You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlaqr4.c 44 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__13 = 13;
  487. static integer c__15 = 15;
  488. static integer c_n1 = -1;
  489. static integer c__12 = 12;
  490. static integer c__14 = 14;
  491. static integer c__16 = 16;
  492. static logical c_false = FALSE_;
  493. static integer c__1 = 1;
  494. static integer c__3 = 3;
  495. /* > \brief \b ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Sc
  496. hur decomposition. */
  497. /* =========== DOCUMENTATION =========== */
  498. /* Online html documentation available at */
  499. /* http://www.netlib.org/lapack/explore-html/ */
  500. /* > \htmlonly */
  501. /* > Download ZLAQR4 + dependencies */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr4.
  503. f"> */
  504. /* > [TGZ]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr4.
  506. f"> */
  507. /* > [ZIP]</a> */
  508. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr4.
  509. f"> */
  510. /* > [TXT]</a> */
  511. /* > \endhtmlonly */
  512. /* Definition: */
  513. /* =========== */
  514. /* SUBROUTINE ZLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, */
  515. /* IHIZ, Z, LDZ, WORK, LWORK, INFO ) */
  516. /* INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N */
  517. /* LOGICAL WANTT, WANTZ */
  518. /* COMPLEX*16 H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * ) */
  519. /* > \par Purpose: */
  520. /* ============= */
  521. /* > */
  522. /* > \verbatim */
  523. /* > */
  524. /* > ZLAQR4 implements one level of recursion for ZLAQR0. */
  525. /* > It is a complete implementation of the small bulge multi-shift */
  526. /* > QR algorithm. It may be called by ZLAQR0 and, for large enough */
  527. /* > deflation window size, it may be called by ZLAQR3. This */
  528. /* > subroutine is identical to ZLAQR0 except that it calls ZLAQR2 */
  529. /* > instead of ZLAQR3. */
  530. /* > */
  531. /* > ZLAQR4 computes the eigenvalues of a Hessenberg matrix H */
  532. /* > and, optionally, the matrices T and Z from the Schur decomposition */
  533. /* > H = Z T Z**H, where T is an upper triangular matrix (the */
  534. /* > Schur form), and Z is the unitary matrix of Schur vectors. */
  535. /* > */
  536. /* > Optionally Z may be postmultiplied into an input unitary */
  537. /* > matrix Q so that this routine can give the Schur factorization */
  538. /* > of a matrix A which has been reduced to the Hessenberg form H */
  539. /* > by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H. */
  540. /* > \endverbatim */
  541. /* Arguments: */
  542. /* ========== */
  543. /* > \param[in] WANTT */
  544. /* > \verbatim */
  545. /* > WANTT is LOGICAL */
  546. /* > = .TRUE. : the full Schur form T is required; */
  547. /* > = .FALSE.: only eigenvalues are required. */
  548. /* > \endverbatim */
  549. /* > */
  550. /* > \param[in] WANTZ */
  551. /* > \verbatim */
  552. /* > WANTZ is LOGICAL */
  553. /* > = .TRUE. : the matrix of Schur vectors Z is required; */
  554. /* > = .FALSE.: Schur vectors are not required. */
  555. /* > \endverbatim */
  556. /* > */
  557. /* > \param[in] N */
  558. /* > \verbatim */
  559. /* > N is INTEGER */
  560. /* > The order of the matrix H. N >= 0. */
  561. /* > \endverbatim */
  562. /* > */
  563. /* > \param[in] ILO */
  564. /* > \verbatim */
  565. /* > ILO is INTEGER */
  566. /* > \endverbatim */
  567. /* > */
  568. /* > \param[in] IHI */
  569. /* > \verbatim */
  570. /* > IHI is INTEGER */
  571. /* > It is assumed that H is already upper triangular in rows */
  572. /* > and columns 1:ILO-1 and IHI+1:N and, if ILO > 1, */
  573. /* > H(ILO,ILO-1) is zero. ILO and IHI are normally set by a */
  574. /* > previous call to ZGEBAL, and then passed to ZGEHRD when the */
