You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatm5.c 37 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. #define z_sin(R, Z) {pCd(R) = csin(Cd(Z));}
  182. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  183. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  184. #define d_abs(x) (fabs(*(x)))
  185. #define d_acos(x) (acos(*(x)))
  186. #define d_asin(x) (asin(*(x)))
  187. #define d_atan(x) (atan(*(x)))
  188. #define d_atn2(x, y) (atan2(*(x),*(y)))
  189. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  190. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  191. #define d_cos(x) (cos(*(x)))
  192. #define d_cosh(x) (cosh(*(x)))
  193. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  194. #define d_exp(x) (exp(*(x)))
  195. #define d_imag(z) (cimag(Cd(z)))
  196. #define r_imag(z) (cimagf(Cf(z)))
  197. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  199. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  201. #define d_log(x) (log(*(x)))
  202. #define d_mod(x, y) (fmod(*(x), *(y)))
  203. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  204. #define d_nint(x) u_nint(*(x))
  205. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  206. #define d_sign(a,b) u_sign(*(a),*(b))
  207. #define r_sign(a,b) u_sign(*(a),*(b))
  208. #define d_sin(x) (sin(*(x)))
  209. #define d_sinh(x) (sinh(*(x)))
  210. #define d_sqrt(x) (sqrt(*(x)))
  211. #define d_tan(x) (tan(*(x)))
  212. #define d_tanh(x) (tanh(*(x)))
  213. #define i_abs(x) abs(*(x))
  214. #define i_dnnt(x) ((integer)u_nint(*(x)))
  215. #define i_len(s, n) (n)
  216. #define i_nint(x) ((integer)u_nint(*(x)))
  217. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  218. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  219. #define pow_si(B,E) spow_ui(*(B),*(E))
  220. #define pow_ri(B,E) spow_ui(*(B),*(E))
  221. #define pow_di(B,E) dpow_ui(*(B),*(E))
  222. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  223. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  224. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  225. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  226. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  227. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  228. #define sig_die(s, kill) { exit(1); }
  229. #define s_stop(s, n) {exit(0);}
  230. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  231. #define z_abs(z) (cabs(Cd(z)))
  232. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  233. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  234. #define myexit_() break;
  235. #define mycycle_() continue;
  236. #define myceiling_(w) {ceil(w)}
  237. #define myhuge_(w) {HUGE_VAL}
  238. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  239. #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  240. /* procedure parameter types for -A and -C++ */
  241. #define F2C_proc_par_types 1
  242. #ifdef __cplusplus
  243. typedef logical (*L_fp)(...);
  244. #else
  245. typedef logical (*L_fp)();
  246. #endif
  247. static float spow_ui(float x, integer n) {
  248. float pow=1.0; unsigned long int u;
  249. if(n != 0) {
  250. if(n < 0) n = -n, x = 1/x;
  251. for(u = n; ; ) {
  252. if(u & 01) pow *= x;
  253. if(u >>= 1) x *= x;
  254. else break;
  255. }
  256. }
  257. return pow;
  258. }
  259. static double dpow_ui(double x, integer n) {
  260. double pow=1.0; unsigned long int u;
  261. if(n != 0) {
  262. if(n < 0) n = -n, x = 1/x;
  263. for(u = n; ; ) {
  264. if(u & 01) pow *= x;
  265. if(u >>= 1) x *= x;
  266. else break;
  267. }
  268. }
  269. return pow;
  270. }
  271. #ifdef _MSC_VER
  272. static _Fcomplex cpow_ui(complex x, integer n) {
  273. complex pow={1.0,0.0}; unsigned long int u;
  274. if(n != 0) {
  275. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  276. for(u = n; ; ) {
  277. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  278. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  279. else break;
  280. }
  281. }
  282. _Fcomplex p={pow.r, pow.i};
  283. return p;
  284. }
  285. #else
  286. static _Complex float cpow_ui(_Complex float x, integer n) {
  287. _Complex float pow=1.0; unsigned long int u;
  288. if(n != 0) {
  289. if(n < 0) n = -n, x = 1/x;
  290. for(u = n; ; ) {
  291. if(u & 01) pow *= x;
  292. if(u >>= 1) x *= x;
  293. else break;
  294. }
  295. }
  296. return pow;
  297. }
  298. #endif
  299. #ifdef _MSC_VER
  300. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  301. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  302. if(n != 0) {
  303. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  304. for(u = n; ; ) {
  305. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  306. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  307. else break;
  308. }
  309. }
  310. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  311. return p;
  312. }
  313. #else
  314. static _Complex double zpow_ui(_Complex double x, integer n) {
  315. _Complex double pow=1.0; unsigned long int u;
  316. if(n != 0) {
  317. if(n < 0) n = -n, x = 1/x;
  318. for(u = n; ; ) {
  319. if(u & 01) pow *= x;
  320. if(u >>= 1) x *= x;
  321. else break;
