|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078 |
- #include <math.h>
- #include <stdlib.h>
- #include <string.h>
- #include <stdio.h>
- #include <complex.h>
- #ifdef complex
- #undef complex
- #endif
- #ifdef I
- #undef I
- #endif
-
- #if defined(_WIN64)
- typedef long long BLASLONG;
- typedef unsigned long long BLASULONG;
- #else
- typedef long BLASLONG;
- typedef unsigned long BLASULONG;
- #endif
-
- #ifdef LAPACK_ILP64
- typedef BLASLONG blasint;
- #if defined(_WIN64)
- #define blasabs(x) llabs(x)
- #else
- #define blasabs(x) labs(x)
- #endif
- #else
- typedef int blasint;
- #define blasabs(x) abs(x)
- #endif
-
- typedef blasint integer;
-
- typedef unsigned int uinteger;
- typedef char *address;
- typedef short int shortint;
- typedef float real;
- typedef double doublereal;
- typedef struct { real r, i; } complex;
- typedef struct { doublereal r, i; } doublecomplex;
- #ifdef _MSC_VER
- static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
- static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
- static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
- static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
- #else
- static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
- static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
- static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
- #endif
- #define pCf(z) (*_pCf(z))
- #define pCd(z) (*_pCd(z))
- typedef int logical;
- typedef short int shortlogical;
- typedef char logical1;
- typedef char integer1;
-
- #define TRUE_ (1)
- #define FALSE_ (0)
-
- /* Extern is for use with -E */
- #ifndef Extern
- #define Extern extern
- #endif
-
- /* I/O stuff */
-
- typedef int flag;
- typedef int ftnlen;
- typedef int ftnint;
-
- /*external read, write*/
- typedef struct
- { flag cierr;
- ftnint ciunit;
- flag ciend;
- char *cifmt;
- ftnint cirec;
- } cilist;
-
- /*internal read, write*/
- typedef struct
- { flag icierr;
- char *iciunit;
- flag iciend;
- char *icifmt;
- ftnint icirlen;
- ftnint icirnum;
- } icilist;
-
- /*open*/
- typedef struct
- { flag oerr;
- ftnint ounit;
- char *ofnm;
- ftnlen ofnmlen;
- char *osta;
- char *oacc;
- char *ofm;
- ftnint orl;
- char *oblnk;
- } olist;
-
- /*close*/
- typedef struct
- { flag cerr;
- ftnint cunit;
- char *csta;
- } cllist;
-
- /*rewind, backspace, endfile*/
- typedef struct
- { flag aerr;
- ftnint aunit;
- } alist;
-
- /* inquire */
- typedef struct
- { flag inerr;
- ftnint inunit;
- char *infile;
- ftnlen infilen;
- ftnint *inex; /*parameters in standard's order*/
- ftnint *inopen;
- ftnint *innum;
- ftnint *innamed;
- char *inname;
- ftnlen innamlen;
- char *inacc;
- ftnlen inacclen;
- char *inseq;
- ftnlen inseqlen;
- char *indir;
- ftnlen indirlen;
- char *infmt;
- ftnlen infmtlen;
- char *inform;
- ftnint informlen;
- char *inunf;
- ftnlen inunflen;
- ftnint *inrecl;
- ftnint *innrec;
- char *inblank;
- ftnlen inblanklen;
- } inlist;
-
- #define VOID void
-
- union Multitype { /* for multiple entry points */
- integer1 g;
- shortint h;
- integer i;
- /* longint j; */
- real r;
- doublereal d;
- complex c;
- doublecomplex z;
- };
-
- typedef union Multitype Multitype;
-
- struct Vardesc { /* for Namelist */
- char *name;
- char *addr;
- ftnlen *dims;
- int type;
- };
- typedef struct Vardesc Vardesc;
-
- struct Namelist {
- char *name;
- Vardesc **vars;
- int nvars;
- };
- typedef struct Namelist Namelist;
-
- #define abs(x) ((x) >= 0 ? (x) : -(x))
- #define dabs(x) (fabs(x))
- #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
- #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
- #define dmin(a,b) (f2cmin(a,b))
- #define dmax(a,b) (f2cmax(a,b))
- #define bit_test(a,b) ((a) >> (b) & 1)
- #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
- #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
-
- #define abort_() { sig_die("Fortran abort routine called", 1); }
- #define c_abs(z) (cabsf(Cf(z)))
- #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
- #ifdef _MSC_VER
- #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
- #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
- #else
- #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
- #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