  575. /* > matrix output by ZGEBAL is reduced to Hessenberg form. */
  576. /* > Otherwise, ILO and IHI should be set to 1 and N, */
  577. /* > respectively. If N > 0, then 1 <= ILO <= IHI <= N. */
  578. /* > If N = 0, then ILO = 1 and IHI = 0. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in,out] H */
  582. /* > \verbatim */
  583. /* > H is COMPLEX*16 array, dimension (LDH,N) */
  584. /* > On entry, the upper Hessenberg matrix H. */
  585. /* > On exit, if INFO = 0 and WANTT is .TRUE., then H */
  586. /* > contains the upper triangular matrix T from the Schur */
  587. /* > decomposition (the Schur form). If INFO = 0 and WANT is */
  588. /* > .FALSE., then the contents of H are unspecified on exit. */
  589. /* > (The output value of H when INFO > 0 is given under the */
  590. /* > description of INFO below.) */
  591. /* > */
  592. /* > This subroutine may explicitly set H(i,j) = 0 for i > j and */
  593. /* > j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N. */
  594. /* > \endverbatim */
  595. /* > */
  596. /* > \param[in] LDH */
  597. /* > \verbatim */
  598. /* > LDH is INTEGER */
  599. /* > The leading dimension of the array H. LDH >= f2cmax(1,N). */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] W */
  603. /* > \verbatim */
  604. /* > W is COMPLEX*16 array, dimension (N) */
  605. /* > The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored */
  606. /* > in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are */
  607. /* > stored in the same order as on the diagonal of the Schur */
  608. /* > form returned in H, with W(i) = H(i,i). */
  609. /* > \endverbatim */
  610. /* > */
  611. /* > \param[in] ILOZ */
  612. /* > \verbatim */
  613. /* > ILOZ is INTEGER */
  614. /* > \endverbatim */
  615. /* > */
  616. /* > \param[in] IHIZ */
  617. /* > \verbatim */
  618. /* > IHIZ is INTEGER */
  619. /* > Specify the rows of Z to which transformations must be */
  620. /* > applied if WANTZ is .TRUE.. */
  621. /* > 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[in,out] Z */
  625. /* > \verbatim */
  626. /* > Z is COMPLEX*16 array, dimension (LDZ,IHI) */
  627. /* > If WANTZ is .FALSE., then Z is not referenced. */
  628. /* > If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is */
  629. /* > replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the */
  630. /* > orthogonal Schur factor of H(ILO:IHI,ILO:IHI). */
  631. /* > (The output value of Z when INFO > 0 is given under */
  632. /* > the description of INFO below.) */
  633. /* > \endverbatim */
  634. /* > */
  635. /* > \param[in] LDZ */
  636. /* > \verbatim */
  637. /* > LDZ is INTEGER */
  638. /* > The leading dimension of the array Z. if WANTZ is .TRUE. */
  639. /* > then LDZ >= MAX(1,IHIZ). Otherwise, LDZ >= 1. */
  640. /* > \endverbatim */
  641. /* > */
  642. /* > \param[out] WORK */
  643. /* > \verbatim */
  644. /* > WORK is COMPLEX*16 array, dimension LWORK */
  645. /* > On exit, if LWORK = -1, WORK(1) returns an estimate of */
  646. /* > the optimal value for LWORK. */
  647. /* > \endverbatim */
  648. /* > */
  649. /* > \param[in] LWORK */
  650. /* > \verbatim */
  651. /* > LWORK is INTEGER */
  652. /* > The dimension of the array WORK. LWORK >= f2cmax(1,N) */
  653. /* > is sufficient, but LWORK typically as large as 6*N may */
  654. /* > be required for optimal performance. A workspace query */
  655. /* > to determine the optimal workspace size is recommended. */
  656. /* > */
  657. /* > If LWORK = -1, then ZLAQR4 does a workspace query. */
  658. /* > In this case, ZLAQR4 checks the input parameters and */
  659. /* > estimates the optimal workspace size for the given */
  660. /* > values of N, ILO and IHI. The estimate is returned */
