You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaexc.c 28 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__4 = 4;
  488. static logical c_false = FALSE_;
  489. static integer c_n1 = -1;
  490. static integer c__2 = 2;
  491. static integer c__3 = 3;
  492. /* > \brief \b SLAEXC swaps adjacent diagonal blocks of a real upper quasi-triangular matrix in Schur canonica
  493. l form, by an orthogonal similarity transformation. */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download SLAEXC + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaexc.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaexc.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaexc.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE SLAEXC( WANTQ, N, T, LDT, Q, LDQ, J1, N1, N2, WORK, */
  512. /* INFO ) */
  513. /* LOGICAL WANTQ */
  514. /* INTEGER INFO, J1, LDQ, LDT, N, N1, N2 */
  515. /* REAL Q( LDQ, * ), T( LDT, * ), WORK( * ) */
  516. /* > \par Purpose: */
  517. /* ============= */
  518. /* > */
  519. /* > \verbatim */
  520. /* > */
  521. /* > SLAEXC swaps adjacent diagonal blocks T11 and T22 of order 1 or 2 in */
  522. /* > an upper quasi-triangular matrix T by an orthogonal similarity */
  523. /* > transformation. */
  524. /* > */
  525. /* > T must be in Schur canonical form, that is, block upper triangular */
  526. /* > with 1-by-1 and 2-by-2 diagonal blocks; each 2-by-2 diagonal block */
  527. /* > has its diagonal elemnts equal and its off-diagonal elements of */
  528. /* > opposite sign. */
  529. /* > \endverbatim */
  530. /* Arguments: */
  531. /* ========== */
  532. /* > \param[in] WANTQ */
  533. /* > \verbatim */
  534. /* > WANTQ is LOGICAL */
  535. /* > = .TRUE. : accumulate the transformation in the matrix Q; */
  536. /* > = .FALSE.: do not accumulate the transformation. */
  537. /* > \endverbatim */
  538. /* > */
  539. /* > \param[in] N */
  540. /* > \verbatim */
  541. /* > N is INTEGER */
  542. /* > The order of the matrix T. N >= 0. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in,out] T */
  546. /* > \verbatim */
  547. /* > T is REAL array, dimension (LDT,N) */
  548. /* > On entry, the upper quasi-triangular matrix T, in Schur */
  549. /* > canonical form. */
  550. /* > On exit, the updated matrix T, again in Schur canonical form. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] LDT */
  554. /* > \verbatim */
  555. /* > LDT is INTEGER */
  556. /* > The leading dimension of the array T. LDT >= f2cmax(1,N). */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in,out] Q */
  560. /* > \verbatim */
  561. /* > Q is REAL array, dimension (LDQ,N) */
  562. /* > On entry, if WANTQ is .TRUE., the orthogonal matrix Q. */
  563. /* > On exit, if WANTQ is .TRUE., the updated matrix Q. */
  564. /* > If WANTQ is .FALSE., Q is not referenced. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] LDQ */
  568. /* > \verbatim */
  569. /* > LDQ is INTEGER */
  570. /* > The leading dimension of the array Q. */
  571. /* > LDQ >= 1; and if WANTQ is .TRUE., LDQ >= N. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] J1 */
  575. /* > \verbatim */
  576. /* > J1 is INTEGER */
  577. /* > The index of the first row of the first block T11. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] N1 */
  581. /* > \verbatim */
  582. /* > N1 is INTEGER */
  583. /* > The order of the first block T11. N1 = 0, 1 or 2. */
  584. /* > \endverbatim */
  585. /* > */
  586. /* > \param[in] N2 */
  587. /* > \verbatim */
  588. /* > N2 is INTEGER */
  589. /* > The order of the second block T22. N2 = 0, 1 or 2. */
  590. /* > \endverbatim */
  591. /* > */
  592. /* > \param[out] WORK */
  593. /* > \verbatim */