- #endif
- #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
- #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
- #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
- //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
- #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
- #define d_abs(x) (fabs(*(x)))
- #define d_acos(x) (acos(*(x)))
- #define d_asin(x) (asin(*(x)))
- #define d_atan(x) (atan(*(x)))
- #define d_atn2(x, y) (atan2(*(x),*(y)))
- #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
- #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
- #define d_cos(x) (cos(*(x)))
- #define d_cosh(x) (cosh(*(x)))
- #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
- #define d_exp(x) (exp(*(x)))
- #define d_imag(z) (cimag(Cd(z)))
- #define r_imag(z) (cimagf(Cf(z)))
- #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
- #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
- #define d_log(x) (log(*(x)))
- #define d_mod(x, y) (fmod(*(x), *(y)))
- #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
- #define d_nint(x) u_nint(*(x))
- #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
- #define d_sign(a,b) u_sign(*(a),*(b))
- #define r_sign(a,b) u_sign(*(a),*(b))
- #define d_sin(x) (sin(*(x)))
- #define d_sinh(x) (sinh(*(x)))
- #define d_sqrt(x) (sqrt(*(x)))
- #define d_tan(x) (tan(*(x)))
- #define d_tanh(x) (tanh(*(x)))
- #define i_abs(x) abs(*(x))
- #define i_dnnt(x) ((integer)u_nint(*(x)))
- #define i_len(s, n) (n)
- #define i_nint(x) ((integer)u_nint(*(x)))
- #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
- #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
- #define pow_si(B,E) spow_ui(*(B),*(E))
- #define pow_ri(B,E) spow_ui(*(B),*(E))
- #define pow_di(B,E) dpow_ui(*(B),*(E))
- #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
- #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
- #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
- #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
- #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
- #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
- #define sig_die(s, kill) { exit(1); }
- #define s_stop(s, n) {exit(0);}
- static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
- #define z_abs(z) (cabs(Cd(z)))
- #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
- #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
- #define myexit_() break;
- #define mycycle() continue;
- #define myceiling(w) {ceil(w)}
- #define myhuge(w) {HUGE_VAL}
- //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
- #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
-
- /* procedure parameter types for -A and -C++ */
-
- #define F2C_proc_par_types 1
- #ifdef __cplusplus
- typedef logical (*L_fp)(...);
- #else
- typedef logical (*L_fp)();
- #endif
-
- static float spow_ui(float x, integer n) {
- float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static double dpow_ui(double x, integer n) {
- double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #ifdef _MSC_VER
- static _Fcomplex cpow_ui(complex x, integer n) {
- complex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
- for(u = n; ; ) {
- if(u & 01) pow.r *= x.r, pow.i *= x.i;
- if(u >>= 1) x.r *= x.r, x.i *= x.i;
- else break;
- }
- }
- _Fcomplex p={pow.r, pow.i};
- return p;
- }
- #else
- static _Complex float cpow_ui(_Complex float x, integer n) {
- _Complex float pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- #ifdef _MSC_VER
- static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
- _Dcomplex pow={1.0,0.0}; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
- for(u = n; ; ) {
- if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
- if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
- else break;
- }
- }
- _Dcomplex p = {pow._Val[0], pow._Val[1]};
- return p;
- }
- #else
- static _Complex double zpow_ui(_Complex double x, integer n) {
- _Complex double pow=1.0; unsigned long int u;
- if(n != 0) {
- if(n < 0) n = -n, x = 1/x;
- for(u = n; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- #endif
- static integer pow_ii(integer x, integer n) {
- integer pow; unsigned long int u;
- if (n <= 0) {
- if (n == 0 || x == 1) pow = 1;
- else if (x != -1) pow = x == 0 ? 1/x : 0;
