You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssytrf_rk.c 32 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c_n1 = -1;
  488. static integer c__2 = 2;
  489. /* > \brief \b SSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bu
  490. nch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). */
  491. /* =========== DOCUMENTATION =========== */
  492. /* Online html documentation available at */
  493. /* http://www.netlib.org/lapack/explore-html/ */
  494. /* > \htmlonly */
  495. /* > Download SSYTRF_RK + dependencies */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrf_
  497. rk.f"> */
  498. /* > [TGZ]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrf_
  500. rk.f"> */
  501. /* > [ZIP]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrf_
  503. rk.f"> */
  504. /* > [TXT]</a> */
  505. /* > \endhtmlonly */
  506. /* Definition: */
  507. /* =========== */
  508. /* SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, */
  509. /* INFO ) */
  510. /* CHARACTER UPLO */
  511. /* INTEGER INFO, LDA, LWORK, N */
  512. /* INTEGER IPIV( * ) */
  513. /* REAL A( LDA, * ), E ( * ), WORK( * ) */
  514. /* > \par Purpose: */
  515. /* ============= */
  516. /* > */
  517. /* > \verbatim */
  518. /* > SSYTRF_RK computes the factorization of a real symmetric matrix A */
  519. /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
  520. /* > */
  521. /* > A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
  522. /* > */
  523. /* > where U (or L) is unit upper (or lower) triangular matrix, */
  524. /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
  525. /* > matrix, P**T is the transpose of P, and D is symmetric and block */
  526. /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
  527. /* > */
  528. /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
  529. /* > For more information see Further Details section. */
  530. /* > \endverbatim */
  531. /* Arguments: */
  532. /* ========== */
  533. /* > \param[in] UPLO */
  534. /* > \verbatim */
  535. /* > UPLO is CHARACTER*1 */
  536. /* > Specifies whether the upper or lower triangular part of the */
  537. /* > symmetric matrix A is stored: */
  538. /* > = 'U': Upper triangular */
  539. /* > = 'L': Lower triangular */
  540. /* > \endverbatim */
  541. /* > */
  542. /* > \param[in] N */
  543. /* > \verbatim */
  544. /* > N is INTEGER */
  545. /* > The order of the matrix A. N >= 0. */
  546. /* > \endverbatim */
  547. /* > */
  548. /* > \param[in,out] A */
  549. /* > \verbatim */
  550. /* > A is REAL array, dimension (LDA,N) */
  551. /* > On entry, the symmetric matrix A. */
  552. /* > If UPLO = 'U': the leading N-by-N upper triangular part */
  553. /* > of A contains the upper triangular part of the matrix A, */
  554. /* > and the strictly lower triangular part of A is not */
  555. /* > referenced. */
  556. /* > */
  557. /* > If UPLO = 'L': the leading N-by-N lower triangular part */
  558. /* > of A contains the lower triangular part of the matrix A, */
  559. /* > and the strictly upper triangular part of A is not */
  560. /* > referenced. */
  561. /* > */
  562. /* > On exit, contains: */
  563. /* > a) ONLY diagonal elements of the symmetric block diagonal */
  564. /* > matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
  565. /* > (superdiagonal (or subdiagonal) elements of D */
  566. /* > are stored on exit in array E), and */
  567. /* > b) If UPLO = 'U': factor U in the superdiagonal part of A. */
  568. /* > If UPLO = 'L': factor L in the subdiagonal part of A. */