  661. /* > in WORK(1). No error message related to LWORK is */
  662. /* > issued by XERBLA. Neither H nor Z are accessed. */
  663. /* > \endverbatim */
  664. /* > */
  665. /* > \param[out] INFO */
  666. /* > \verbatim */
  667. /* > INFO is INTEGER */
  668. /* > = 0: successful exit */
  669. /* > > 0: if INFO = i, ZLAQR4 failed to compute all of */
  670. /* > the eigenvalues. Elements 1:ilo-1 and i+1:n of WR */
  671. /* > and WI contain those eigenvalues which have been */
  672. /* > successfully computed. (Failures are rare.) */
  673. /* > */
  674. /* > If INFO > 0 and WANT is .FALSE., then on exit, */
  675. /* > the remaining unconverged eigenvalues are the eigen- */
  676. /* > values of the upper Hessenberg matrix rows and */
  677. /* > columns ILO through INFO of the final, output */
  678. /* > value of H. */
  679. /* > */
  680. /* > If INFO > 0 and WANTT is .TRUE., then on exit */
  681. /* > */
  682. /* > (*) (initial value of H)*U = U*(final value of H) */
  683. /* > */
  684. /* > where U is a unitary matrix. The final */
  685. /* > value of H is upper Hessenberg and triangular in */
  686. /* > rows and columns INFO+1 through IHI. */
  687. /* > */
  688. /* > If INFO > 0 and WANTZ is .TRUE., then on exit */
  689. /* > */
  690. /* > (final value of Z(ILO:IHI,ILOZ:IHIZ) */
  691. /* > = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U */
  692. /* > */
  693. /* > where U is the unitary matrix in (*) (regard- */
  694. /* > less of the value of WANTT.) */
  695. /* > */
  696. /* > If INFO > 0 and WANTZ is .FALSE., then Z is not */
  697. /* > accessed. */
  698. /* > \endverbatim */
  699. /* Authors: */
  700. /* ======== */
  701. /* > \author Univ. of Tennessee */
  702. /* > \author Univ. of California Berkeley */
  703. /* > \author Univ. of Colorado Denver */
  704. /* > \author NAG Ltd. */
  705. /* > \date December 2016 */
  706. /* > \ingroup complex16OTHERauxiliary */
  707. /* > \par Contributors: */
  708. /* ================== */
  709. /* > */
  710. /* > Karen Braman and Ralph Byers, Department of Mathematics, */
  711. /* > University of Kansas, USA */
  712. /* > \par References: */
  713. /* ================ */
  714. /* > */
  715. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  716. /* > Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 */
  717. /* > Performance, SIAM Journal of Matrix Analysis, volume 23, pages */
  718. /* > 929--947, 2002. */
  719. /* > \n */
  720. /* > K. Braman, R. Byers and R. Mathias, The Multi-Shift QR */
  721. /* > Algorithm Part II: Aggressive Early Deflation, SIAM Journal */
  722. /* > of Matrix Analysis, volume 23, pages 948--973, 2002. */
  723. /* > */
  724. /* ===================================================================== */
  725. /* Subroutine */ int zlaqr4_(logical *wantt, logical *wantz, integer *n,
  726. integer *ilo, integer *ihi, doublecomplex *h__, integer *ldh,
  727. doublecomplex *w, integer *iloz, integer *ihiz, doublecomplex *z__,
  728. integer *ldz, doublecomplex *work, integer *lwork, integer *info)
  729. {
  730. /* System generated locals */
  731. integer h_dim1, h_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
  732. doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7, d__8;
  733. doublecomplex z__1, z__2, z__3, z__4, z__5;
  734. /* Local variables */
  735. integer ndec, ndfl, kbot, nmin;
  736. doublecomplex swap;
  737. integer ktop;
  738. doublecomplex zdum[1] /* was [1][1] */;
  739. integer kacc22, i__, k;
  740. doublereal s;
  741. integer itmax, nsmax, nwmax, kwtop;
  742. doublecomplex aa, bb, cc, dd;
  743. extern /* Subroutine */ int zlaqr2_(logical *, logical *, integer *,
  744. integer *, integer *, integer *, doublecomplex *, integer *,
  745. integer *, integer *, doublecomplex *, integer *, integer *,
