singular values */
  898. /* (MAXIT is the maximum number of passes through the inner */
  899. /* loop permitted before nonconvergence signalled.) */
  900. maxit = *n * 6 * *n;
  901. iter = 0;
  902. oldll = -1;
  903. oldm = -1;
  904. /* M points to last element of unconverged part of matrix */
  905. m = *n;
  906. /* Begin main iteration loop */
  907. L60:
  908. /* Check for convergence or exceeding iteration count */
  909. if (m <= 1) {
  910. goto L160;
  911. }
  912. if (iter > maxit) {
  913. goto L200;
  914. }
  915. /* Find diagonal block of matrix to work on */
  916. if (tol < 0.f && (r__1 = d__[m], abs(r__1)) <= thresh) {
  917. d__[m] = 0.f;
  918. }
  919. smax = (r__1 = d__[m], abs(r__1));
  920. smin = smax;
  921. i__1 = m - 1;
  922. for (lll = 1; lll <= i__1; ++lll) {
  923. ll = m - lll;
  924. abss = (r__1 = d__[ll], abs(r__1));
  925. abse = (r__1 = e[ll], abs(r__1));
  926. if (tol < 0.f && abss <= thresh) {
  927. d__[ll] = 0.f;
  928. }
  929. if (abse <= thresh) {
  930. goto L80;
  931. }
  932. smin = f2cmin(smin,abss);
  933. /* Computing MAX */
  934. r__1 = f2cmax(smax,abss);
  935. smax = f2cmax(r__1,abse);
  936. /* L70: */
  937. }
  938. ll = 0;
  939. goto L90;
  940. L80:
  941. e[ll] = 0.f;
  942. /* Matrix splits since E(LL) = 0 */
  943. if (ll == m - 1) {
  944. /* Convergence of bottom singular value, return to top of loop */
  945. --m;
  946. goto L60;
  947. }
  948. L90:
  949. ++ll;
  950. /* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
  951. if (ll == m - 1) {
  952. /* 2 by 2 block, handle separately */
  953. slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
  954. &sinl, &cosl);
  955. d__[m - 1] = sigmx;
  956. e[m - 1] = 0.f;
  957. d__[m] = sigmn;
  958. /* Compute singular vectors, if desired */
  959. if (*ncvt > 0) {
  960. csrot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
  961. cosr, &sinr);
  962. }
  963. if (*nru > 0) {
  964. csrot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
  965. c__1, &cosl, &sinl);
  966. }
  967. if (*ncc > 0) {
  968. csrot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
  969. cosl, &sinl);
  970. }
  971. m += -2;
  972. goto L60;
  973. }
  974. /* If working on new submatrix, choose shift direction */
  975. /* (from larger end diagonal element towards smaller) */
  976. if (ll > oldm || m < oldll) {
  977. if ((r__1 = d__[ll], abs(r__1)) >= (r__2 = d__[m], abs(r__2))) {
  978. /* Chase bulge from top (big end) to bottom (small end) */
  979. idir = 1;
  980. } else {
  981. /* Chase bulge from bottom (big end) to top (small end) */
  982. idir = 2;
  983. }
  984. }
  985. /* Apply convergence tests */
  986. if (idir == 1) {
  987. /* Run convergence test in forward direction */
  988. /* First apply standard test to bottom of matrix */
  989. if ((r__2 = e[m - 1], abs(r__2)) <= abs(tol) * (r__1 = d__[m], abs(
  990. r__1)) || tol < 0.f && (r__3 = e[m - 1], abs(r__3)) <= thresh)
  991. {
  992. e[m - 1] = 0.f;
  993. goto L60;
  994. }
  995. if (tol >= 0.f) {
  996. /* If relative accuracy desired, */
  997. /* apply convergence criterion forward */
  998. mu = (r__1 = d__[ll], abs(r__1));
  999. sminl = mu;
  1000. i__1 = m - 1;
  1001. for (lll = ll; lll <= i__1; ++lll) {
  1002. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1003. e[lll] = 0.f;
  1004. goto L60;
  1005. }
  1006. mu = (r__2 = d__[lll + 1], abs(r__2)) * (mu / (mu + (r__1 = e[
  1007. lll], abs(r__1))));
  1008. sminl = f2cmin(sminl,mu);