- else n = -n;
- }
- if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
- u = n;
- for(pow = 1; ; ) {
- if(u & 01) pow *= x;
- if(u >>= 1) x *= x;
- else break;
- }
- }
- return pow;
- }
- static integer dmaxloc_(double *w, integer s, integer e, integer *n)
- {
- double m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static integer smaxloc_(float *w, integer s, integer e, integer *n)
- {
- float m; integer i, mi;
- for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
- if (w[i-1]>m) mi=i ,m=w[i-1];
- return mi-s+1;
- }
- static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Fcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
- zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
- }
- }
- pCf(z) = zdotc;
- }
- #else
- _Complex float zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i]) * Cf(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
- }
- }
- pCf(z) = zdotc;
- }
- #endif
- static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
- integer n = *n_, incx = *incx_, incy = *incy_, i;
- #ifdef _MSC_VER
- _Dcomplex zdotc = {0.0, 0.0};
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
- zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
- zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
- }
- }
- pCd(z) = zdotc;
- }
- #else
- _Complex double zdotc = 0.0;
- if (incx == 1 && incy == 1) {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i]) * Cd(&y[i]);
- }
- } else {
- for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
- zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
- }
- }
- pCd(z) = zdotc;
- }
- #endif
- /* -- translated by f2c (version 20000121).
- You must link the resulting object file with the libraries:
- -lf2c -lm (in that order)
- */
-
-
-
-
- /* Table of constant values */
-
- static doublecomplex c_b1 = {0.,0.};
- static doublecomplex c_b2 = {1.,0.};
- static integer c__1 = 1;
-
- /* > \brief \b ZLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
-
- /* =========== DOCUMENTATION =========== */
-
- /* Online html documentation available at */
- /* http://www.netlib.org/lapack/explore-html/ */
-
- /* > \htmlonly */
- /* > Download ZLABRD + dependencies */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlabrd.
- f"> */
- /* > [TGZ]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlabrd.
- f"> */
- /* > [ZIP]</a> */
- /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlabrd.
- f"> */
- /* > [TXT]</a> */
- /* > \endhtmlonly */
-
- /* Definition: */
- /* =========== */
-
- /* SUBROUTINE ZLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
- /* LDY ) */
-
- /* INTEGER LDA, LDX, LDY, M, N, NB */
- /* DOUBLE PRECISION D( * ), E( * ) */
- /* COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ), */
- /* $ Y( LDY, * ) */
-
-
- /* > \par Purpose: */
- /* ============= */
- /* > */
- /* > \verbatim */
- /* > */
- /* > ZLABRD reduces the first NB rows and columns of a complex general */
- /* > m by n matrix A to upper or lower real bidiagonal form by a unitary */
- /* > transformation Q**H * A * P, and returns the matrices X and Y which */
- /* > are needed to apply the transformation to the unreduced part of A. */
- /* > */
- /* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
- /* > bidiagonal form. */
- /* > */
- /* > This is an auxiliary routine called by ZGEBRD */
- /* > \endverbatim */
-
- /* Arguments: */
- /* ========== */
-
- /* > \param[in] M */
- /* > \verbatim */
- /* > M is INTEGER */
- /* > The number of rows in the matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] N */
- /* > \verbatim */
- /* > N is INTEGER */
- /* > The number of columns in the matrix A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] NB */
- /* > \verbatim */
- /* > NB is INTEGER */
- /* > The number of leading rows and columns of A to be reduced. */
- /* > \endverbatim */
- /* > */
- /* > \param[in,out] A */
- /* > \verbatim */
- /* > A is COMPLEX*16 array, dimension (LDA,N) */
- /* > On entry, the m by n general matrix to be reduced. */
- /* > On exit, the first NB rows and columns of the matrix are */
- /* > overwritten; the rest of the array is unchanged. */
- /* > If m >= n, elements on and below the diagonal in the first NB */
