|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- #define z_sin(R, Z) {pCd(R) = csin(Cd(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle_() continue;
- #define myceiling_(w) {ceil(w)}
- #define myhuge_(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {1.,0.};
- static doublecomplex c_b3 = {0.,0.};
- static doublecomplex c_b5 = {20.,0.};
-
- /* > \brief \b ZLATM5 */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD, */
- /* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA, */
- /* QBLCKB ) */
-
- /* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N, */
- /* $ PRTYPE, QBLCKA, QBLCKB */
- /* DOUBLE PRECISION ALPHA */
- /* COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), */
- /* $ D( LDD, * ), E( LDE, * ), F( LDF, * ), */
- /* $ L( LDL, * ), R( LDR, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLATM5 generates matrices involved in the Generalized Sylvester */
- /* > equation: */
- /* > */
- /* > A * R - L * B = C */
- /* > D * R - L * E = F */
- /* > */
- /* > They also satisfy (the diagonalization condition) */
- /* > */
- /* > [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] ) */
- /* > [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] ) */
- /* > */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] PRTYPE */
- /* > \verbatim */
- /* > PRTYPE is INTEGER */
- /* > "Points" to a certain type of the matrices to generate */
- /* > (see further details). */
- /* > \endverbatim */
- /* > */
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > Specifies the order of A and D and the number of rows in */
- /* > C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > Specifies the order of B and E and the number of columns in */
- /* > C, F, R and L. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA, M). */
- /* > On exit A M-by-M is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] B */
- /* > \verbatim */
- /* > B is COMPLEX*16 array, dimension (LDB, N). */
- /* > On exit B N-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDB */
- /* > \verbatim */
- /* > LDB is INTEGER */
- /* > The leading dimension of B. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] C */
- /* > \verbatim */
- /* > C is COMPLEX*16 array, dimension (LDC, N). */
- /* > On exit C M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDC */
- /* > \verbatim */
- /* > LDC is INTEGER */
- /* > The leading dimension of C. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is COMPLEX*16 array, dimension (LDD, M). */
- /* > On exit D M-by-M is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDD */
- /* > \verbatim */
- /* > LDD is INTEGER */
- /* > The leading dimension of D. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is COMPLEX*16 array, dimension (LDE, N). */
- /* > On exit E N-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDE */
- /* > \verbatim */
- /* > LDE is INTEGER */
- /* > The leading dimension of E. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] F */
- /* > \verbatim */
- /* > F is COMPLEX*16 array, dimension (LDF, N). */
- /* > On exit F M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDF */
- /* > \verbatim */
- /* > LDF is INTEGER */
- /* > The leading dimension of F. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] R */
- /* > \verbatim */
- /* > R is COMPLEX*16 array, dimension (LDR, N). */
- /* > On exit R M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDR */
- /* > \verbatim */
- /* > LDR is INTEGER */
- /* > The leading dimension of R. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] L */
- /* > \verbatim */
- /* > L is COMPLEX*16 array, dimension (LDL, N). */