  569. /* > \endverbatim */
  570. /* > */
  571. /* > \param[in] LDA */
  572. /* > \verbatim */
  573. /* > LDA is INTEGER */
  574. /* > The leading dimension of the array A. LDA >= f2cmax(1,N). */
  575. /* > \endverbatim */
  576. /* > */
  577. /* > \param[out] E */
  578. /* > \verbatim */
  579. /* > E is REAL array, dimension (N) */
  580. /* > On exit, contains the superdiagonal (or subdiagonal) */
  581. /* > elements of the symmetric block diagonal matrix D */
  582. /* > with 1-by-1 or 2-by-2 diagonal blocks, where */
  583. /* > If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
  584. /* > If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
  585. /* > */
  586. /* > NOTE: For 1-by-1 diagonal block D(k), where */
  587. /* > 1 <= k <= N, the element E(k) is set to 0 in both */
  588. /* > UPLO = 'U' or UPLO = 'L' cases. */
  589. /* > \endverbatim */
  590. /* > */
  591. /* > \param[out] IPIV */
  592. /* > \verbatim */
  593. /* > IPIV is INTEGER array, dimension (N) */
  594. /* > IPIV describes the permutation matrix P in the factorization */
  595. /* > of matrix A as follows. The absolute value of IPIV(k) */
  596. /* > represents the index of row and column that were */
  597. /* > interchanged with the k-th row and column. The value of UPLO */
  598. /* > describes the order in which the interchanges were applied. */
  599. /* > Also, the sign of IPIV represents the block structure of */
  600. /* > the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
  601. /* > diagonal blocks which correspond to 1 or 2 interchanges */
  602. /* > at each factorization step. For more info see Further */
  603. /* > Details section. */
  604. /* > */
  605. /* > If UPLO = 'U', */
  606. /* > ( in factorization order, k decreases from N to 1 ): */
  607. /* > a) A single positive entry IPIV(k) > 0 means: */
  608. /* > D(k,k) is a 1-by-1 diagonal block. */
  609. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  610. /* > interchanged in the matrix A(1:N,1:N); */
  611. /* > If IPIV(k) = k, no interchange occurred. */
  612. /* > */
  613. /* > b) A pair of consecutive negative entries */
  614. /* > IPIV(k) < 0 and IPIV(k-1) < 0 means: */
  615. /* > D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
  616. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  617. /* > 1) If -IPIV(k) != k, rows and columns */
  618. /* > k and -IPIV(k) were interchanged */
  619. /* > in the matrix A(1:N,1:N). */
  620. /* > If -IPIV(k) = k, no interchange occurred. */
  621. /* > 2) If -IPIV(k-1) != k-1, rows and columns */
  622. /* > k-1 and -IPIV(k-1) were interchanged */
  623. /* > in the matrix A(1:N,1:N). */
  624. /* > If -IPIV(k-1) = k-1, no interchange occurred. */
  625. /* > */
  626. /* > c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
  627. /* > */
  628. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  629. /* > */
  630. /* > If UPLO = 'L', */
  631. /* > ( in factorization order, k increases from 1 to N ): */
  632. /* > a) A single positive entry IPIV(k) > 0 means: */
  633. /* > D(k,k) is a 1-by-1 diagonal block. */
  634. /* > If IPIV(k) != k, rows and columns k and IPIV(k) were */
  635. /* > interchanged in the matrix A(1:N,1:N). */
  636. /* > If IPIV(k) = k, no interchange occurred. */
  637. /* > */
  638. /* > b) A pair of consecutive negative entries */
  639. /* > IPIV(k) < 0 and IPIV(k+1) < 0 means: */
  640. /* > D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
  641. /* > (NOTE: negative entries in IPIV appear ONLY in pairs). */