  594. /* > WORK is REAL array, dimension (N) */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[out] INFO */
  598. /* > \verbatim */
  599. /* > INFO is INTEGER */
  600. /* > = 0: successful exit */
  601. /* > = 1: the transformed matrix T would be too far from Schur */
  602. /* > form; the blocks are not swapped and T and Q are */
  603. /* > unchanged. */
  604. /* > \endverbatim */
  605. /* Authors: */
  606. /* ======== */
  607. /* > \author Univ. of Tennessee */
  608. /* > \author Univ. of California Berkeley */
  609. /* > \author Univ. of Colorado Denver */
  610. /* > \author NAG Ltd. */
  611. /* > \date December 2016 */
  612. /* > \ingroup realOTHERauxiliary */
  613. /* ===================================================================== */
  614. /* Subroutine */ int slaexc_(logical *wantq, integer *n, real *t, integer *
  615. ldt, real *q, integer *ldq, integer *j1, integer *n1, integer *n2,
  616. real *work, integer *info)
  617. {
  618. /* System generated locals */
  619. integer q_dim1, q_offset, t_dim1, t_offset, i__1;
  620. real r__1, r__2, r__3;
  621. /* Local variables */
  622. integer ierr;
  623. real temp;
  624. extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
  625. integer *, real *, real *);
  626. real d__[16] /* was [4][4] */;
  627. integer k;
  628. real u[3], scale, x[4] /* was [2][2] */, dnorm;
  629. integer j2, j3, j4;
  630. real xnorm, u1[3], u2[3];
  631. extern /* Subroutine */ int slanv2_(real *, real *, real *, real *, real *
  632. , real *, real *, real *, real *, real *), slasy2_(logical *,
  633. logical *, integer *, integer *, integer *, real *, integer *,
  634. real *, integer *, real *, integer *, real *, real *, integer *,
  635. real *, integer *);
  636. integer nd;
  637. real cs, t11, t22, t33, sn;
  638. extern real slamch_(char *), slange_(char *, integer *, integer *,
  639. real *, integer *, real *);
  640. extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
  641. real *), slacpy_(char *, integer *, integer *, real *, integer *,
  642. real *, integer *), slartg_(real *, real *, real *, real *
  643. , real *);
  644. real thresh;
  645. extern /* Subroutine */ int slarfx_(char *, integer *, integer *, real *,
  646. real *, real *, integer *, real *);
  647. real smlnum, wi1, wi2, wr1, wr2, eps, tau, tau1, tau2;
  648. /* -- LAPACK auxiliary routine (version 3.7.0) -- */
  649. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  650. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  651. /* December 2016 */
  652. /* ===================================================================== */
  653. /* Parameter adjustments */
  654. t_dim1 = *ldt;
  655. t_offset = 1 + t_dim1 * 1;
  656. t -= t_offset;
  657. q_dim1 = *ldq;
  658. q_offset = 1 + q_dim1 * 1;
  659. q -= q_offset;
  660. --work;
  661. /* Function Body */
  662. *info = 0;
  663. /* Quick return if possible */
  664. if (*n == 0 || *n1 == 0 || *n2 == 0) {
  665. return 0;
  666. }
  667. if (*j1 + *n1 > *n) {
  668. return 0;
  669. }
  670. j2 = *j1 + 1;
  671. j3 = *j1 + 2;
  672. j4 = *j1 + 3;
  673. if (*n1 == 1 && *n2 == 1) {
  674. /* Swap two 1-by-1 blocks. */
  675. t11 = t[*j1 + *j1 * t_dim1];
  676. t22 = t[j2 + j2 * t_dim1];
  677. /* Determine the transformation to perform the interchange. */
  678. r__1 = t22 - t11;
  679. slartg_(&t[*j1 + j2 * t_dim1], &r__1, &cs, &sn, &temp);
  680. /* Apply transformation to the matrix T. */
  681. if (j3 <= *n) {
  682. i__1 = *n - *j1 - 1;
  683. srot_(&i__1, &t[*j1 + j3 * t_dim1], ldt, &t[j2 + j3 * t_dim1],
  684. ldt, &cs, &sn);
  685. }
  686. i__1 = *j1 - 1;
  687. srot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &c__1,
  688. &cs, &sn);
  689. t[*j1 + *j1 * t_dim1] = t22;