  1009. /* L100: */
  1010. }
  1011. }
  1012. } else {
  1013. /* Run convergence test in backward direction */
  1014. /* First apply standard test to top of matrix */
  1015. if ((r__2 = e[ll], abs(r__2)) <= abs(tol) * (r__1 = d__[ll], abs(r__1)
  1016. ) || tol < 0.f && (r__3 = e[ll], abs(r__3)) <= thresh) {
  1017. e[ll] = 0.f;
  1018. goto L60;
  1019. }
  1020. if (tol >= 0.f) {
  1021. /* If relative accuracy desired, */
  1022. /* apply convergence criterion backward */
  1023. mu = (r__1 = d__[m], abs(r__1));
  1024. sminl = mu;
  1025. i__1 = ll;
  1026. for (lll = m - 1; lll >= i__1; --lll) {
  1027. if ((r__1 = e[lll], abs(r__1)) <= tol * mu) {
  1028. e[lll] = 0.f;
  1029. goto L60;
  1030. }
  1031. mu = (r__2 = d__[lll], abs(r__2)) * (mu / (mu + (r__1 = e[lll]
  1032. , abs(r__1))));
  1033. sminl = f2cmin(sminl,mu);
  1034. /* L110: */
  1035. }
  1036. }
  1037. }
  1038. oldll = ll;
  1039. oldm = m;
  1040. /* Compute shift. First, test if shifting would ruin relative */
  1041. /* accuracy, and if so set the shift to zero. */
  1042. /* Computing MAX */
  1043. r__1 = eps, r__2 = tol * .01f;
  1044. if (tol >= 0.f && *n * tol * (sminl / smax) <= f2cmax(r__1,r__2)) {
  1045. /* Use a zero shift to avoid loss of relative accuracy */
  1046. shift = 0.f;
  1047. } else {
  1048. /* Compute the shift from 2-by-2 block at end of matrix */
  1049. if (idir == 1) {
  1050. sll = (r__1 = d__[ll], abs(r__1));
  1051. slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
  1052. } else {
  1053. sll = (r__1 = d__[m], abs(r__1));
  1054. slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
  1055. }
  1056. /* Test if shift negligible, and if so set to zero */
  1057. if (sll > 0.f) {
  1058. /* Computing 2nd power */
  1059. r__1 = shift / sll;
  1060. if (r__1 * r__1 < eps) {
  1061. shift = 0.f;
  1062. }
  1063. }
  1064. }
  1065. /* Increment iteration count */
  1066. iter = iter + m - ll;
  1067. /* If SHIFT = 0, do simplified QR iteration */
  1068. if (shift == 0.f) {
  1069. if (idir == 1) {
  1070. /* Chase bulge from top to bottom */
  1071. /* Save cosines and sines for later singular vector updates */
  1072. cs = 1.f;
  1073. oldcs = 1.f;
  1074. i__1 = m - 1;
  1075. for (i__ = ll; i__ <= i__1; ++i__) {
  1076. r__1 = d__[i__] * cs;
  1077. slartg_(&r__1, &e[i__], &cs, &sn, &r__);
  1078. if (i__ > ll) {
  1079. e[i__ - 1] = oldsn * r__;
  1080. }
  1081. r__1 = oldcs * r__;
  1082. r__2 = d__[i__ + 1] * sn;
  1083. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1084. rwork[i__ - ll + 1] = cs;
  1085. rwork[i__ - ll + 1 + nm1] = sn;
  1086. rwork[i__ - ll + 1 + nm12] = oldcs;
  1087. rwork[i__ - ll + 1 + nm13] = oldsn;
  1088. /* L120: */
  1089. }
  1090. h__ = d__[m] * cs;
  1091. d__[m] = h__ * oldcs;
  1092. e[m - 1] = h__ * oldsn;
  1093. /* Update singular vectors */
  1094. if (*ncvt > 0) {
  1095. i__1 = m - ll + 1;
  1096. clasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1097. ll + vt_dim1], ldvt);
  1098. }
  1099. if (*nru > 0) {
  1100. i__1 = m - ll + 1;
  1101. clasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1102. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1103. }
  1104. if (*ncc > 0) {
  1105. i__1 = m - ll + 1;
  1106. clasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1107. nm13 + 1], &c__[ll + c_dim1], ldc);
  1108. }
  1109. /* Test convergence */
  1110. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1111. e[m - 1] = 0.f;