  322. }
  323. }
  324. return pow;
  325. }
  326. #endif
  327. static integer pow_ii(integer x, integer n) {
  328. integer pow; unsigned long int u;
  329. if (n <= 0) {
  330. if (n == 0 || x == 1) pow = 1;
  331. else if (x != -1) pow = x == 0 ? 1/x : 0;
  332. else n = -n;
  333. }
  334. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  335. u = n;
  336. for(pow = 1; ; ) {
  337. if(u & 01) pow *= x;
  338. if(u >>= 1) x *= x;
  339. else break;
  340. }
  341. }
  342. return pow;
  343. }
  344. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  345. {
  346. double m; integer i, mi;
  347. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  348. if (w[i-1]>m) mi=i ,m=w[i-1];
  349. return mi-s+1;
  350. }
  351. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  352. {
  353. float m; integer i, mi;
  354. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  355. if (w[i-1]>m) mi=i ,m=w[i-1];
  356. return mi-s+1;
  357. }
  358. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  359. integer n = *n_, incx = *incx_, incy = *incy_, i;
  360. #ifdef _MSC_VER
  361. _Fcomplex zdotc = {0.0, 0.0};
  362. if (incx == 1 && incy == 1) {
  363. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  364. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  365. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  366. }
  367. } else {
  368. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  369. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  370. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  371. }
  372. }
  373. pCf(z) = zdotc;
  374. }
  375. #else
  376. _Complex float zdotc = 0.0;
  377. if (incx == 1 && incy == 1) {
  378. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  379. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  380. }
  381. } else {
  382. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  383. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  384. }
  385. }
  386. pCf(z) = zdotc;
  387. }
  388. #endif
  389. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  390. integer n = *n_, incx = *incx_, incy = *incy_, i;
  391. #ifdef _MSC_VER
  392. _Dcomplex zdotc = {0.0, 0.0};
  393. if (incx == 1 && incy == 1) {
  394. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  395. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  396. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  397. }
  398. } else {
  399. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  400. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  401. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  402. }
  403. }
  404. pCd(z) = zdotc;
  405. }
  406. #else
  407. _Complex double zdotc = 0.0;
  408. if (incx == 1 && incy == 1) {
  409. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  410. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  411. }
  412. } else {
  413. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  414. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  415. }
  416. }
  417. pCd(z) = zdotc;
  418. }
  419. #endif
  420. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  421. integer n = *n_, incx = *incx_, incy = *incy_, i;
  422. #ifdef _MSC_VER
  423. _Fcomplex zdotc = {0.0, 0.0};
  424. if (incx == 1 && incy == 1) {
  425. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  426. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  427. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  428. }
  429. } else {
  430. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  431. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  432. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  433. }
  434. }
  435. pCf(z) = zdotc;
  436. }
  437. #else
  438. _Complex float zdotc = 0.0;
  439. if (incx == 1 && incy == 1) {
  440. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  441. zdotc += Cf(&x[i]) * Cf(&y[i]);
  442. }
  443. } else {
  444. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  445. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  446. }
  447. }
  448. pCf(z) = zdotc;
  449. }
  450. #endif
  451. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  452. integer n = *n_, incx = *incx_, incy = *incy_, i;
  453. #ifdef _MSC_VER
  454. _Dcomplex zdotc = {0.0, 0.0};
  455. if (incx == 1 && incy == 1) {
  456. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  457. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  458. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  459. }
  460. } else {
  461. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  462. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  463. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  464. }
  465. }
  466. pCd(z) = zdotc;
  467. }
  468. #else
  469. _Complex double zdotc = 0.0;
  470. if (incx == 1 && incy == 1) {
  471. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  472. zdotc += Cd(&x[i]) * Cd(&y[i]);
  473. }
  474. } else {
  475. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  476. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  477. }
  478. }
  479. pCd(z) = zdotc;
  480. }
  481. #endif
  482. /* -- translated by f2c (version 20000121).