  746. integer *, doublecomplex *, doublecomplex *, integer *, integer *,
  747. doublecomplex *, integer *, integer *, doublecomplex *, integer *
  748. , doublecomplex *, integer *), zlaqr5_(logical *, logical *,
  749. integer *, integer *, integer *, integer *, integer *,
  750. doublecomplex *, doublecomplex *, integer *, integer *, integer *,
  751. doublecomplex *, integer *, doublecomplex *, integer *,
  752. doublecomplex *, integer *, integer *, doublecomplex *, integer *,
  753. integer *, doublecomplex *, integer *);
  754. integer ld, nh, nibble, it, ks, kt, ku, kv, ls, ns, nw;
  755. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  756. integer *, integer *, ftnlen, ftnlen);
  757. char jbcmpz[2];
  758. doublecomplex rtdisc;
  759. integer nwupbd;
  760. logical sorted;
  761. extern /* Subroutine */ int zlahqr_(logical *, logical *, integer *,
  762. integer *, integer *, doublecomplex *, integer *, doublecomplex *,
  763. integer *, integer *, doublecomplex *, integer *, integer *),
  764. zlacpy_(char *, integer *, integer *, doublecomplex *, integer *,
  765. doublecomplex *, integer *);
  766. integer lwkopt;
  767. doublecomplex tr2, det;
  768. integer inf, kdu, nho, nve, kwh, nsr, nwr, kwv;
  769. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  770. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  771. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  772. /* December 2016 */
  773. /* ================================================================ */
  774. /* ==== Matrices of order NTINY or smaller must be processed by */
  775. /* . ZLAHQR because of insufficient subdiagonal scratch space. */
  776. /* . (This is a hard limit.) ==== */
  777. /* ==== Exceptional deflation windows: try to cure rare */
  778. /* . slow convergence by varying the size of the */
  779. /* . deflation window after KEXNW iterations. ==== */
  780. /* ==== Exceptional shifts: try to cure rare slow convergence */
  781. /* . with ad-hoc exceptional shifts every KEXSH iterations. */
  782. /* . ==== */
  783. /* ==== The constant WILK1 is used to form the exceptional */
  784. /* . shifts. ==== */
  785. /* Parameter adjustments */
  786. h_dim1 = *ldh;
  787. h_offset = 1 + h_dim1 * 1;
  788. h__ -= h_offset;
  789. --w;
  790. z_dim1 = *ldz;
  791. z_offset = 1 + z_dim1 * 1;
  792. z__ -= z_offset;
  793. --work;
  794. /* Function Body */
  795. *info = 0;
  796. /* ==== Quick return for N = 0: nothing to do. ==== */
  797. if (*n == 0) {
  798. work[1].r = 1., work[1].i = 0.;
  799. return 0;
  800. }
  801. if (*n <= 15) {
  802. /* ==== Tiny matrices must use ZLAHQR. ==== */
  803. lwkopt = 1;
  804. if (*lwork != -1) {
  805. zlahqr_(wantt, wantz, n, ilo, ihi, &h__[h_offset], ldh, &w[1],
  806. iloz, ihiz, &z__[z_offset], ldz, info);
  807. }
  808. } else {
  809. /* ==== Use small bulge multi-shift QR with aggressive early */
  810. /* . deflation on larger-than-tiny matrices. ==== */
  811. /* ==== Hope for the best. ==== */
  812. *info = 0;
  813. /* ==== Set up job flags for ILAENV. ==== */
  814. if (*wantt) {
  815. *(unsigned char *)jbcmpz = 'S';
  816. } else {
  817. *(unsigned char *)jbcmpz = 'E';
  818. }
  819. if (*wantz) {
  820. *(unsigned char *)&jbcmpz[1] = 'V';
  821. } else {
  822. *(unsigned char *)&jbcmpz[1] = 'N';
  823. }
  824. /* ==== NWR = recommended deflation window size. At this */
  825. /* . point, N .GT. NTINY = 15, so there is enough */
  826. /* . subdiagonal workspace for NWR.GE.2 as required. */
  827. /* . (In fact, there is enough subdiagonal space for */
  828. /* . NWR.GE.4.) ==== */
  829. nwr = ilaenv_(&c__13, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  830. (ftnlen)2);
  831. nwr = f2cmax(2,nwr);
  832. /* Computing MIN */