- /* > On exit L M-by-N is initialized according to PRTYPE. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDL */
- /* > \verbatim */
- /* > LDL is INTEGER */
- /* > The leading dimension of L. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] ALPHA */
- /* > \verbatim */
- /* > ALPHA is DOUBLE PRECISION */
- /* > Parameter used in generating PRTYPE = 1 and 5 matrices. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QBLCKA */
- /* > \verbatim */
- /* > QBLCKA is INTEGER */
- /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
- /* > blocks on the diagonal in A. Otherwise, QBLCKA is not */
- /* > referenced. QBLCKA > 1. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] QBLCKB */
- /* > \verbatim */
- /* > QBLCKB is INTEGER */
- /* > When PRTYPE = 3, specifies the distance between 2-by-2 */
- /* > blocks on the diagonal in B. Otherwise, QBLCKB is not */
- /* > referenced. QBLCKB > 1. */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2016 */
-
- /* > \ingroup complex16_matgen */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices */
- /* > */
- /* > A : if (i == j) then A(i, j) = 1.0 */
- /* > if (j == i + 1) then A(i, j) = -1.0 */
- /* > else A(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > B : if (i == j) then B(i, j) = 1.0 - ALPHA */
- /* > if (j == i + 1) then B(i, j) = 1.0 */
- /* > else B(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > D : if (i == j) then D(i, j) = 1.0 */
- /* > else D(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > E : if (i == j) then E(i, j) = 1.0 */
- /* > else E(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > L = R are chosen from [-10...10], */
- /* > which specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 2 or 3: Triangular and/or quasi- triangular. */
- /* > */
- /* > A : if (i <= j) then A(i, j) = [-1...1] */
- /* > else A(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > if (PRTYPE = 3) then */
- /* > A(k + 1, k + 1) = A(k, k) */
- /* > A(k + 1, k) = [-1...1] */
- /* > sign(A(k, k + 1) = -(sin(A(k + 1, k)) */
- /* > k = 1, M - 1, QBLCKA */
- /* > */
- /* > B : if (i <= j) then B(i, j) = [-1...1] */
- /* > else B(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > if (PRTYPE = 3) then */
- /* > B(k + 1, k + 1) = B(k, k) */
- /* > B(k + 1, k) = [-1...1] */
- /* > sign(B(k, k + 1) = -(sign(B(k + 1, k)) */
- /* > k = 1, N - 1, QBLCKB */
- /* > */
- /* > D : if (i <= j) then D(i, j) = [-1...1]. */
- /* > else D(i, j) = 0.0, i, j = 1...M */
- /* > */
- /* > */
- /* > E : if (i <= j) then D(i, j) = [-1...1] */
- /* > else E(i, j) = 0.0, i, j = 1...N */
- /* > */
- /* > L, R are chosen from [-10...10], */
- /* > which specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 4 Full */
- /* > A(i, j) = [-10...10] */
- /* > D(i, j) = [-1...1] i,j = 1...M */
- /* > B(i, j) = [-10...10] */
- /* > E(i, j) = [-1...1] i,j = 1...N */
- /* > R(i, j) = [-10...10] */
- /* > L(i, j) = [-1...1] i = 1..M ,j = 1...N */
- /* > */
- /* > L, R specifies the right hand sides (C, F). */
- /* > */
- /* > PRTYPE = 5 special case common and/or close eigs. */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int zlatm5_(integer *prtype, integer *m, integer *n,
- doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb,
- doublecomplex *c__, integer *ldc, doublecomplex *d__, integer *ldd,
- doublecomplex *e, integer *lde, doublecomplex *f, integer *ldf,
- doublecomplex *r__, integer *ldr, doublecomplex *l, integer *ldl,
- doublereal *alpha, integer *qblcka, integer *qblckb)
- {
- /* System generated locals */
- integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1,
- d_offset, e_dim1, e_offset, f_dim1, f_offset, l_dim1, l_offset,
- r_dim1, r_offset, i__1, i__2, i__3, i__4;