  1112. }
  1113. } else {
  1114. /* Chase bulge from bottom to top */
  1115. /* Save cosines and sines for later singular vector updates */
  1116. cs = 1.f;
  1117. oldcs = 1.f;
  1118. i__1 = ll + 1;
  1119. for (i__ = m; i__ >= i__1; --i__) {
  1120. r__1 = d__[i__] * cs;
  1121. slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
  1122. if (i__ < m) {
  1123. e[i__] = oldsn * r__;
  1124. }
  1125. r__1 = oldcs * r__;
  1126. r__2 = d__[i__ - 1] * sn;
  1127. slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
  1128. rwork[i__ - ll] = cs;
  1129. rwork[i__ - ll + nm1] = -sn;
  1130. rwork[i__ - ll + nm12] = oldcs;
  1131. rwork[i__ - ll + nm13] = -oldsn;
  1132. /* L130: */
  1133. }
  1134. h__ = d__[ll] * cs;
  1135. d__[ll] = h__ * oldcs;
  1136. e[ll] = h__ * oldsn;
  1137. /* Update singular vectors */
  1138. if (*ncvt > 0) {
  1139. i__1 = m - ll + 1;
  1140. clasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1141. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1142. }
  1143. if (*nru > 0) {
  1144. i__1 = m - ll + 1;
  1145. clasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1146. ll * u_dim1 + 1], ldu);
  1147. }
  1148. if (*ncc > 0) {
  1149. i__1 = m - ll + 1;
  1150. clasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1151. ll + c_dim1], ldc);
  1152. }
  1153. /* Test convergence */
  1154. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1155. e[ll] = 0.f;
  1156. }
  1157. }
  1158. } else {
  1159. /* Use nonzero shift */
  1160. if (idir == 1) {
  1161. /* Chase bulge from top to bottom */
  1162. /* Save cosines and sines for later singular vector updates */
  1163. f = ((r__1 = d__[ll], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[
  1164. ll]) + shift / d__[ll]);
  1165. g = e[ll];
  1166. i__1 = m - 1;
  1167. for (i__ = ll; i__ <= i__1; ++i__) {
  1168. slartg_(&f, &g, &cosr, &sinr, &r__);
  1169. if (i__ > ll) {
  1170. e[i__ - 1] = r__;
  1171. }
  1172. f = cosr * d__[i__] + sinr * e[i__];
  1173. e[i__] = cosr * e[i__] - sinr * d__[i__];
  1174. g = sinr * d__[i__ + 1];
  1175. d__[i__ + 1] = cosr * d__[i__ + 1];
  1176. slartg_(&f, &g, &cosl, &sinl, &r__);
  1177. d__[i__] = r__;
  1178. f = cosl * e[i__] + sinl * d__[i__ + 1];
  1179. d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
  1180. if (i__ < m - 1) {
  1181. g = sinl * e[i__ + 1];
  1182. e[i__ + 1] = cosl * e[i__ + 1];
  1183. }
  1184. rwork[i__ - ll + 1] = cosr;
  1185. rwork[i__ - ll + 1 + nm1] = sinr;
  1186. rwork[i__ - ll + 1 + nm12] = cosl;
  1187. rwork[i__ - ll + 1 + nm13] = sinl;
  1188. /* L140: */
  1189. }
  1190. e[m - 1] = f;
  1191. /* Update singular vectors */
  1192. if (*ncvt > 0) {
  1193. i__1 = m - ll + 1;
  1194. clasr_("L", "V", "F", &i__1, ncvt, &rwork[1], &rwork[*n], &vt[
  1195. ll + vt_dim1], ldvt);
  1196. }
  1197. if (*nru > 0) {
  1198. i__1 = m - ll + 1;
  1199. clasr_("R", "V", "F", nru, &i__1, &rwork[nm12 + 1], &rwork[
  1200. nm13 + 1], &u[ll * u_dim1 + 1], ldu);
  1201. }
  1202. if (*ncc > 0) {
  1203. i__1 = m - ll + 1;
  1204. clasr_("L", "V", "F", &i__1, ncc, &rwork[nm12 + 1], &rwork[
  1205. nm13 + 1], &c__[ll + c_dim1], ldc);
  1206. }
  1207. /* Test convergence */
  1208. if ((r__1 = e[m - 1], abs(r__1)) <= thresh) {
  1209. e[m - 1] = 0.f;
  1210. }
  1211. } else {
  1212. /* Chase bulge from bottom to top */
  1213. /* Save cosines and sines for later singular vector updates */
  1214. f = ((r__1 = d__[m], abs(r__1)) - shift) * (r_sign(&c_b49, &d__[m]