  483. You must link the resulting object file with the libraries:
  484. -lf2c -lm (in that order)
  485. */
  486. /* Table of constant values */
  487. static doublecomplex c_b1 = {1.,0.};
  488. static doublecomplex c_b3 = {0.,0.};
  489. static doublecomplex c_b5 = {20.,0.};
  490. /* > \brief \b ZLATM5 */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* Definition: */
  495. /* =========== */
  496. /* SUBROUTINE ZLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
  497. /* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
  498. /* QBLCKB ) */
  499. /* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
  500. /* $ PRTYPE, QBLCKA, QBLCKB */
  501. /* DOUBLE PRECISION ALPHA */
  502. /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), */
  503. /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
  504. /* $ L( LDL, * ), R( LDR, * ) */
  505. /* > \par Purpose: */
  506. /* ============= */
  507. /* > */
  508. /* > \verbatim */
  509. /* > */
  510. /* > ZLATM5 generates matrices involved in the Generalized Sylvester */
  511. /* > equation: */
  512. /* > */
  513. /* > A * R - L * B = C */
  514. /* > D * R - L * E = F */
  515. /* > */
  516. /* > They also satisfy (the diagonalization condition) */
  517. /* > */
  518. /* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
  519. /* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
  520. /* > */
  521. /* > \endverbatim */
  522. /* Arguments: */
  523. /* ========== */
  524. /* > \param[in] PRTYPE */
  525. /* > \verbatim */
  526. /* > PRTYPE is INTEGER */
  527. /* > "Points" to a certain type of the matrices to generate */
  528. /* > (see further details). */
  529. /* > \endverbatim */
  530. /* > */
  531. /* > \param[in] M */
  532. /* > \verbatim */
  533. /* > M is INTEGER */
  534. /* > Specifies the order of A and D and the number of rows in */
  535. /* > C, F, R and L. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] N */
  539. /* > \verbatim */
  540. /* > N is INTEGER */
  541. /* > Specifies the order of B and E and the number of columns in */
  542. /* > C, F, R and L. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[out] A */
  546. /* > \verbatim */
  547. /* > A is COMPLEX*16 array, dimension (LDA, M). */
  548. /* > On exit A M-by-M is initialized according to PRTYPE. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in] LDA */
  552. /* > \verbatim */
  553. /* > LDA is INTEGER */
  554. /* > The leading dimension of A. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[out] B */
  558. /* > \verbatim */
  559. /* > B is COMPLEX*16 array, dimension (LDB, N). */
  560. /* > On exit B N-by-N is initialized according to PRTYPE. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] LDB */
  564. /* > \verbatim */
  565. /* > LDB is INTEGER */
  566. /* > The leading dimension of B. */
  567. /* > \endverbatim */
  568. /* > */
  569. /* > \param[out] C */
  570. /* > \verbatim */
  571. /* > C is COMPLEX*16 array, dimension (LDC, N). */
  572. /* > On exit C M-by-N is initialized according to PRTYPE. */
  573. /* > \endverbatim */
  574. /* > */
  575. /* > \param[in] LDC */
  576. /* > \verbatim */
  577. /* > LDC is INTEGER */
  578. /* > The leading dimension of C. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[out] D */
  582. /* > \verbatim */
  583. /* > D is COMPLEX*16 array, dimension (LDD, M). */
  584. /* > On exit D M-by-M is initialized according to PRTYPE. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[in] LDD */
  588. /* > \verbatim */
  589. /* > LDD is INTEGER */
  590. /* > The leading dimension of D. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[out] E */
  594. /* > \verbatim */
  595. /* > E is COMPLEX*16 array, dimension (LDE, N). */
  596. /* > On exit E N-by-N is initialized according to PRTYPE. */
  597. /* > \endverbatim */
  598. /* > */
  599. /* > \param[in] LDE */
  600. /* > \verbatim */
  601. /* > LDE is INTEGER */
  602. /* > The leading dimension of E. */
  603. /* > \endverbatim */
  604. /* > */
  605. /* > \param[out] F */
  606. /* > \verbatim */
  607. /* > F is COMPLEX*16 array, dimension (LDF, N). */
  608. /* > On exit F M-by-N is initialized according to PRTYPE. */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] LDF */