  642. /* > 1) If -IPIV(k) != k, rows and columns */
  643. /* > k and -IPIV(k) were interchanged */
  644. /* > in the matrix A(1:N,1:N). */
  645. /* > If -IPIV(k) = k, no interchange occurred. */
  646. /* > 2) If -IPIV(k+1) != k+1, rows and columns */
  647. /* > k-1 and -IPIV(k-1) were interchanged */
  648. /* > in the matrix A(1:N,1:N). */
  649. /* > If -IPIV(k+1) = k+1, no interchange occurred. */
  650. /* > */
  651. /* > c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
  652. /* > */
  653. /* > d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
  654. /* > \endverbatim */
  655. /* > */
  656. /* > \param[out] WORK */
  657. /* > \verbatim */
  658. /* > WORK is REAL array, dimension ( MAX(1,LWORK) ). */
  659. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[in] LWORK */
  663. /* > \verbatim */
  664. /* > LWORK is INTEGER */
  665. /* > The length of WORK. LWORK >=1. For best performance */
  666. /* > LWORK >= N*NB, where NB is the block size returned */
  667. /* > by ILAENV. */
  668. /* > */
  669. /* > If LWORK = -1, then a workspace query is assumed; */
  670. /* > the routine only calculates the optimal size of the WORK */
  671. /* > array, returns this value as the first entry of the WORK */
  672. /* > array, and no error message related to LWORK is issued */
  673. /* > by XERBLA. */
  674. /* > \endverbatim */
  675. /* > */
  676. /* > \param[out] INFO */
  677. /* > \verbatim */
  678. /* > INFO is INTEGER */
  679. /* > = 0: successful exit */
  680. /* > */
  681. /* > < 0: If INFO = -k, the k-th argument had an illegal value */
  682. /* > */
  683. /* > > 0: If INFO = k, the matrix A is singular, because: */
  684. /* > If UPLO = 'U': column k in the upper */
  685. /* > triangular part of A contains all zeros. */
  686. /* > If UPLO = 'L': column k in the lower */
  687. /* > triangular part of A contains all zeros. */
  688. /* > */
  689. /* > Therefore D(k,k) is exactly zero, and superdiagonal */
  690. /* > elements of column k of U (or subdiagonal elements of */
  691. /* > column k of L ) are all zeros. The factorization has */
  692. /* > been completed, but the block diagonal matrix D is */
  693. /* > exactly singular, and division by zero will occur if */
  694. /* > it is used to solve a system of equations. */
  695. /* > */
  696. /* > NOTE: INFO only stores the first occurrence of */
  697. /* > a singularity, any subsequent occurrence of singularity */
  698. /* > is not stored in INFO even though the factorization */
  699. /* > always completes. */
  700. /* > \endverbatim */
  701. /* Authors: */
  702. /* ======== */
  703. /* > \author Univ. of Tennessee */
  704. /* > \author Univ. of California Berkeley */
  705. /* > \author Univ. of Colorado Denver */
  706. /* > \author NAG Ltd. */
  707. /* > \date December 2016 */
  708. /* > \ingroup singleSYcomputational */
  709. /* > \par Further Details: */
  710. /* ===================== */
  711. /* > */
  712. /* > \verbatim */
  713. /* > TODO: put correct description */
  714. /* > \endverbatim */
  715. /* > \par Contributors: */
  716. /* ================== */
  717. /* > */
  718. /* > \verbatim */
  719. /* > */
  720. /* > December 2016, Igor Kozachenko, */
  721. /* > Computer Science Division, */
  722. /* > University of California, Berkeley */
  723. /* > */
  724. /* > September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
  725. /* > School of Mathematics, */
  726. /* > University of Manchester */
  727. /* > */
  728. /* > \endverbatim */