  833. i__1 = *ihi - *ilo + 1, i__2 = (*n - 1) / 3, i__1 = f2cmin(i__1,i__2);
  834. nwr = f2cmin(i__1,nwr);
  835. /* ==== NSR = recommended number of simultaneous shifts. */
  836. /* . At this point N .GT. NTINY = 15, so there is at */
  837. /* . enough subdiagonal workspace for NSR to be even */
  838. /* . and greater than or equal to two as required. ==== */
  839. nsr = ilaenv_(&c__15, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)6,
  840. (ftnlen)2);
  841. /* Computing MIN */
  842. i__1 = nsr, i__2 = (*n - 3) / 6, i__1 = f2cmin(i__1,i__2), i__2 = *ihi -
  843. *ilo;
  844. nsr = f2cmin(i__1,i__2);
  845. /* Computing MAX */
  846. i__1 = 2, i__2 = nsr - nsr % 2;
  847. nsr = f2cmax(i__1,i__2);
  848. /* ==== Estimate optimal workspace ==== */
  849. /* ==== Workspace query call to ZLAQR2 ==== */
  850. i__1 = nwr + 1;
  851. zlaqr2_(wantt, wantz, n, ilo, ihi, &i__1, &h__[h_offset], ldh, iloz,
  852. ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[h_offset],
  853. ldh, n, &h__[h_offset], ldh, n, &h__[h_offset], ldh, &work[1],
  854. &c_n1);
  855. /* ==== Optimal workspace = MAX(ZLAQR5, ZLAQR2) ==== */
  856. /* Computing MAX */
  857. i__1 = nsr * 3 / 2, i__2 = (integer) work[1].r;
  858. lwkopt = f2cmax(i__1,i__2);
  859. /* ==== Quick return in case of workspace query. ==== */
  860. if (*lwork == -1) {
  861. d__1 = (doublereal) lwkopt;
  862. z__1.r = d__1, z__1.i = 0.;
  863. work[1].r = z__1.r, work[1].i = z__1.i;
  864. return 0;
  865. }
  866. /* ==== ZLAHQR/ZLAQR0 crossover point ==== */
  867. nmin = ilaenv_(&c__12, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (ftnlen)
  868. 6, (ftnlen)2);
  869. nmin = f2cmax(15,nmin);
  870. /* ==== Nibble crossover point ==== */
  871. nibble = ilaenv_(&c__14, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  872. ftnlen)6, (ftnlen)2);
  873. nibble = f2cmax(0,nibble);
  874. /* ==== Accumulate reflections during ttswp? Use block */
  875. /* . 2-by-2 structure during matrix-matrix multiply? ==== */
  876. kacc22 = ilaenv_(&c__16, "ZLAQR4", jbcmpz, n, ilo, ihi, lwork, (
  877. ftnlen)6, (ftnlen)2);
  878. kacc22 = f2cmax(0,kacc22);
  879. kacc22 = f2cmin(2,kacc22);
  880. /* ==== NWMAX = the largest possible deflation window for */
  881. /* . which there is sufficient workspace. ==== */
  882. /* Computing MIN */
  883. i__1 = (*n - 1) / 3, i__2 = *lwork / 2;
  884. nwmax = f2cmin(i__1,i__2);
  885. nw = nwmax;
  886. /* ==== NSMAX = the Largest number of simultaneous shifts */
  887. /* . for which there is sufficient workspace. ==== */
  888. /* Computing MIN */
  889. i__1 = (*n - 3) / 6, i__2 = (*lwork << 1) / 3;
  890. nsmax = f2cmin(i__1,i__2);
  891. nsmax -= nsmax % 2;
  892. /* ==== NDFL: an iteration count restarted at deflation. ==== */
  893. ndfl = 1;
  894. /* ==== ITMAX = iteration limit ==== */
  895. /* Computing MAX */
  896. i__1 = 10, i__2 = *ihi - *ilo + 1;
  897. itmax = 30 * f2cmax(i__1,i__2);
  898. /* ==== Last row and column in the active block ==== */
  899. kbot = *ihi;
  900. /* ==== Main Loop ==== */
  901. i__1 = itmax;
  902. for (it = 1; it <= i__1; ++it) {
  903. /* ==== Done when KBOT falls below ILO ==== */
  904. if (kbot < *ilo) {
  905. goto L80;
  906. }
  907. /* ==== Locate active block ==== */
  908. i__2 = *ilo + 1;
  909. for (k = kbot; k >= i__2; --k) {
  910. i__3 = k + (k - 1) * h_dim1;
  911. if (h__[i__3].r == 0. && h__[i__3].i == 0.) {
  912. goto L20;
  913. }
  914. /* L10: */
  915. }
  916. k = *ilo;
  917. L20:
  918. ktop = k;
  919. /* ==== Select deflation window size: */
  920. /* . Typical Case: */
  921. /* . If possible and advisable, nibble the entire */
  922. /* . active block. If not, use size MIN(NWR,NWMAX) */
  923. /* . or MIN(NWR+1,NWMAX) depending upon which has */
  924. /* . the smaller corresponding subdiagonal entry */