  690. t[j2 + j2 * t_dim1] = t11;
  691. if (*wantq) {
  692. /* Accumulate transformation in the matrix Q. */
  693. srot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &c__1,
  694. &cs, &sn);
  695. }
  696. } else {
  697. /* Swapping involves at least one 2-by-2 block. */
  698. /* Copy the diagonal block of order N1+N2 to the local array D */
  699. /* and compute its norm. */
  700. nd = *n1 + *n2;
  701. slacpy_("Full", &nd, &nd, &t[*j1 + *j1 * t_dim1], ldt, d__, &c__4);
  702. dnorm = slange_("Max", &nd, &nd, d__, &c__4, &work[1]);
  703. /* Compute machine-dependent threshold for test for accepting */
  704. /* swap. */
  705. eps = slamch_("P");
  706. smlnum = slamch_("S") / eps;
  707. /* Computing MAX */
  708. r__1 = eps * 10.f * dnorm;
  709. thresh = f2cmax(r__1,smlnum);
  710. /* Solve T11*X - X*T22 = scale*T12 for X. */
  711. slasy2_(&c_false, &c_false, &c_n1, n1, n2, d__, &c__4, &d__[*n1 + 1 +
  712. (*n1 + 1 << 2) - 5], &c__4, &d__[(*n1 + 1 << 2) - 4], &c__4, &
  713. scale, x, &c__2, &xnorm, &ierr);
  714. /* Swap the adjacent diagonal blocks. */
  715. k = *n1 + *n1 + *n2 - 3;
  716. switch (k) {
  717. case 1: goto L10;
  718. case 2: goto L20;
  719. case 3: goto L30;
  720. }
  721. L10:
  722. /* N1 = 1, N2 = 2: generate elementary reflector H so that: */
  723. /* ( scale, X11, X12 ) H = ( 0, 0, * ) */
  724. u[0] = scale;
  725. u[1] = x[0];
  726. u[2] = x[2];
  727. slarfg_(&c__3, &u[2], u, &c__1, &tau);
  728. u[2] = 1.f;
  729. t11 = t[*j1 + *j1 * t_dim1];
  730. /* Perform swap provisionally on diagonal block in D. */
  731. slarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  732. slarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  733. /* Test whether to reject swap. */
  734. /* Computing MAX */
  735. r__2 = abs(d__[2]), r__3 = abs(d__[6]), r__2 = f2cmax(r__2,r__3), r__3 =
  736. (r__1 = d__[10] - t11, abs(r__1));
  737. if (f2cmax(r__2,r__3) > thresh) {
  738. goto L50;
  739. }
  740. /* Accept swap: apply transformation to the entire matrix T. */
  741. i__1 = *n - *j1 + 1;
  742. slarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + *j1 * t_dim1], ldt, &
  743. work[1]);
  744. slarfx_("R", &j2, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
  745. t[j3 + *j1 * t_dim1] = 0.f;
  746. t[j3 + j2 * t_dim1] = 0.f;
  747. t[j3 + j3 * t_dim1] = t11;
  748. if (*wantq) {
  749. /* Accumulate transformation in the matrix Q. */
  750. slarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
  751. 1]);
  752. }
  753. goto L40;
  754. L20:
  755. /* N1 = 2, N2 = 1: generate elementary reflector H so that: */
  756. /* H ( -X11 ) = ( * ) */
  757. /* ( -X21 ) = ( 0 ) */
  758. /* ( scale ) = ( 0 ) */
  759. u[0] = -x[0];
  760. u[1] = -x[1];
  761. u[2] = scale;
  762. slarfg_(&c__3, u, &u[1], &c__1, &tau);
  763. u[0] = 1.f;
  764. t33 = t[j3 + j3 * t_dim1];
  765. /* Perform swap provisionally on diagonal block in D. */
  766. slarfx_("L", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  767. slarfx_("R", &c__3, &c__3, u, &tau, d__, &c__4, &work[1]);
  768. /* Test whether to reject swap. */
  769. /* Computing MAX */
  770. r__2 = abs(d__[1]), r__3 = abs(d__[2]), r__2 = f2cmax(r__2,r__3), r__3 =
  771. (r__1 = d__[0] - t33, abs(r__1));
  772. if (f2cmax(r__2,r__3) > thresh) {
  773. goto L50;
  774. }
  775. /* Accept swap: apply transformation to the entire matrix T. */
  776. slarfx_("R", &j3, &c__3, u, &tau, &t[*j1 * t_dim1 + 1], ldt, &work[1]);
  777. i__1 = *n - *j1;
  778. slarfx_("L", &c__3, &i__1, u, &tau, &t[*j1 + j2 * t_dim1], ldt, &work[
  779. 1]);
  780. t[*j1 + *j1 * t_dim1] = t33;
  781. t[j2 + *j1 * t_dim1] = 0.f;
  782. t[j3 + *j1 * t_dim1] = 0.f;
  783. if (*wantq) {
  784. /* Accumulate transformation in the matrix Q. */