  729. /* ===================================================================== */
  730. /* Subroutine */ int ssytrf_rk_(char *uplo, integer *n, real *a, integer *
  731. lda, real *e, integer *ipiv, real *work, integer *lwork, integer *
  732. info)
  733. {
  734. /* System generated locals */
  735. integer a_dim1, a_offset, i__1, i__2;
  736. /* Local variables */
  737. integer i__, k;
  738. extern logical lsame_(char *, char *);
  739. integer nbmin, iinfo;
  740. extern /* Subroutine */ int ssytf2_rk_(char *, integer *, real *,
  741. integer *, real *, integer *, integer *);
  742. logical upper;
  743. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  744. integer *), slasyf_rk_(char *, integer *, integer *, integer *,
  745. real *, integer *, real *, integer *, real *, integer *, integer *
  746. );
  747. integer kb, nb, ip;
  748. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  749. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  750. integer *, integer *, ftnlen, ftnlen);
  751. integer ldwork, lwkopt;
  752. logical lquery;
  753. integer iws;
  754. /* -- LAPACK computational routine (version 3.7.0) -- */
  755. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  756. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  757. /* December 2016 */
  758. /* ===================================================================== */
  759. /* Test the input parameters. */
  760. /* Parameter adjustments */
  761. a_dim1 = *lda;
  762. a_offset = 1 + a_dim1 * 1;
  763. a -= a_offset;
  764. --e;
  765. --ipiv;
  766. --work;
  767. /* Function Body */
  768. *info = 0;
  769. upper = lsame_(uplo, "U");
  770. lquery = *lwork == -1;
  771. if (! upper && ! lsame_(uplo, "L")) {
  772. *info = -1;
  773. } else if (*n < 0) {
  774. *info = -2;
  775. } else if (*lda < f2cmax(1,*n)) {
  776. *info = -4;
  777. } else if (*lwork < 1 && ! lquery) {
  778. *info = -8;
  779. }
  780. if (*info == 0) {
  781. /* Determine the block size */
  782. nb = ilaenv_(&c__1, "SSYTRF_RK", uplo, n, &c_n1, &c_n1, &c_n1, (
  783. ftnlen)9, (ftnlen)1);
  784. lwkopt = *n * nb;
  785. work[1] = (real) lwkopt;
  786. }
  787. if (*info != 0) {
  788. i__1 = -(*info);
  789. xerbla_("SSYTRF_RK", &i__1, (ftnlen)9);
  790. return 0;
  791. } else if (lquery) {
  792. return 0;
  793. }
  794. nbmin = 2;
  795. ldwork = *n;
  796. if (nb > 1 && nb < *n) {
  797. iws = ldwork * nb;
  798. if (*lwork < iws) {
  799. /* Computing MAX */
  800. i__1 = *lwork / ldwork;
  801. nb = f2cmax(i__1,1);
  802. /* Computing MAX */
  803. i__1 = 2, i__2 = ilaenv_(&c__2, "SSYTRF_RK", uplo, n, &c_n1, &
  804. c_n1, &c_n1, (ftnlen)9, (ftnlen)1);
  805. nbmin = f2cmax(i__1,i__2);
  806. }
  807. } else {
  808. iws = 1;
  809. }
  810. if (nb < nbmin) {
  811. nb = *n;
  812. }
  813. if (upper) {
  814. /* Factorize A as U*D*U**T using the upper triangle of A */
  815. /* K is the main loop index, decreasing from N to 1 in steps of */
  816. /* KB, where KB is the number of columns factorized by SLASYF_RK; */
  817. /* KB is either NB or NB-1, or K for the last block */
  818. k = *n;
  819. L10:
  820. /* If K < 1, exit from loop */
  821. if (k < 1) {
  822. goto L15;
  823. }
  824. if (k > nb) {
  825. /* Factorize columns k-kb+1:k of A and use blocked code to */
  826. /* update columns 1:k-kb */
  827. slasyf_rk_(uplo, &k, &nb, &kb, &a[a_offset], lda, &e[1], &ipiv[1]
  828. , &work[1], &ldwork, &iinfo);
  829. } else {
  830. /* Use unblocked code to factorize columns 1:k of A */
  831. ssytf2_rk_(uplo, &k, &a[a_offset], lda, &e[1], &ipiv[1], &iinfo);