  925. /* . (a heuristic). */
  926. /* . */
  927. /* . Exceptional Case: */
  928. /* . If there have been no deflations in KEXNW or */
  929. /* . more iterations, then vary the deflation window */
  930. /* . size. At first, because, larger windows are, */
  931. /* . in general, more powerful than smaller ones, */
  932. /* . rapidly increase the window to the maximum possible. */
  933. /* . Then, gradually reduce the window size. ==== */
  934. nh = kbot - ktop + 1;
  935. nwupbd = f2cmin(nh,nwmax);
  936. if (ndfl < 5) {
  937. nw = f2cmin(nwupbd,nwr);
  938. } else {
  939. /* Computing MIN */
  940. i__2 = nwupbd, i__3 = nw << 1;
  941. nw = f2cmin(i__2,i__3);
  942. }
  943. if (nw < nwmax) {
  944. if (nw >= nh - 1) {
  945. nw = nh;
  946. } else {
  947. kwtop = kbot - nw + 1;
  948. i__2 = kwtop + (kwtop - 1) * h_dim1;
  949. i__3 = kwtop - 1 + (kwtop - 2) * h_dim1;
  950. if ((d__1 = h__[i__2].r, abs(d__1)) + (d__2 = d_imag(&h__[
  951. kwtop + (kwtop - 1) * h_dim1]), abs(d__2)) > (
  952. d__3 = h__[i__3].r, abs(d__3)) + (d__4 = d_imag(&
  953. h__[kwtop - 1 + (kwtop - 2) * h_dim1]), abs(d__4))
  954. ) {
  955. ++nw;
  956. }
  957. }
  958. }
  959. if (ndfl < 5) {
  960. ndec = -1;
  961. } else if (ndec >= 0 || nw >= nwupbd) {
  962. ++ndec;
  963. if (nw - ndec < 2) {
  964. ndec = 0;
  965. }
  966. nw -= ndec;
  967. }
  968. /* ==== Aggressive early deflation: */
  969. /* . split workspace under the subdiagonal into */
  970. /* . - an nw-by-nw work array V in the lower */
  971. /* . left-hand-corner, */
  972. /* . - an NW-by-at-least-NW-but-more-is-better */
  973. /* . (NW-by-NHO) horizontal work array along */
  974. /* . the bottom edge, */
  975. /* . - an at-least-NW-but-more-is-better (NHV-by-NW) */
  976. /* . vertical work array along the left-hand-edge. */
  977. /* . ==== */
  978. kv = *n - nw + 1;
  979. kt = nw + 1;
  980. nho = *n - nw - 1 - kt + 1;
  981. kwv = nw + 2;
  982. nve = *n - nw - kwv + 1;
  983. /* ==== Aggressive early deflation ==== */
  984. zlaqr2_(wantt, wantz, n, &ktop, &kbot, &nw, &h__[h_offset], ldh,
  985. iloz, ihiz, &z__[z_offset], ldz, &ls, &ld, &w[1], &h__[kv
  986. + h_dim1], ldh, &nho, &h__[kv + kt * h_dim1], ldh, &nve, &
  987. h__[kwv + h_dim1], ldh, &work[1], lwork);
  988. /* ==== Adjust KBOT accounting for new deflations. ==== */
  989. kbot -= ld;
  990. /* ==== KS points to the shifts. ==== */
  991. ks = kbot - ls + 1;
  992. /* ==== Skip an expensive QR sweep if there is a (partly */
  993. /* . heuristic) reason to expect that many eigenvalues */
  994. /* . will deflate without it. Here, the QR sweep is */
  995. /* . skipped if many eigenvalues have just been deflated */
  996. /* . or if the remaining active block is small. */
  997. if (ld == 0 || ld * 100 <= nw * nibble && kbot - ktop + 1 > f2cmin(
  998. nmin,nwmax)) {
  999. /* ==== NS = nominal number of simultaneous shifts. */
  1000. /* . This may be lowered (slightly) if ZLAQR2 */
  1001. /* . did not provide that many shifts. ==== */
  1002. /* Computing MIN */
  1003. /* Computing MAX */
  1004. i__4 = 2, i__5 = kbot - ktop;
  1005. i__2 = f2cmin(nsmax,nsr), i__3 = f2cmax(i__4,i__5);
  1006. ns = f2cmin(i__2,i__3);
  1007. ns -= ns % 2;
  1008. /* ==== If there have been no deflations */
  1009. /* . in a multiple of KEXSH iterations, */
  1010. /* . then try exceptional shifts. */
  1011. /* . Otherwise use shifts provided by */
  1012. /* . ZLAQR2 above or from the eigenvalues */
  1013. /* . of a trailing principal submatrix. ==== */
  1014. if (ndfl % 6 == 0) {
  1015. ks = kbot - ns + 1;
  1016. i__2 = ks + 1;
  1017. for (i__ = kbot; i__ >= i__2; i__ += -2) {
  1018. i__3 = i__;
  1019. i__4 = i__ + i__ * h_dim1;
  1020. i__5 = i__ + (i__ - 1) * h_dim1;