  1215. ) + shift / d__[m]);
  1216. g = e[m - 1];
  1217. i__1 = ll + 1;
  1218. for (i__ = m; i__ >= i__1; --i__) {
  1219. slartg_(&f, &g, &cosr, &sinr, &r__);
  1220. if (i__ < m) {
  1221. e[i__] = r__;
  1222. }
  1223. f = cosr * d__[i__] + sinr * e[i__ - 1];
  1224. e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
  1225. g = sinr * d__[i__ - 1];
  1226. d__[i__ - 1] = cosr * d__[i__ - 1];
  1227. slartg_(&f, &g, &cosl, &sinl, &r__);
  1228. d__[i__] = r__;
  1229. f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
  1230. d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
  1231. if (i__ > ll + 1) {
  1232. g = sinl * e[i__ - 2];
  1233. e[i__ - 2] = cosl * e[i__ - 2];
  1234. }
  1235. rwork[i__ - ll] = cosr;
  1236. rwork[i__ - ll + nm1] = -sinr;
  1237. rwork[i__ - ll + nm12] = cosl;
  1238. rwork[i__ - ll + nm13] = -sinl;
  1239. /* L150: */
  1240. }
  1241. e[ll] = f;
  1242. /* Test convergence */
  1243. if ((r__1 = e[ll], abs(r__1)) <= thresh) {
  1244. e[ll] = 0.f;
  1245. }
  1246. /* Update singular vectors if desired */
  1247. if (*ncvt > 0) {
  1248. i__1 = m - ll + 1;
  1249. clasr_("L", "V", "B", &i__1, ncvt, &rwork[nm12 + 1], &rwork[
  1250. nm13 + 1], &vt[ll + vt_dim1], ldvt);
  1251. }
  1252. if (*nru > 0) {
  1253. i__1 = m - ll + 1;
  1254. clasr_("R", "V", "B", nru, &i__1, &rwork[1], &rwork[*n], &u[
  1255. ll * u_dim1 + 1], ldu);
  1256. }
  1257. if (*ncc > 0) {
  1258. i__1 = m - ll + 1;
  1259. clasr_("L", "V", "B", &i__1, ncc, &rwork[1], &rwork[*n], &c__[
  1260. ll + c_dim1], ldc);
  1261. }
  1262. }
  1263. }
  1264. /* QR iteration finished, go back and check convergence */
  1265. goto L60;
  1266. /* All singular values converged, so make them positive */
  1267. L160:
  1268. i__1 = *n;
  1269. for (i__ = 1; i__ <= i__1; ++i__) {
  1270. if (d__[i__] < 0.f) {
  1271. d__[i__] = -d__[i__];
  1272. /* Change sign of singular vectors, if desired */
  1273. if (*ncvt > 0) {
  1274. csscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
  1275. }
  1276. }
  1277. /* L170: */
  1278. }
  1279. /* Sort the singular values into decreasing order (insertion sort on */
  1280. /* singular values, but only one transposition per singular vector) */
  1281. i__1 = *n - 1;
  1282. for (i__ = 1; i__ <= i__1; ++i__) {
  1283. /* Scan for smallest D(I) */
  1284. isub = 1;
  1285. smin = d__[1];
  1286. i__2 = *n + 1 - i__;
  1287. for (j = 2; j <= i__2; ++j) {
  1288. if (d__[j] <= smin) {
  1289. isub = j;
  1290. smin = d__[j];
  1291. }
  1292. /* L180: */
  1293. }
  1294. if (isub != *n + 1 - i__) {
  1295. /* Swap singular values and vectors */
  1296. d__[isub] = d__[*n + 1 - i__];
  1297. d__[*n + 1 - i__] = smin;
  1298. if (*ncvt > 0) {
  1299. cswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
  1300. vt_dim1], ldvt);
  1301. }
  1302. if (*nru > 0) {
  1303. cswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
  1304. u_dim1 + 1], &c__1);
  1305. }
  1306. if (*ncc > 0) {
  1307. cswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
  1308. c_dim1], ldc);
  1309. }
  1310. }
  1311. /* L190: */
  1312. }
  1313. goto L220;
  1314. /* Maximum number of iterations exceeded, failure to converge */
  1315. L200:
  1316. *info = 0;
  1317. i__1 = *n - 1;
  1318. for (i__ = 1; i__ <= i__1; ++i__) {
  1319. if (e[i__] != 0.f) {
  1320. ++(*info);
  1321. }
  1322. /* L210: */
  1323. }
  1324. L220:
  1325. return 0;
  1326. /* End of CBDSQR */
  1327. } /* cbdsqr_ */