- doublereal d__1;
- doublecomplex z__1, z__2, z__3, z__4, z__5;
-
- /* Local variables */
- integer i__, j, k;
- doublecomplex imeps, reeps;
- extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
- integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *, integer *, doublecomplex *, doublecomplex *,
- integer *);
-
-
- /* -- LAPACK computational routine (version 3.7.0) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2016 */
-
-
- /* ===================================================================== */
-
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- b_dim1 = *ldb;
- b_offset = 1 + b_dim1 * 1;
- b -= b_offset;
- c_dim1 = *ldc;
- c_offset = 1 + c_dim1 * 1;
- c__ -= c_offset;
- d_dim1 = *ldd;
- d_offset = 1 + d_dim1 * 1;
- d__ -= d_offset;
- e_dim1 = *lde;
- e_offset = 1 + e_dim1 * 1;
- e -= e_offset;
- f_dim1 = *ldf;
- f_offset = 1 + f_dim1 * 1;
- f -= f_offset;
- r_dim1 = *ldr;
- r_offset = 1 + r_dim1 * 1;
- r__ -= r_offset;
- l_dim1 = *ldl;
- l_offset = 1 + l_dim1 * 1;
- l -= l_offset;
-
- /* Function Body */
- if (*prtype == 1) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- if (i__ == j) {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 1., a[i__3].i = 0.;
- i__3 = i__ + j * d_dim1;
- d__[i__3].r = 1., d__[i__3].i = 0.;
- } else if (i__ == j - 1) {
- i__3 = i__ + j * a_dim1;
- z__1.r = -1., z__1.i = 0.;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + j * d_dim1;
- d__[i__3].r = 0., d__[i__3].i = 0.;
- } else {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- i__3 = i__ + j * d_dim1;
- d__[i__3].r = 0., d__[i__3].i = 0.;
- }
- /* L10: */
- }
- /* L20: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- if (i__ == j) {
- i__3 = i__ + j * b_dim1;
- z__1.r = 1. - *alpha, z__1.i = 0.;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- i__3 = i__ + j * e_dim1;
- e[i__3].r = 1., e[i__3].i = 0.;
- } else if (i__ == j - 1) {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 1., b[i__3].i = 0.;
- i__3 = i__ + j * e_dim1;
- e[i__3].r = 0., e[i__3].i = 0.;
- } else {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- i__3 = i__ + j * e_dim1;
- e[i__3].r = 0., e[i__3].i = 0.;
- }
- /* L30: */
- }
- /* L40: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * r_dim1;
- i__4 = i__ / j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
- i__3 = i__ + j * l_dim1;
- i__4 = i__ + j * r_dim1;
- l[i__3].r = r__[i__4].r, l[i__3].i = r__[i__4].i;
- /* L50: */
- }
- /* L60: */
- }
-
- } else if (*prtype == 2 || *prtype == 3) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- if (i__ <= j) {
- i__3 = i__ + j * a_dim1;
- z__4.r = (doublereal) i__, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
- + z__2.i * 2.;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + j * d_dim1;
- i__4 = i__ * j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
- + z__2.i * 2.;
- d__[i__3].r = z__1.r, d__[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * a_dim1;
- a[i__3].r = 0., a[i__3].i = 0.;
- i__3 = i__ + j * d_dim1;
- d__[i__3].r = 0., d__[i__3].i = 0.;
- }
- /* L70: */
- }
- /* L80: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- if (i__ <= j) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
- + z__2.i * 2.;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- i__3 = i__ + j * e_dim1;
- z__4.r = (doublereal) j, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0.
- + z__2.i * 2.;
- e[i__3].r = z__1.r, e[i__3].i = z__1.i;
- } else {
- i__3 = i__ + j * b_dim1;
- b[i__3].r = 0., b[i__3].i = 0.;
- i__3 = i__ + j * e_dim1;
- e[i__3].r = 0., e[i__3].i = 0.;
- }
- /* L90: */
- }
- /* L100: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * r_dim1;