  1021. d__3 = ((d__1 = h__[i__5].r, abs(d__1)) + (d__2 =
  1022. d_imag(&h__[i__ + (i__ - 1) * h_dim1]), abs(
  1023. d__2))) * .75;
  1024. z__1.r = h__[i__4].r + d__3, z__1.i = h__[i__4].i;
  1025. w[i__3].r = z__1.r, w[i__3].i = z__1.i;
  1026. i__3 = i__ - 1;
  1027. i__4 = i__;
  1028. w[i__3].r = w[i__4].r, w[i__3].i = w[i__4].i;
  1029. /* L30: */
  1030. }
  1031. } else {
  1032. /* ==== Got NS/2 or fewer shifts? Use ZLAHQR */
  1033. /* . on a trailing principal submatrix to */
  1034. /* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6, */
  1035. /* . there is enough space below the subdiagonal */
  1036. /* . to fit an NS-by-NS scratch array.) ==== */
  1037. if (kbot - ks + 1 <= ns / 2) {
  1038. ks = kbot - ns + 1;
  1039. kt = *n - ns + 1;
  1040. zlacpy_("A", &ns, &ns, &h__[ks + ks * h_dim1], ldh, &
  1041. h__[kt + h_dim1], ldh);
  1042. zlahqr_(&c_false, &c_false, &ns, &c__1, &ns, &h__[kt
  1043. + h_dim1], ldh, &w[ks], &c__1, &c__1, zdum, &
  1044. c__1, &inf);
  1045. ks += inf;
  1046. /* ==== In case of a rare QR failure use */
  1047. /* . eigenvalues of the trailing 2-by-2 */
  1048. /* . principal submatrix. Scale to avoid */
  1049. /* . overflows, underflows and subnormals. */
  1050. /* . (The scale factor S can not be zero, */
  1051. /* . because H(KBOT,KBOT-1) is nonzero.) ==== */
  1052. if (ks >= kbot) {
  1053. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1054. i__3 = kbot + (kbot - 1) * h_dim1;
  1055. i__4 = kbot - 1 + kbot * h_dim1;
  1056. i__5 = kbot + kbot * h_dim1;
  1057. s = (d__1 = h__[i__2].r, abs(d__1)) + (d__2 =
  1058. d_imag(&h__[kbot - 1 + (kbot - 1) *
  1059. h_dim1]), abs(d__2)) + ((d__3 = h__[i__3]
  1060. .r, abs(d__3)) + (d__4 = d_imag(&h__[kbot
  1061. + (kbot - 1) * h_dim1]), abs(d__4))) + ((
  1062. d__5 = h__[i__4].r, abs(d__5)) + (d__6 =
  1063. d_imag(&h__[kbot - 1 + kbot * h_dim1]),
  1064. abs(d__6))) + ((d__7 = h__[i__5].r, abs(
  1065. d__7)) + (d__8 = d_imag(&h__[kbot + kbot *
  1066. h_dim1]), abs(d__8)));
  1067. i__2 = kbot - 1 + (kbot - 1) * h_dim1;
  1068. z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
  1069. s;
  1070. aa.r = z__1.r, aa.i = z__1.i;
  1071. i__2 = kbot + (kbot - 1) * h_dim1;
  1072. z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
  1073. s;
  1074. cc.r = z__1.r, cc.i = z__1.i;
  1075. i__2 = kbot - 1 + kbot * h_dim1;
  1076. z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
  1077. s;
  1078. bb.r = z__1.r, bb.i = z__1.i;
  1079. i__2 = kbot + kbot * h_dim1;
  1080. z__1.r = h__[i__2].r / s, z__1.i = h__[i__2].i /
  1081. s;
  1082. dd.r = z__1.r, dd.i = z__1.i;
  1083. z__2.r = aa.r + dd.r, z__2.i = aa.i + dd.i;
  1084. z__1.r = z__2.r / 2., z__1.i = z__2.i / 2.;
  1085. tr2.r = z__1.r, tr2.i = z__1.i;
  1086. z__3.r = aa.r - tr2.r, z__3.i = aa.i - tr2.i;
  1087. z__4.r = dd.r - tr2.r, z__4.i = dd.i - tr2.i;
  1088. z__2.r = z__3.r * z__4.r - z__3.i * z__4.i,
  1089. z__2.i = z__3.r * z__4.i + z__3.i *
  1090. z__4.r;
  1091. z__5.r = bb.r * cc.r - bb.i * cc.i, z__5.i = bb.r
  1092. * cc.i + bb.i * cc.r;
  1093. z__1.r = z__2.r - z__5.r, z__1.i = z__2.i -
  1094. z__5.i;
  1095. det.r = z__1.r, det.i = z__1.i;
  1096. z__2.r = -det.r, z__2.i = -det.i;
  1097. z_sqrt(&z__1, &z__2);
  1098. rtdisc.r = z__1.r, rtdisc.i = z__1.i;
  1099. i__2 = kbot - 1;
  1100. z__2.r = tr2.r + rtdisc.r, z__2.i = tr2.i +
  1101. rtdisc.i;
  1102. z__1.r = s * z__2.r, z__1.i = s * z__2.i;
  1103. w[i__2].r = z__1.r, w[i__2].i = z__1.i;
  1104. i__2 = kbot;
  1105. z__2.r = tr2.r - rtdisc.r, z__2.i = tr2.i -
  1106. rtdisc.i;
  1107. z__1.r = s * z__2.r, z__1.i = s * z__2.i;
  1108. w[i__2].r = z__1.r, w[i__2].i = z__1.i;
  1109. ks = kbot - 1;
  1110. }
  1111. }
  1112. if (kbot - ks + 1 > ns) {
  1113. /* ==== Sort the shifts (Helps a little) ==== */