- /* > columns, with the array TAUQ, represent the unitary */
- /* > matrix Q as a product of elementary reflectors; and */
- /* > elements above the diagonal in the first NB rows, with the */
- /* > array TAUP, represent the unitary matrix P as a product */
- /* > of elementary reflectors. */
- /* > If m < n, elements below the diagonal in the first NB */
- /* > columns, with the array TAUQ, represent the unitary */
- /* > matrix Q as a product of elementary reflectors, and */
- /* > elements on and above the diagonal in the first NB rows, */
- /* > with the array TAUP, represent the unitary matrix P as */
- /* > a product of elementary reflectors. */
- /* > See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDA */
- /* > \verbatim */
- /* > LDA is INTEGER */
- /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] D */
- /* > \verbatim */
- /* > D is DOUBLE PRECISION array, dimension (NB) */
- /* > The diagonal elements of the first NB rows and columns of */
- /* > the reduced matrix. D(i) = A(i,i). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] E */
- /* > \verbatim */
- /* > E is DOUBLE PRECISION array, dimension (NB) */
- /* > The off-diagonal elements of the first NB rows and columns of */
- /* > the reduced matrix. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUQ */
- /* > \verbatim */
- /* > TAUQ is COMPLEX*16 array, dimension (NB) */
- /* > The scalar factors of the elementary reflectors which */
- /* > represent the unitary matrix Q. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] TAUP */
- /* > \verbatim */
- /* > TAUP is COMPLEX*16 array, dimension (NB) */
- /* > The scalar factors of the elementary reflectors which */
- /* > represent the unitary matrix P. See Further Details. */
- /* > \endverbatim */
- /* > */
- /* > \param[out] X */
- /* > \verbatim */
- /* > X is COMPLEX*16 array, dimension (LDX,NB) */
- /* > The m-by-nb matrix X required to update the unreduced part */
- /* > of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDX */
- /* > \verbatim */
- /* > LDX is INTEGER */
- /* > The leading dimension of the array X. LDX >= f2cmax(1,M). */
- /* > \endverbatim */
- /* > */
- /* > \param[out] Y */
- /* > \verbatim */
- /* > Y is COMPLEX*16 array, dimension (LDY,NB) */
- /* > The n-by-nb matrix Y required to update the unreduced part */
- /* > of A. */
- /* > \endverbatim */
- /* > */
- /* > \param[in] LDY */
- /* > \verbatim */
- /* > LDY is INTEGER */
- /* > The leading dimension of the array Y. LDY >= f2cmax(1,N). */
- /* > \endverbatim */
-
- /* Authors: */
- /* ======== */
-
- /* > \author Univ. of Tennessee */
- /* > \author Univ. of California Berkeley */
- /* > \author Univ. of Colorado Denver */
- /* > \author NAG Ltd. */
-
- /* > \date June 2017 */
-
- /* > \ingroup complex16OTHERauxiliary */
-
- /* > \par Further Details: */
- /* ===================== */
- /* > */
- /* > \verbatim */
- /* > */
- /* > The matrices Q and P are represented as products of elementary */
- /* > reflectors: */
- /* > */
- /* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
- /* > */
- /* > Each H(i) and G(i) has the form: */
- /* > */
- /* > H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H */
- /* > */
- /* > where tauq and taup are complex scalars, and v and u are complex */
- /* > vectors. */
- /* > */
- /* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
- /* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
- /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* > */
- /* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
- /* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
- /* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
- /* > */
- /* > The elements of the vectors v and u together form the m-by-nb matrix */
- /* > V and the nb-by-n matrix U**H which are needed, with X and Y, to apply */
- /* > the transformation to the unreduced part of the matrix, using a block */
- /* > update of the form: A := A - V*Y**H - X*U**H. */
- /* > */
- /* > The contents of A on exit are illustrated by the following examples */
- /* > with nb = 2: */
- /* > */
- /* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
- /* > */
- /* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
- /* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