  612. /* > \verbatim */
  613. /* > LDF is INTEGER */
  614. /* > The leading dimension of F. */
  615. /* > \endverbatim */
  616. /* > */
  617. /* > \param[out] R */
  618. /* > \verbatim */
  619. /* > R is COMPLEX*16 array, dimension (LDR, N). */
  620. /* > On exit R M-by-N is initialized according to PRTYPE. */
  621. /* > \endverbatim */
  622. /* > */
  623. /* > \param[in] LDR */
  624. /* > \verbatim */
  625. /* > LDR is INTEGER */
  626. /* > The leading dimension of R. */
  627. /* > \endverbatim */
  628. /* > */
  629. /* > \param[out] L */
  630. /* > \verbatim */
  631. /* > L is COMPLEX*16 array, dimension (LDL, N). */
  632. /* > On exit L M-by-N is initialized according to PRTYPE. */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDL */
  636. /* > \verbatim */
  637. /* > LDL is INTEGER */
  638. /* > The leading dimension of L. */
  639. /* > \endverbatim */
  640. /* > */
  641. /* > \param[in] ALPHA */
  642. /* > \verbatim */
  643. /* > ALPHA is DOUBLE PRECISION */
  644. /* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] QBLCKA */
  648. /* > \verbatim */
  649. /* > QBLCKA is INTEGER */
  650. /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
  651. /* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
  652. /* > referenced. QBLCKA > 1. */
  653. /* > \endverbatim */
  654. /* > */
  655. /* > \param[in] QBLCKB */
  656. /* > \verbatim */
  657. /* > QBLCKB is INTEGER */
  658. /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
  659. /* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
  660. /* > referenced. QBLCKB > 1. */
  661. /* > \endverbatim */
  662. /* Authors: */
  663. /* ======== */
  664. /* > \author Univ. of Tennessee */
  665. /* > \author Univ. of California Berkeley */
  666. /* > \author Univ. of Colorado Denver */
  667. /* > \author NAG Ltd. */
  668. /* > \date June 2016 */
  669. /* > \ingroup complex16_matgen */
  670. /* > \par Further Details: */
  671. /* ===================== */
  672. /* > */
  673. /* > \verbatim */
  674. /* > */
  675. /* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
  676. /* > */
  677. /* > A : if (i == j) then A(i, j) = 1.0 */
  678. /* > if (j == i + 1) then A(i, j) = -1.0 */
  679. /* > else A(i, j) = 0.0, i, j = 1...M */
  680. /* > */
  681. /* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
  682. /* > if (j == i + 1) then B(i, j) = 1.0 */
  683. /* > else B(i, j) = 0.0, i, j = 1...N */
  684. /* > */
  685. /* > D : if (i == j) then D(i, j) = 1.0 */
  686. /* > else D(i, j) = 0.0, i, j = 1...M */
  687. /* > */
  688. /* > E : if (i == j) then E(i, j) = 1.0 */
  689. /* > else E(i, j) = 0.0, i, j = 1...N */
  690. /* > */
  691. /* > L = R are chosen from [-10...10], */
  692. /* > which specifies the right hand sides (C, F). */
  693. /* > */
  694. /* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
  695. /* > */
  696. /* > A : if (i <= j) then A(i, j) = [-1...1] */
  697. /* > else A(i, j) = 0.0, i, j = 1...M */
  698. /* > */
  699. /* > if (PRTYPE = 3) then */
  700. /* > A(k + 1, k + 1) = A(k, k) */
  701. /* > A(k + 1, k) = [-1...1] */
  702. /* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
  703. /* > k = 1, M - 1, QBLCKA */
  704. /* > */
  705. /* > B : if (i <= j) then B(i, j) = [-1...1] */
  706. /* > else B(i, j) = 0.0, i, j = 1...N */
  707. /* > */
  708. /* > if (PRTYPE = 3) then */
  709. /* > B(k + 1, k + 1) = B(k, k) */
  710. /* > B(k + 1, k) = [-1...1] */
  711. /* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
  712. /* > k = 1, N - 1, QBLCKB */
  713. /* > */
  714. /* > D : if (i <= j) then D(i, j) = [-1...1]. */
  715. /* > else D(i, j) = 0.0, i, j = 1...M */
  716. /* > */
  717. /* > */
  718. /* > E : if (i <= j) then D(i, j) = [-1...1] */
  719. /* > else E(i, j) = 0.0, i, j = 1...N */
  720. /* > */
  721. /* > L, R are chosen from [-10...10], */
  722. /* > which specifies the right hand sides (C, F). */
  723. /* > */
  724. /* > PRTYPE = 4 Full */
  725. /* > A(i, j) = [-10...10] */
  726. /* > D(i, j) = [-1...1] i,j = 1...M */
  727. /* > B(i, j) = [-10...10] */
  728. /* > E(i, j) = [-1...1] i,j = 1...N */
  729. /* > R(i, j) = [-10...10] */