  1114. sorted = FALSE_;
  1115. i__2 = ks + 1;
  1116. for (k = kbot; k >= i__2; --k) {
  1117. if (sorted) {
  1118. goto L60;
  1119. }
  1120. sorted = TRUE_;
  1121. i__3 = k - 1;
  1122. for (i__ = ks; i__ <= i__3; ++i__) {
  1123. i__4 = i__;
  1124. i__5 = i__ + 1;
  1125. if ((d__1 = w[i__4].r, abs(d__1)) + (d__2 =
  1126. d_imag(&w[i__]), abs(d__2)) < (d__3 =
  1127. w[i__5].r, abs(d__3)) + (d__4 =
  1128. d_imag(&w[i__ + 1]), abs(d__4))) {
  1129. sorted = FALSE_;
  1130. i__4 = i__;
  1131. swap.r = w[i__4].r, swap.i = w[i__4].i;
  1132. i__4 = i__;
  1133. i__5 = i__ + 1;
  1134. w[i__4].r = w[i__5].r, w[i__4].i = w[i__5]
  1135. .i;
  1136. i__4 = i__ + 1;
  1137. w[i__4].r = swap.r, w[i__4].i = swap.i;
  1138. }
  1139. /* L40: */
  1140. }
  1141. /* L50: */
  1142. }
  1143. L60:
  1144. ;
  1145. }
  1146. }
  1147. /* ==== If there are only two shifts, then use */
  1148. /* . only one. ==== */
  1149. if (kbot - ks + 1 == 2) {
  1150. i__2 = kbot;
  1151. i__3 = kbot + kbot * h_dim1;
  1152. z__2.r = w[i__2].r - h__[i__3].r, z__2.i = w[i__2].i -
  1153. h__[i__3].i;
  1154. z__1.r = z__2.r, z__1.i = z__2.i;
  1155. i__4 = kbot - 1;
  1156. i__5 = kbot + kbot * h_dim1;
  1157. z__4.r = w[i__4].r - h__[i__5].r, z__4.i = w[i__4].i -
  1158. h__[i__5].i;
  1159. z__3.r = z__4.r, z__3.i = z__4.i;
  1160. if ((d__1 = z__1.r, abs(d__1)) + (d__2 = d_imag(&z__1),
  1161. abs(d__2)) < (d__3 = z__3.r, abs(d__3)) + (d__4 =
  1162. d_imag(&z__3), abs(d__4))) {
  1163. i__2 = kbot - 1;
  1164. i__3 = kbot;
  1165. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1166. } else {
  1167. i__2 = kbot;
  1168. i__3 = kbot - 1;
  1169. w[i__2].r = w[i__3].r, w[i__2].i = w[i__3].i;
  1170. }
  1171. }
  1172. /* ==== Use up to NS of the the smallest magnitude */
  1173. /* . shifts. If there aren't NS shifts available, */
  1174. /* . then use them all, possibly dropping one to */
  1175. /* . make the number of shifts even. ==== */
  1176. /* Computing MIN */
  1177. i__2 = ns, i__3 = kbot - ks + 1;
  1178. ns = f2cmin(i__2,i__3);
  1179. ns -= ns % 2;
  1180. ks = kbot - ns + 1;
  1181. /* ==== Small-bulge multi-shift QR sweep: */
  1182. /* . split workspace under the subdiagonal into */
  1183. /* . - a KDU-by-KDU work array U in the lower */
  1184. /* . left-hand-corner, */
  1185. /* . - a KDU-by-at-least-KDU-but-more-is-better */
  1186. /* . (KDU-by-NHo) horizontal work array WH along */
  1187. /* . the bottom edge, */
  1188. /* . - and an at-least-KDU-but-more-is-better-by-KDU */
  1189. /* . (NVE-by-KDU) vertical work WV arrow along */
  1190. /* . the left-hand-edge. ==== */
  1191. kdu = ns << 1;
  1192. ku = *n - kdu + 1;
  1193. kwh = kdu + 1;
  1194. nho = *n - kdu - 3 - (kdu + 1) + 1;
  1195. kwv = kdu + 4;
  1196. nve = *n - kdu - kwv + 1;
  1197. /* ==== Small-bulge multi-shift QR sweep ==== */
  1198. zlaqr5_(wantt, wantz, &kacc22, n, &ktop, &kbot, &ns, &w[ks], &
  1199. h__[h_offset], ldh, iloz, ihiz, &z__[z_offset], ldz, &
  1200. work[1], &c__3, &h__[ku + h_dim1], ldh, &nve, &h__[
  1201. kwv + h_dim1], ldh, &nho, &h__[ku + kwh * h_dim1],
  1202. ldh);
  1203. }
  1204. /* ==== Note progress (or the lack of it). ==== */
  1205. if (ld > 0) {
  1206. ndfl = 1;
  1207. } else {
  1208. ++ndfl;
  1209. }
  1210. /* ==== End of main loop ==== */
  1211. /* L70: */
  1212. }
  1213. /* ==== Iteration limit exceeded. Set INFO to show where */
  1214. /* . the problem occurred and exit. ==== */
  1215. *info = kbot;
  1216. L80:
  1217. ;
  1218. }
  1219. /* ==== Return the optimal value of LWORK. ==== */
  1220. d__1 = (doublereal) lwkopt;
  1221. z__1.r = d__1, z__1.i = 0.;
  1222. work[1].r = z__1.r, work[1].i = z__1.i;
  1223. /* ==== End of ZLAQR4 ==== */
  1224. return 0;
  1225. } /* zlaqr4_ */