- i__4 = i__ * j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
- i__3 = i__ + j * l_dim1;
- i__4 = i__ + j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- l[i__3].r = z__1.r, l[i__3].i = z__1.i;
- /* L110: */
- }
- /* L120: */
- }
-
- if (*prtype == 3) {
- if (*qblcka <= 1) {
- *qblcka = 2;
- }
- i__1 = *m - 1;
- i__2 = *qblcka;
- for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
- i__3 = k + 1 + (k + 1) * a_dim1;
- i__4 = k + k * a_dim1;
- a[i__3].r = a[i__4].r, a[i__3].i = a[i__4].i;
- i__3 = k + 1 + k * a_dim1;
- z_sin(&z__2, &a[k + (k + 1) * a_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- /* L130: */
- }
-
- if (*qblckb <= 1) {
- *qblckb = 2;
- }
- i__2 = *n - 1;
- i__1 = *qblckb;
- for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
- i__3 = k + 1 + (k + 1) * b_dim1;
- i__4 = k + k * b_dim1;
- b[i__3].r = b[i__4].r, b[i__3].i = b[i__4].i;
- i__3 = k + 1 + k * b_dim1;
- z_sin(&z__2, &b[k + (k + 1) * b_dim1]);
- z__1.r = -z__2.r, z__1.i = -z__2.i;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- /* L140: */
- }
- }
-
- } else if (*prtype == 4) {
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *m;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * a_dim1;
- i__4 = i__ * j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- a[i__3].r = z__1.r, a[i__3].i = z__1.i;
- i__3 = i__ + j * d_dim1;
- i__4 = i__ + j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 2.;
- d__[i__3].r = z__1.r, d__[i__3].i = z__1.i;
- /* L150: */
- }
- /* L160: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * b_dim1;
- i__4 = i__ + j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- b[i__3].r = z__1.r, b[i__3].i = z__1.i;
- i__3 = i__ + j * e_dim1;
- i__4 = i__ * j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 2.;
- e[i__3].r = z__1.r, e[i__3].i = z__1.i;
- /* L170: */
- }
- /* L180: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * r_dim1;
- i__4 = j / i__;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 20. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 20.;
- r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
- i__3 = i__ + j * l_dim1;
- i__4 = i__ * j;
- z__4.r = (doublereal) i__4, z__4.i = 0.;
- z_sin(&z__3, &z__4);
- z__2.r = .5 - z__3.r, z__2.i = 0. - z__3.i;
- z__1.r = z__2.r * 2. - z__2.i * 0., z__1.i = z__2.r * 0. +
- z__2.i * 2.;
- l[i__3].r = z__1.r, l[i__3].i = z__1.i;
- /* L190: */
- }
- /* L200: */
- }
-
- } else if (*prtype >= 5) {
- z__3.r = 1., z__3.i = 0.;
- z__2.r = z__3.r * 20. - z__3.i * 0., z__2.i = z__3.r * 0. + z__3.i *
- 20.;
- z__1.r = z__2.r / *alpha, z__1.i = z__2.i / *alpha;
- reeps.r = z__1.r, reeps.i = z__1.i;
- z__2.r = -1.5, z__2.i = 0.;
- z__1.r = z__2.r / *alpha, z__1.i = z__2.i / *alpha;
- imeps.r = z__1.r, imeps.i = z__1.i;
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = *n;
- for (j = 1; j <= i__2; ++j) {
- i__3 = i__ + j * r_dim1;
- i__4 = i__ * j;
- z__5.r = (doublereal) i__4, z__5.i = 0.;
- z_sin(&z__4, &z__5);
- z__3.r = .5 - z__4.r, z__3.i = 0. - z__4.i;
- z__2.r = *alpha * z__3.r, z__2.i = *alpha * z__3.i;
- z_div(&z__1, &z__2, &c_b5);
- r__[i__3].r = z__1.r, r__[i__3].i = z__1.i;
- i__3 = i__ + j * l_dim1;
- i__4 = i__ + j;
- z__5.r = (doublereal) i__4, z__5.i = 0.;
- z_sin(&z__4, &z__5);
- z__3.r = .5 - z__4.r, z__3.i = 0. - z__4.i;
- z__2.r = *alpha * z__3.r, z__2.i = *alpha * z__3.i;
- z_div(&z__1, &z__2, &c_b5);
- l[i__3].r = z__1.r, l[i__3].i = z__1.i;
- /* L210: */
- }
- /* L220: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * d_dim1;
- d__[i__2].r = 1., d__[i__2].i = 0.;
- /* L230: */
- }
-
- i__1 = *m;
- for (i__ = 1; i__ <= i__1; ++i__) {