  730. /* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
  731. /* > */
  732. /* > L, R specifies the right hand sides (C, F). */
  733. /* > */
  734. /* > PRTYPE = 5 special case common and/or close eigs. */
  735. /* > \endverbatim */
  736. /* > */
  737. /* ===================================================================== */
  738. /* Subroutine */ int zlatm5_(integer *prtype, integer *m, integer *n,
  739. doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
  740. doublecomplex *c__, integer *ldc, doublecomplex *d__, integer *ldd,
  741. doublecomplex *e, integer *lde, doublecomplex *f, integer *ldf,
  742. doublecomplex *r__, integer *ldr, doublecomplex *l, integer *ldl,
  743. doublereal *alpha, integer *qblcka, integer *qblckb)
  744. {
  745. /* System generated locals */
  746. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
  747. d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
  748. r_dim1, r_offset, i__1, i__2, i__3, i__4;
  749. doublereal d__1;
  750. doublecomplex z__1, z__2, z__3, z__4, z__5;
  751. /* Local variables */
  752. integer i__, j, k;
  753. doublecomplex imeps, reeps;
  754. extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
  755. integer *, doublecomplex *, doublecomplex *, integer *,
  756. doublecomplex *, integer *, doublecomplex *, doublecomplex *,
  757. integer *);
  758. /* -- LAPACK computational routine (version 3.7.0) -- */
  759. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  760. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  761. /* June 2016 */
  762. /* ===================================================================== */
  763. /* Parameter adjustments */
  764. a_dim1 = *lda;
  765. a_offset = 1 + a_dim1 * 1;
  766. a -= a_offset;
  767. b_dim1 = *ldb;
  768. b_offset = 1 + b_dim1 * 1;
  769. b -= b_offset;
  770. c_dim1 = *ldc;
  771. c_offset = 1 + c_dim1 * 1;
  772. c__ -= c_offset;
  773. d_dim1 = *ldd;
  774. d_offset = 1 + d_dim1 * 1;
  775. d__ -= d_offset;
  776. e_dim1 = *lde;
  777. e_offset = 1 + e_dim1 * 1;
  778. e -= e_offset;
  779. f_dim1 = *ldf;
  780. f_offset = 1 + f_dim1 * 1;
  781. f -= f_offset;
  782. r_dim1 = *ldr;
  783. r_offset = 1 + r_dim1 * 1;
  784. r__ -= r_offset;
  785. l_dim1 = *ldl;
  786. l_offset = 1 + l_dim1 * 1;
  787. l -= l_offset;
  788. /* Function Body */
  789. if (*prtype == 1) {
  790. i__1 = *m;
  791. for (i__ = 1; i__ <= i__1; ++i__) {
  792. i__2 = *m;
  793. for (j = 1; j <= i__2; ++j) {
  794. if (i__ == j) {
  795. i__3 = i__ + j * a_dim1;
  796. a[i__3].r = 1., a[i__3].i = 0.;
  797. i__3 = i__ + j * d_dim1;
  798. d__[i__3].r = 1., d__[i__3].i = 0.;
  799. } else if (i__ == j - 1) {
  800. i__3 = i__ + j * a_dim1;
  801. z__1.r = -1., z__1.i = 0.;
  802. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  803. i__3 = i__ + j * d_dim1;
  804. d__[i__3].r = 0., d__[i__3].i = 0.;
  805. } else {
  806. i__3 = i__ + j * a_dim1;
  807. a[i__3].r = 0., a[i__3].i = 0.;
  808. i__3 = i__ + j * d_dim1;
  809. d__[i__3].r = 0., d__[i__3].i = 0.;
  810. }
  811. /* L10: */
  812. }
  813. /* L20: */
  814. }
  815. i__1 = *n;
  816. for (i__ = 1; i__ <= i__1; ++i__) {
  817. i__2 = *n;
  818. for (j = 1; j <= i__2; ++j) {
  819. if (i__ == j) {
  820. i__3 = i__ + j * b_dim1;
  821. z__1.r = 1. - *alpha, z__1.i = 0.;
  822. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  823. i__3 = i__ + j * e_dim1;
  824. e[i__3].r = 1., e[i__3].i = 0.;
  825. } else if (i__ == j - 1) {
  826. i__3 = i__ + j * b_dim1;
  827. b[i__3].r = 1., b[i__3].i = 0.;
  828. i__3 = i__ + j * e_dim1;
  829. e[i__3].r = 0., e[i__3].i = 0.;
  830. } else {
  831. i__3 = i__ + j * b_dim1;
  832. b[i__3].r = 0., b[i__3].i = 0.;
  833. i__3 = i__ + j * e_dim1;
  834. e[i__3].r = 0., e[i__3].i = 0.;
  835. }
  836. /* L30: */
  837. }
  838. /* L40: */
  839. }
  840. i__1 = *m;
  841. for (i__ = 1; i__ <= i__1; ++i__) {
  842. i__2 = *n;
  843. for (j = 1; j <= i__2; ++j) {
  844. i__3 = i__ + j * r_dim1;
  845. i__4 = i__ / j;
  846. z__4.r = (doublereal) i__4, z__4.i = 0.;
  847. z_sin(&z__3, &z__4);
  848. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  849. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  850. z__2.i * 20.;
  851. r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