  785. slarfx_("R", n, &c__3, u, &tau, &q[*j1 * q_dim1 + 1], ldq, &work[
  786. 1]);
  787. }
  788. goto L40;
  789. L30:
  790. /* N1 = 2, N2 = 2: generate elementary reflectors H(1) and H(2) so */
  791. /* that: */
  792. /* H(2) H(1) ( -X11 -X12 ) = ( * * ) */
  793. /* ( -X21 -X22 ) ( 0 * ) */
  794. /* ( scale 0 ) ( 0 0 ) */
  795. /* ( 0 scale ) ( 0 0 ) */
  796. u1[0] = -x[0];
  797. u1[1] = -x[1];
  798. u1[2] = scale;
  799. slarfg_(&c__3, u1, &u1[1], &c__1, &tau1);
  800. u1[0] = 1.f;
  801. temp = -tau1 * (x[2] + u1[1] * x[3]);
  802. u2[0] = -temp * u1[1] - x[3];
  803. u2[1] = -temp * u1[2];
  804. u2[2] = scale;
  805. slarfg_(&c__3, u2, &u2[1], &c__1, &tau2);
  806. u2[0] = 1.f;
  807. /* Perform swap provisionally on diagonal block in D. */
  808. slarfx_("L", &c__3, &c__4, u1, &tau1, d__, &c__4, &work[1])
  809. ;
  810. slarfx_("R", &c__4, &c__3, u1, &tau1, d__, &c__4, &work[1])
  811. ;
  812. slarfx_("L", &c__3, &c__4, u2, &tau2, &d__[1], &c__4, &work[1]);
  813. slarfx_("R", &c__4, &c__3, u2, &tau2, &d__[4], &c__4, &work[1]);
  814. /* Test whether to reject swap. */
  815. /* Computing MAX */
  816. r__1 = abs(d__[2]), r__2 = abs(d__[6]), r__1 = f2cmax(r__1,r__2), r__2 =
  817. abs(d__[3]), r__1 = f2cmax(r__1,r__2), r__2 = abs(d__[7]);
  818. if (f2cmax(r__1,r__2) > thresh) {
  819. goto L50;
  820. }
  821. /* Accept swap: apply transformation to the entire matrix T. */
  822. i__1 = *n - *j1 + 1;
  823. slarfx_("L", &c__3, &i__1, u1, &tau1, &t[*j1 + *j1 * t_dim1], ldt, &
  824. work[1]);
  825. slarfx_("R", &j4, &c__3, u1, &tau1, &t[*j1 * t_dim1 + 1], ldt, &work[
  826. 1]);
  827. i__1 = *n - *j1 + 1;
  828. slarfx_("L", &c__3, &i__1, u2, &tau2, &t[j2 + *j1 * t_dim1], ldt, &
  829. work[1]);
  830. slarfx_("R", &j4, &c__3, u2, &tau2, &t[j2 * t_dim1 + 1], ldt, &work[1]
  831. );
  832. t[j3 + *j1 * t_dim1] = 0.f;
  833. t[j3 + j2 * t_dim1] = 0.f;
  834. t[j4 + *j1 * t_dim1] = 0.f;
  835. t[j4 + j2 * t_dim1] = 0.f;
  836. if (*wantq) {
  837. /* Accumulate transformation in the matrix Q. */
  838. slarfx_("R", n, &c__3, u1, &tau1, &q[*j1 * q_dim1 + 1], ldq, &
  839. work[1]);
  840. slarfx_("R", n, &c__3, u2, &tau2, &q[j2 * q_dim1 + 1], ldq, &work[
  841. 1]);
  842. }
  843. L40:
  844. if (*n2 == 2) {
  845. /* Standardize new 2-by-2 block T11 */
  846. slanv2_(&t[*j1 + *j1 * t_dim1], &t[*j1 + j2 * t_dim1], &t[j2 + *
  847. j1 * t_dim1], &t[j2 + j2 * t_dim1], &wr1, &wi1, &wr2, &
  848. wi2, &cs, &sn);
  849. i__1 = *n - *j1 - 1;
  850. srot_(&i__1, &t[*j1 + (*j1 + 2) * t_dim1], ldt, &t[j2 + (*j1 + 2)
  851. * t_dim1], ldt, &cs, &sn);
  852. i__1 = *j1 - 1;
  853. srot_(&i__1, &t[*j1 * t_dim1 + 1], &c__1, &t[j2 * t_dim1 + 1], &
  854. c__1, &cs, &sn);
  855. if (*wantq) {
  856. srot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[j2 * q_dim1 + 1], &
  857. c__1, &cs, &sn);
  858. }
  859. }
  860. if (*n1 == 2) {
  861. /* Standardize new 2-by-2 block T22 */
  862. j3 = *j1 + *n2;
  863. j4 = j3 + 1;
  864. slanv2_(&t[j3 + j3 * t_dim1], &t[j3 + j4 * t_dim1], &t[j4 + j3 *
  865. t_dim1], &t[j4 + j4 * t_dim1], &wr1, &wi1, &wr2, &wi2, &
  866. cs, &sn);
  867. if (j3 + 2 <= *n) {
  868. i__1 = *n - j3 - 1;
  869. srot_(&i__1, &t[j3 + (j3 + 2) * t_dim1], ldt, &t[j4 + (j3 + 2)
  870. * t_dim1], ldt, &cs, &sn);
  871. }
  872. i__1 = j3 - 1;
  873. srot_(&i__1, &t[j3 * t_dim1 + 1], &c__1, &t[j4 * t_dim1 + 1], &
  874. c__1, &cs, &sn);
  875. if (*wantq) {
  876. srot_(n, &q[j3 * q_dim1 + 1], &c__1, &q[j4 * q_dim1 + 1], &
  877. c__1, &cs, &sn);
  878. }
  879. }
  880. }
  881. return 0;
  882. /* Exit with INFO = 1 if swap was rejected. */
  883. L50:
  884. *info = 1;
  885. return 0;
  886. /* End of SLAEXC */
  887. } /* slaexc_ */