- /* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
- /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
- /* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
- /* > ( v1 v2 a a a ) */
- /* > */
- /* > where a denotes an element of the original matrix which is unchanged, */
- /* > vi denotes an element of the vector defining H(i), and ui an element */
- /* > of the vector defining G(i). */
- /* > \endverbatim */
- /* > */
- /* ===================================================================== */
- /* Subroutine */ int zlabrd_(integer *m, integer *n, integer *nb,
- doublecomplex *a, integer *lda, doublereal *d__, doublereal *e,
- doublecomplex *tauq, doublecomplex *taup, doublecomplex *x, integer *
- ldx, doublecomplex *y, integer *ldy)
- {
- /* System generated locals */
- integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
- i__3;
- doublecomplex z__1;
-
- /* Local variables */
- integer i__;
- doublecomplex alpha;
- extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
- doublecomplex *, integer *), zgemv_(char *, integer *, integer *,
- doublecomplex *, doublecomplex *, integer *, doublecomplex *,
- integer *, doublecomplex *, doublecomplex *, integer *),
- zlarfg_(integer *, doublecomplex *, doublecomplex *, integer *,
- doublecomplex *), zlacgv_(integer *, doublecomplex *, integer *);
-
-
- /* -- LAPACK auxiliary routine (version 3.7.1) -- */
- /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
- /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
- /* June 2017 */
-
-
- /* ===================================================================== */
-
-
- /* Quick return if possible */
-
- /* Parameter adjustments */
- a_dim1 = *lda;
- a_offset = 1 + a_dim1 * 1;
- a -= a_offset;
- --d__;
- --e;
- --tauq;
- --taup;
- x_dim1 = *ldx;
- x_offset = 1 + x_dim1 * 1;
- x -= x_offset;
- y_dim1 = *ldy;
- y_offset = 1 + y_dim1 * 1;
- y -= y_offset;
-
- /* Function Body */
- if (*m <= 0 || *n <= 0) {
- return 0;
- }
-
- if (*m >= *n) {
-
- /* Reduce to upper bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Update A(i:m,i) */
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + a_dim1], lda,
- &y[i__ + y_dim1], ldy, &c_b2, &a[i__ + i__ * a_dim1], &
- c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + x_dim1], ldx,
- &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[i__ + i__ *
- a_dim1], &c__1);
-
- /* Generate reflection Q(i) to annihilate A(i+1:m,i) */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__ + 1;
- /* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1, &
- tauq[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- if (i__ < *n) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
- /* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__ + 1;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + (
- i__ + 1) * a_dim1], lda, &a[i__ + i__ * a_dim1], &
- c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ +
- a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
- y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &x[i__ +
- x_dim1], ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b1, &
- y[i__ * y_dim1 + 1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
- 1) * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
- c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
-
- /* Update A(i,i+1:n) */
-
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- zlacgv_(&i__, &a[i__ + a_dim1], lda);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b2, &a[i__ + (
- i__ + 1) * a_dim1], lda);
- zlacgv_(&i__, &a[i__ + a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[(i__ +
- 1) * a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &
- a[i__ + (i__ + 1) * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
-
- /* Generate reflection P(i) to annihilate A(i,i+2:n) */
-
- i__2 = i__ + (i__ + 1) * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + (i__ + 1) * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
- /* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + (i__
- + 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
- lda, &c_b1, &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &y[i__ + 1
- + y_dim1], ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b1, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__;
- zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[(i__ + 1) *
- a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
- c_b1, &x[i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__;
- zlacgv_(&i__2, &a[i__ + (i__ + 1) * a_dim1], lda);
- }
- /* L10: */
- }
- } else {
-
- /* Reduce to lower bidiagonal form */
-
- i__1 = *nb;
- for (i__ = 1; i__ <= i__1; ++i__) {
-
- /* Update A(i,i:n) */
-
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + y_dim1], ldy,
- &a[i__ + a_dim1], lda, &c_b2, &a[i__ + i__ * a_dim1],
- lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &a[i__ + a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("Conjugate transpose", &i__2, &i__3, &z__1, &a[i__ *
- a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b2, &a[i__ +
- i__ * a_dim1], lda);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &x[i__ + x_dim1], ldx);
-
- /* Generate reflection P(i) to annihilate A(i,i+1:n) */
-
- i__2 = i__ + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *n - i__ + 1;
- /* Computing MIN */
- i__3 = i__ + 1;
- zlarfg_(&i__2, &alpha, &a[i__ + f2cmin(i__3,*n) * a_dim1], lda, &
- taup[i__]);
- i__2 = i__;
- d__[i__2] = alpha.r;
- if (i__ < *m) {
- i__2 = i__ + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
- /* Compute X(i+1:m,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__ + 1;
- zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ + 1 + i__ *
- a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &y[i__ +
- y_dim1], ldy, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[
- i__ * x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
- a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = i__ - 1;
- i__3 = *n - i__ + 1;
- zgemv_("No transpose", &i__2, &i__3, &c_b2, &a[i__ * a_dim1 +
- 1], lda, &a[i__ + i__ * a_dim1], lda, &c_b1, &x[i__ *
- x_dim1 + 1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b2, &x[
- i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *m - i__;
- zscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
-
- /* Update A(i+1:m,i) */
-
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &a[i__ + 1 +
- a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b2, &a[i__ +
- 1 + i__ * a_dim1], &c__1);
- i__2 = i__ - 1;
- zlacgv_(&i__2, &y[i__ + y_dim1], ldy);
- i__2 = *m - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__, &z__1, &x[i__ + 1 +
- x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b2, &a[
- i__ + 1 + i__ * a_dim1], &c__1);
-
- /* Generate reflection Q(i) to annihilate A(i+2:m,i) */
-
- i__2 = i__ + 1 + i__ * a_dim1;
- alpha.r = a[i__2].r, alpha.i = a[i__2].i;
- i__2 = *m - i__;
- /* Computing MIN */
- i__3 = i__ + 2;
- zlarfg_(&i__2, &alpha, &a[f2cmin(i__3,*m) + i__ * a_dim1], &c__1,
- &tauq[i__]);
- i__2 = i__;
- e[i__2] = alpha.r;
- i__2 = i__ + 1 + i__ * a_dim1;
- a[i__2].r = 1., a[i__2].i = 0.;
-
- /* Compute Y(i+1:n,i) */
-
- i__2 = *m - i__;
- i__3 = *n - i__;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
- + (i__ + 1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1]
- , &c__1, &c_b1, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- i__3 = i__ - 1;
- zgemv_("Conjugate transpose", &i__2, &i__3, &c_b2, &a[i__ + 1
- + a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b1, &y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- i__3 = i__ - 1;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("No transpose", &i__2, &i__3, &z__1, &y[i__ + 1 +
- y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b2, &y[
- i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *m - i__;
- zgemv_("Conjugate transpose", &i__2, &i__, &c_b2, &x[i__ + 1
- + x_dim1], ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &
- c_b1, &y[i__ * y_dim1 + 1], &c__1);
- i__2 = *n - i__;
- z__1.r = -1., z__1.i = 0.;
- zgemv_("Conjugate transpose", &i__, &i__2, &z__1, &a[(i__ + 1)
- * a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &
- c_b2, &y[i__ + 1 + i__ * y_dim1], &c__1);
- i__2 = *n - i__;
- zscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
- } else {
- i__2 = *n - i__ + 1;
- zlacgv_(&i__2, &a[i__ + i__ * a_dim1], lda);
- }
- /* L20: */
- }
- }
- return 0;
-
- /* End of ZLABRD */
-
- } /* zlabrd_ */
-
|