  852. i__3 = i__ + j * l_dim1;
  853. i__4 = i__ + j * r_dim1;
  854. l[i__3].r = r__[i__4].r, l[i__3].i = r__[i__4].i;
  855. /* L50: */
  856. }
  857. /* L60: */
  858. }
  859. } else if (*prtype == 2 || *prtype == 3) {
  860. i__1 = *m;
  861. for (i__ = 1; i__ <= i__1; ++i__) {
  862. i__2 = *m;
  863. for (j = 1; j <= i__2; ++j) {
  864. if (i__ <= j) {
  865. i__3 = i__ + j * a_dim1;
  866. z__4.r = (doublereal) i__, z__4.i = 0.;
  867. z_sin(&z__3, &z__4);
  868. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  869. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
  870. + z__2.i * 2.;
  871. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  872. i__3 = i__ + j * d_dim1;
  873. i__4 = i__ * j;
  874. z__4.r = (doublereal) i__4, z__4.i = 0.;
  875. z_sin(&z__3, &z__4);
  876. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  877. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
  878. + z__2.i * 2.;
  879. d__[i__3].r = z__1.r, d__[i__3].i = z__1.i;
  880. } else {
  881. i__3 = i__ + j * a_dim1;
  882. a[i__3].r = 0., a[i__3].i = 0.;
  883. i__3 = i__ + j * d_dim1;
  884. d__[i__3].r = 0., d__[i__3].i = 0.;
  885. }
  886. /* L70: */
  887. }
  888. /* L80: */
  889. }
  890. i__1 = *n;
  891. for (i__ = 1; i__ <= i__1; ++i__) {
  892. i__2 = *n;
  893. for (j = 1; j <= i__2; ++j) {
  894. if (i__ <= j) {
  895. i__3 = i__ + j * b_dim1;
  896. i__4 = i__ + j;
  897. z__4.r = (doublereal) i__4, z__4.i = 0.;
  898. z_sin(&z__3, &z__4);
  899. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  900. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
  901. + z__2.i * 2.;
  902. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  903. i__3 = i__ + j * e_dim1;
  904. z__4.r = (doublereal) j, z__4.i = 0.;
  905. z_sin(&z__3, &z__4);
  906. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  907. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
  908. + z__2.i * 2.;
  909. e[i__3].r = z__1.r, e[i__3].i = z__1.i;
  910. } else {
  911. i__3 = i__ + j * b_dim1;
  912. b[i__3].r = 0., b[i__3].i = 0.;
  913. i__3 = i__ + j * e_dim1;
  914. e[i__3].r = 0., e[i__3].i = 0.;
  915. }
  916. /* L90: */
  917. }
  918. /* L100: */
  919. }
  920. i__1 = *m;
  921. for (i__ = 1; i__ <= i__1; ++i__) {
  922. i__2 = *n;
  923. for (j = 1; j <= i__2; ++j) {
  924. i__3 = i__ + j * r_dim1;
  925. i__4 = i__ * j;
  926. z__4.r = (doublereal) i__4, z__4.i = 0.;
  927. z_sin(&z__3, &z__4);
  928. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  929. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  930. z__2.i * 20.;
  931. r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
  932. i__3 = i__ + j * l_dim1;
  933. i__4 = i__ + j;
  934. z__4.r = (doublereal) i__4, z__4.i = 0.;
  935. z_sin(&z__3, &z__4);
  936. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  937. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  938. z__2.i * 20.;
  939. l[i__3].r = z__1.r, l[i__3].i = z__1.i;
  940. /* L110: */
  941. }
  942. /* L120: */
  943. }
  944. if (*prtype == 3) {
  945. if (*qblcka <= 1) {
  946. *qblcka = 2;
  947. }
  948. i__1 = *m - 1;
  949. i__2 = *qblcka;
  950. for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
  951. i__3 = k + 1 + (k + 1) * a_dim1;
  952. i__4 = k + k * a_dim1;
  953. a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
  954. i__3 = k + 1 + k * a_dim1;
  955. z_sin(&z__2, &a[k + (k + 1) * a_dim1]);
  956. z__1.r = -z__2.r, z__1.i = -z__2.i;
  957. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  958. /* L130: */
  959. }
  960. if (*qblckb <= 1) {
  961. *qblckb = 2;
  962. }
  963. i__2 = *n - 1;
  964. i__1 = *qblckb;
  965. for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
  966. i__3 = k + 1 + (k + 1) * b_dim1;
  967. i__4 = k + k * b_dim1;
  968. b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
  969. i__3 = k + 1 + k * b_dim1;
  970. z_sin(&z__2, &b[k + (k + 1) * b_dim1]);
  971. z__1.r = -z__2.r, z__1.i = -z__2.i;
  972. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  973. /* L140: */
  974. }
  975. }
  976. } else if (*prtype == 4) {
  977. i__1 = *m;
  978. for (i__ = 1; i__ <= i__1; ++i__) {
  979. i__2 = *m;
  980. for (j = 1; j <= i__2; ++j) {