  832. kb = k;
  833. }
  834. /* Set INFO on the first occurrence of a zero pivot */
  835. if (*info == 0 && iinfo > 0) {
  836. *info = iinfo;
  837. }
  838. /* No need to adjust IPIV */
  839. /* Apply permutations to the leading panel 1:k-1 */
  840. /* Read IPIV from the last block factored, i.e. */
  841. /* indices k-kb+1:k and apply row permutations to the */
  842. /* last k+1 colunms k+1:N after that block */
  843. /* (We can do the simple loop over IPIV with decrement -1, */
  844. /* since the ABS value of IPIV( I ) represents the row index */
  845. /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */
  846. if (k < *n) {
  847. i__1 = k - kb + 1;
  848. for (i__ = k; i__ >= i__1; --i__) {
  849. ip = (i__2 = ipiv[i__], abs(i__2));
  850. if (ip != i__) {
  851. i__2 = *n - k;
  852. sswap_(&i__2, &a[i__ + (k + 1) * a_dim1], lda, &a[ip + (k
  853. + 1) * a_dim1], lda);
  854. }
  855. }
  856. }
  857. /* Decrease K and return to the start of the main loop */
  858. k -= kb;
  859. goto L10;
  860. /* This label is the exit from main loop over K decreasing */
  861. /* from N to 1 in steps of KB */
  862. L15:
  863. ;
  864. } else {
  865. /* Factorize A as L*D*L**T using the lower triangle of A */
  866. /* K is the main loop index, increasing from 1 to N in steps of */
  867. /* KB, where KB is the number of columns factorized by SLASYF_RK; */
  868. /* KB is either NB or NB-1, or N-K+1 for the last block */
  869. k = 1;
  870. L20:
  871. /* If K > N, exit from loop */
  872. if (k > *n) {
  873. goto L35;
  874. }
  875. if (k <= *n - nb) {
  876. /* Factorize columns k:k+kb-1 of A and use blocked code to */
  877. /* update columns k+kb:n */
  878. i__1 = *n - k + 1;
  879. slasyf_rk_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &e[k],
  880. &ipiv[k], &work[1], &ldwork, &iinfo);
  881. } else {
  882. /* Use unblocked code to factorize columns k:n of A */
  883. i__1 = *n - k + 1;
  884. ssytf2_rk_(uplo, &i__1, &a[k + k * a_dim1], lda, &e[k], &ipiv[k],
  885. &iinfo);
  886. kb = *n - k + 1;
  887. }
  888. /* Set INFO on the first occurrence of a zero pivot */
  889. if (*info == 0 && iinfo > 0) {
  890. *info = iinfo + k - 1;
  891. }
  892. /* Adjust IPIV */
  893. i__1 = k + kb - 1;
  894. for (i__ = k; i__ <= i__1; ++i__) {
  895. if (ipiv[i__] > 0) {
  896. ipiv[i__] = ipiv[i__] + k - 1;
  897. } else {
  898. ipiv[i__] = ipiv[i__] - k + 1;
  899. }
  900. }
  901. /* Apply permutations to the leading panel 1:k-1 */
  902. /* Read IPIV from the last block factored, i.e. */
  903. /* indices k:k+kb-1 and apply row permutations to the */
  904. /* first k-1 colunms 1:k-1 before that block */
  905. /* (We can do the simple loop over IPIV with increment 1, */
  906. /* since the ABS value of IPIV( I ) represents the row index */
  907. /* of the interchange with row i in both 1x1 and 2x2 pivot cases) */
  908. if (k > 1) {
  909. i__1 = k + kb - 1;
  910. for (i__ = k; i__ <= i__1; ++i__) {
  911. ip = (i__2 = ipiv[i__], abs(i__2));
  912. if (ip != i__) {
  913. i__2 = k - 1;
  914. sswap_(&i__2, &a[i__ + a_dim1], lda, &a[ip + a_dim1], lda)
  915. ;
  916. }
  917. }
  918. }
  919. /* Increase K and return to the start of the main loop */
  920. k += kb;
  921. goto L20;
  922. /* This label is the exit from main loop over K increasing */
  923. /* from 1 to N in steps of KB */
  924. L35:
  925. /* End Lower */
  926. ;
  927. }
  928. work[1] = (real) lwkopt;
  929. return 0;
  930. /* End of SSYTRF_RK */
  931. } /* ssytrf_rk__ */