- if (i__ <= 4) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- if (i__ > 2) {
- i__2 = i__ + i__ * a_dim1;
- z__1.r = reeps.r + 1., z__1.i = reeps.i + 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- }
- if (i__ % 2 != 0 && i__ < *m) {
- i__2 = i__ + (i__ + 1) * a_dim1;
- a[i__2].r = imeps.r, a[i__2].i = imeps.i;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * a_dim1;
- z__1.r = -imeps.r, z__1.i = -imeps.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- }
- } else if (i__ <= 8) {
- if (i__ <= 6) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = reeps.r, a[i__2].i = reeps.i;
- } else {
- i__2 = i__ + i__ * a_dim1;
- z__1.r = -reeps.r, z__1.i = -reeps.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- }
- if (i__ % 2 != 0 && i__ < *m) {
- i__2 = i__ + (i__ + 1) * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * a_dim1;
- z__1.r = -1., z__1.i = 0.;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- }
- } else {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
- if (i__ % 2 != 0 && i__ < *m) {
- i__2 = i__ + (i__ + 1) * a_dim1;
- d__1 = 2.;
- z__1.r = d__1 * imeps.r, z__1.i = d__1 * imeps.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * a_dim1;
- z__2.r = -imeps.r, z__2.i = -imeps.i;
- d__1 = 2.;
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- a[i__2].r = z__1.r, a[i__2].i = z__1.i;
- }
- }
- /* L240: */
- }
-
- i__1 = *n;
- for (i__ = 1; i__ <= i__1; ++i__) {
- i__2 = i__ + i__ * e_dim1;
- e[i__2].r = 1., e[i__2].i = 0.;
- if (i__ <= 4) {
- i__2 = i__ + i__ * b_dim1;
- z__1.r = -1., z__1.i = 0.;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- if (i__ > 2) {
- i__2 = i__ + i__ * b_dim1;
- z__1.r = 1. - reeps.r, z__1.i = 0. - reeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- if (i__ % 2 != 0 && i__ < *n) {
- i__2 = i__ + (i__ + 1) * b_dim1;
- b[i__2].r = imeps.r, b[i__2].i = imeps.i;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * b_dim1;
- z__1.r = -imeps.r, z__1.i = -imeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- } else if (i__ <= 8) {
- if (i__ <= 6) {
- i__2 = i__ + i__ * b_dim1;
- b[i__2].r = reeps.r, b[i__2].i = reeps.i;
- } else {
- i__2 = i__ + i__ * b_dim1;
- z__1.r = -reeps.r, z__1.i = -reeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- if (i__ % 2 != 0 && i__ < *n) {
- i__2 = i__ + (i__ + 1) * b_dim1;
- z__1.r = imeps.r + 1., z__1.i = imeps.i + 0.;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * b_dim1;
- z__2.r = -1., z__2.i = 0.;
- z__1.r = z__2.r - imeps.r, z__1.i = z__2.i - imeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- } else {
- i__2 = i__ + i__ * b_dim1;
- z__1.r = 1. - reeps.r, z__1.i = 0. - reeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- if (i__ % 2 != 0 && i__ < *n) {
- i__2 = i__ + (i__ + 1) * b_dim1;
- d__1 = 2.;
- z__1.r = d__1 * imeps.r, z__1.i = d__1 * imeps.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- } else if (i__ > 1) {
- i__2 = i__ + (i__ - 1) * b_dim1;
- z__2.r = -imeps.r, z__2.i = -imeps.i;
- d__1 = 2.;
- z__1.r = d__1 * z__2.r, z__1.i = d__1 * z__2.i;
- b[i__2].r = z__1.r, b[i__2].i = z__1.i;
- }
- }
- /* L250: */
- }
- }
-
- /* Compute rhs (C, F) */
-
- zgemm_("N", "N", m, n, m, &c_b1, &a[a_offset], lda, &r__[r_offset], ldr, &
- c_b3, &c__[c_offset], ldc);
- z__1.r = -1., z__1.i = 0.;
- zgemm_("N", "N", m, n, n, &z__1, &l[l_offset], ldl, &b[b_offset], ldb, &
- c_b1, &c__[c_offset], ldc);
- zgemm_("N", "N", m, n, m, &c_b1, &d__[d_offset], ldd, &r__[r_offset], ldr,
- &c_b3, &f[f_offset], ldf);
- z__1.r = -1., z__1.i = 0.;
- zgemm_("N", "N", m, n, n, &z__1, &l[l_offset], ldl, &e[e_offset], lde, &
- c_b1, &f[f_offset], ldf);
-
- /* End of ZLATM5 */
-
- return 0;
- } /* zlatm5_ */
-
|