  981. i__3 = i__ + j * a_dim1;
  982. i__4 = i__ * j;
  983. z__4.r = (doublereal) i__4, z__4.i = 0.;
  984. z_sin(&z__3, &z__4);
  985. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  986. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  987. z__2.i * 20.;
  988. a[i__3].r = z__1.r, a[i__3].i = z__1.i;
  989. i__3 = i__ + j * d_dim1;
  990. i__4 = i__ + j;
  991. z__4.r = (doublereal) i__4, z__4.i = 0.;
  992. z_sin(&z__3, &z__4);
  993. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  994. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
  995. z__2.i * 2.;
  996. d__[i__3].r = z__1.r, d__[i__3].i = z__1.i;
  997. /* L150: */
  998. }
  999. /* L160: */
  1000. }
  1001. i__1 = *n;
  1002. for (i__ = 1; i__ <= i__1; ++i__) {
  1003. i__2 = *n;
  1004. for (j = 1; j <= i__2; ++j) {
  1005. i__3 = i__ + j * b_dim1;
  1006. i__4 = i__ + j;
  1007. z__4.r = (doublereal) i__4, z__4.i = 0.;
  1008. z_sin(&z__3, &z__4);
  1009. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  1010. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  1011. z__2.i * 20.;
  1012. b[i__3].r = z__1.r, b[i__3].i = z__1.i;
  1013. i__3 = i__ + j * e_dim1;
  1014. i__4 = i__ * j;
  1015. z__4.r = (doublereal) i__4, z__4.i = 0.;
  1016. z_sin(&z__3, &z__4);
  1017. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  1018. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
  1019. z__2.i * 2.;
  1020. e[i__3].r = z__1.r, e[i__3].i = z__1.i;
  1021. /* L170: */
  1022. }
  1023. /* L180: */
  1024. }
  1025. i__1 = *m;
  1026. for (i__ = 1; i__ <= i__1; ++i__) {
  1027. i__2 = *n;
  1028. for (j = 1; j <= i__2; ++j) {
  1029. i__3 = i__ + j * r_dim1;
  1030. i__4 = j / i__;
  1031. z__4.r = (doublereal) i__4, z__4.i = 0.;
  1032. z_sin(&z__3, &z__4);
  1033. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  1034. z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
  1035. z__2.i * 20.;
  1036. r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
  1037. i__3 = i__ + j * l_dim1;
  1038. i__4 = i__ * j;
  1039. z__4.r = (doublereal) i__4, z__4.i = 0.;
  1040. z_sin(&z__3, &z__4);
  1041. z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
  1042. z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
  1043. z__2.i * 2.;
  1044. l[i__3].r = z__1.r, l[i__3].i = z__1.i;
  1045. /* L190: */
  1046. }
  1047. /* L200: */
  1048. }
  1049. } else if (*prtype >= 5) {
  1050. z__3.r = 1., z__3.i = 0.;
  1051. z__2.r = z__3.r * 20. - z__3.i * 0., z__2.i = z__3.r * 0. + z__3.i *
  1052. 20.;
  1053. z__1.r = z__2.r / *alpha, z__1.i = z__2.i / *alpha;
  1054. reeps.r = z__1.r, reeps.i = z__1.i;
  1055. z__2.r = -1.5, z__2.i = 0.;
  1056. z__1.r = z__2.r / *alpha, z__1.i = z__2.i / *alpha;
  1057. imeps.r = z__1.r, imeps.i = z__1.i;
  1058. i__1 = *m;
  1059. for (i__ = 1; i__ <= i__1; ++i__) {
  1060. i__2 = *n;
  1061. for (j = 1; j <= i__2; ++j) {
  1062. i__3 = i__ + j * r_dim1;
  1063. i__4 = i__ * j;
  1064. z__5.r = (doublereal) i__4, z__5.i = 0.;
  1065. z_sin(&z__4, &z__5);
  1066. z__3.r = .5 - z__4.r, z__3.i = 0. - z__4.i;
  1067. z__2.r = *alpha * z__3.r, z__2.i = *alpha * z__3.i;
  1068. z_div(&z__1, &z__2, &c_b5);
  1069. r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
  1070. i__3 = i__ + j * l_dim1;
  1071. i__4 = i__ + j;
  1072. z__5.r = (doublereal) i__4, z__5.i = 0.;
  1073. z_sin(&z__4, &z__5);
  1074. z__3.r = .5 - z__4.r, z__3.i = 0. - z__4.i;
  1075. z__2.r = *alpha * z__3.r, z__2.i = *alpha * z__3.i;
  1076. z_div(&z__1, &z__2, &c_b5);
  1077. l[i__3].r = z__1.r, l[i__3].i = z__1.i;
  1078. /* L210: */
  1079. }
  1080. /* L220: */
  1081. }
  1082. i__1 = *m;
  1083. for (i__ = 1; i__ <= i__1; ++i__) {
  1084. i__2 = i__ + i__ * d_dim1;
  1085. d__[i__2].r = 1., d__[i__2].i = 0.;
  1086. /* L230: */
  1087. }
  1088. i__1 = *m;
  1089. for (i__ = 1; i__ <= i__1; ++i__) {
  1090. if (i__ <= 4) {
  1091. i__2 = i__ + i__ * a_dim1;
  1092. a[i__2].r = 1., a[i__2].i = 0.;
  1093. if (i__ > 2) {
  1094. i__2 = i__ + i__ * a_dim1;
  1095. z__1.r = reeps.r + 1., z__1.i = reeps.i + 0.;
  1096. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1097. }
  1098. if (i__ % 2 != 0 && i__ < *m) {
  1099. i__2 = i__ + (i__ + 1) * a_dim1;
  1100. a[i__2].r = imeps.r, a[i__2].i = imeps.i;
  1101. } else if (i__ > 1) {
  1102. i__2 = i__ + (i__ - 1) * a_dim1;
  1103. z__1.r = -imeps.r, z__1.i = -imeps.i;
  1104. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1105. }
  1106. } else if (i__ <= 8) {
  1107. if (i__ <= 6) {
  1108. i__2 = i__ + i__ * a_dim1;
  1109. a[i__2].r = reeps.r, a[i__2].i = reeps.i;
  1110. } else {
  1111. i__2 = i__ + i__ * a_dim1;
  1112. z__1.r = -reeps.r, z__1.i = -reeps.i;
  1113. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1114. }
  1115. if (i__ % 2 != 0 && i__ < *m) {
  1116. i__2 = i__ + (i__ + 1) * a_dim1;
  1117. a[i__2].r = 1., a[i__2].i = 0.;
  1118. } else if (i__ > 1) {
  1119. i__2 = i__ + (i__ - 1) * a_dim1;
  1120. z__1.r = -1., z__1.i = 0.;
  1121. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1122. }
  1123. } else {
  1124. i__2 = i__ + i__ * a_dim1;
  1125. a[i__2].r = 1., a[i__2].i = 0.;
  1126. if (i__ % 2 != 0 && i__ < *m) {
  1127. i__2 = i__ + (i__ + 1) * a_dim1;
  1128. d__1 = 2.;
  1129. z__1.r = d__1 * imeps.r, z__1.i = d__1 * imeps.i;
  1130. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1131. } else if (i__ > 1) {
  1132. i__2 = i__ + (i__ - 1) * a_dim1;
  1133. z__2.r = -imeps.r, z__2.i = -imeps.i;
  1134. d__1 = 2.;
  1135. z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
  1136. a[i__2].r = z__1.r, a[i__2].i = z__1.i;
  1137. }
  1138. }
  1139. /* L240: */
  1140. }
  1141. i__1 = *n;
  1142. for (i__ = 1; i__ <= i__1; ++i__) {
  1143. i__2 = i__ + i__ * e_dim1;
  1144. e[i__2].r = 1., e[i__2].i = 0.;
  1145. if (i__ <= 4) {
  1146. i__2 = i__ + i__ * b_dim1;
  1147. z__1.r = -1., z__1.i = 0.;
  1148. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1149. if (i__ > 2) {
  1150. i__2 = i__ + i__ * b_dim1;
  1151. z__1.r = 1. - reeps.r, z__1.i = 0. - reeps.i;
  1152. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1153. }
  1154. if (i__ % 2 != 0 && i__ < *n) {
  1155. i__2 = i__ + (i__ + 1) * b_dim1;
  1156. b[i__2].r = imeps.r, b[i__2].i = imeps.i;
  1157. } else if (i__ > 1) {
  1158. i__2 = i__ + (i__ - 1) * b_dim1;
  1159. z__1.r = -imeps.r, z__1.i = -imeps.i;
  1160. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1161. }
  1162. } else if (i__ <= 8) {
  1163. if (i__ <= 6) {
  1164. i__2 = i__ + i__ * b_dim1;
  1165. b[i__2].r = reeps.r, b[i__2].i = reeps.i;
  1166. } else {
  1167. i__2 = i__ + i__ * b_dim1;
  1168. z__1.r = -reeps.r, z__1.i = -reeps.i;
  1169. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1170. }
  1171. if (i__ % 2 != 0 && i__ < *n) {
  1172. i__2 = i__ + (i__ + 1) * b_dim1;
  1173. z__1.r = imeps.r + 1., z__1.i = imeps.i + 0.;
  1174. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1175. } else if (i__ > 1) {
  1176. i__2 = i__ + (i__ - 1) * b_dim1;
  1177. z__2.r = -1., z__2.i = 0.;
  1178. z__1.r = z__2.r - imeps.r, z__1.i = z__2.i - imeps.i;
  1179. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1180. }
  1181. } else {
  1182. i__2 = i__ + i__ * b_dim1;
  1183. z__1.r = 1. - reeps.r, z__1.i = 0. - reeps.i;
  1184. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1185. if (i__ % 2 != 0 && i__ < *n) {
  1186. i__2 = i__ + (i__ + 1) * b_dim1;
  1187. d__1 = 2.;
  1188. z__1.r = d__1 * imeps.r, z__1.i = d__1 * imeps.i;
  1189. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1190. } else if (i__ > 1) {
  1191. i__2 = i__ + (i__ - 1) * b_dim1;
  1192. z__2.r = -imeps.r, z__2.i = -imeps.i;
  1193. d__1 = 2.;
  1194. z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
  1195. b[i__2].r = z__1.r, b[i__2].i = z__1.i;
  1196. }
  1197. }
  1198. /* L250: */
  1199. }
  1200. }
  1201. /* Compute rhs (C, F) */
  1202. zgemm_("N", "N", m, n, m, &c_b1, &a[a_offset], lda, &r__[r_offset], ldr, &
  1203. c_b3, &c__[c_offset], ldc);
  1204. z__1.r = -1., z__1.i = 0.;
  1205. zgemm_("N", "N", m, n, n, &z__1, &l[l_offset], ldl, &b[b_offset], ldb, &
  1206. c_b1, &c__[c_offset], ldc);
  1207. zgemm_("N", "N", m, n, m, &c_b1, &d__[d_offset], ldd, &r__[r_offset], ldr,
  1208. &c_b3, &f[f_offset], ldf);
  1209. z__1.r = -1., z__1.i = 0.;
  1210. zgemm_("N", "N", m, n, n, &z__1, &l[l_offset], ldl, &e[e_offset], lde, &
  1211. c_b1, &f[f_offset], ldf);
  1212. /* End of ZLATM5 */
  1213. return 0;
  1214. } /* zlatm5_ */