You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sggesx.c 44 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. static integer c__0 = 0;
  488. static integer c_n1 = -1;
  489. static real c_b42 = 0.f;
  490. static real c_b43 = 1.f;
  491. /* > \brief <b> SGGESX computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors
  492. for GE matrices</b> */
  493. /* =========== DOCUMENTATION =========== */
  494. /* Online html documentation available at */
  495. /* http://www.netlib.org/lapack/explore-html/ */
  496. /* > \htmlonly */
  497. /* > Download SGGESX + dependencies */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggesx.
  499. f"> */
  500. /* > [TGZ]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggesx.
  502. f"> */
  503. /* > [ZIP]</a> */
  504. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggesx.
  505. f"> */
  506. /* > [TXT]</a> */
  507. /* > \endhtmlonly */
  508. /* Definition: */
  509. /* =========== */
  510. /* SUBROUTINE SGGESX( JOBVSL, JOBVSR, SORT, SELCTG, SENSE, N, A, LDA, */
  511. /* B, LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, */
  512. /* VSR, LDVSR, RCONDE, RCONDV, WORK, LWORK, IWORK, */
  513. /* LIWORK, BWORK, INFO ) */
  514. /* CHARACTER JOBVSL, JOBVSR, SENSE, SORT */
  515. /* INTEGER INFO, LDA, LDB, LDVSL, LDVSR, LIWORK, LWORK, N, */
  516. /* $ SDIM */
  517. /* LOGICAL BWORK( * ) */
  518. /* INTEGER IWORK( * ) */
  519. /* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
  520. /* $ B( LDB, * ), BETA( * ), RCONDE( 2 ), */
  521. /* $ RCONDV( 2 ), VSL( LDVSL, * ), VSR( LDVSR, * ), */
  522. /* $ WORK( * ) */
  523. /* LOGICAL SELCTG */
  524. /* EXTERNAL SELCTG */
  525. /* > \par Purpose: */
  526. /* ============= */
  527. /* > */
  528. /* > \verbatim */
  529. /* > */
  530. /* > SGGESX computes for a pair of N-by-N real nonsymmetric matrices */
  531. /* > (A,B), the generalized eigenvalues, the real Schur form (S,T), and, */
  532. /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
  533. /* > VSR). This gives the generalized Schur factorization */
  534. /* > */
  535. /* > (A,B) = ( (VSL) S (VSR)**T, (VSL) T (VSR)**T ) */
  536. /* > */
  537. /* > Optionally, it also orders the eigenvalues so that a selected cluster */
  538. /* > of eigenvalues appears in the leading diagonal blocks of the upper */
  539. /* > quasi-triangular matrix S and the upper triangular matrix T; computes */
  540. /* > a reciprocal condition number for the average of the selected */
  541. /* > eigenvalues (RCONDE); and computes a reciprocal condition number for */
  542. /* > the right and left deflating subspaces corresponding to the selected */
  543. /* > eigenvalues (RCONDV). The leading columns of VSL and VSR then form */
  544. /* > an orthonormal basis for the corresponding left and right eigenspaces */
  545. /* > (deflating subspaces). */
  546. /* > */
  547. /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
  548. /* > or a ratio alpha/beta = w, such that A - w*B is singular. It is */
  549. /* > usually represented as the pair (alpha,beta), as there is a */
  550. /* > reasonable interpretation for beta=0 or for both being zero. */
  551. /* > */
  552. /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
  553. /* > upper triangular with non-negative diagonal and S is block upper */
  554. /* > triangular with 1-by-1 and 2-by-2 blocks. 1-by-1 blocks correspond */
  555. /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
  556. /* > "standardized" by making the corresponding elements of T have the */
  557. /* > form: */
  558. /* > [ a 0 ] */
  559. /* > [ 0 b ] */
  560. /* > */
  561. /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
  562. /* > complex conjugate pair of generalized eigenvalues. */
  563. /* > */
  564. /* > \endverbatim */
  565. /* Arguments: */
  566. /* ========== */
  567. /* > \param[in] JOBVSL */
  568. /* > \verbatim */
  569. /* > JOBVSL is CHARACTER*1 */
  570. /* > = 'N': do not compute the left Schur vectors; */
  571. /* > = 'V': compute the left Schur vectors. */
  572. /* > \endverbatim */
  573. /* > */
  574. /* > \param[in] JOBVSR */
  575. /* > \verbatim */
  576. /* > JOBVSR is CHARACTER*1 */
  577. /* > = 'N': do not compute the right Schur vectors; */
  578. /* > = 'V': compute the right Schur vectors. */
  579. /* > \endverbatim */
  580. /* > */
  581. /* > \param[in] SORT */
  582. /* > \verbatim */
  583. /* > SORT is CHARACTER*1 */
  584. /* > Specifies whether or not to order the eigenvalues on the */
  585. /* > diagonal of the generalized Schur form. */
  586. /* > = 'N': Eigenvalues are not ordered; */
  587. /* > = 'S': Eigenvalues are ordered (see SELCTG). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in] SELCTG */
  591. /* > \verbatim */
  592. /* > SELCTG is a LOGICAL FUNCTION of three REAL arguments */
  593. /* > SELCTG must be declared EXTERNAL in the calling subroutine. */
  594. /* > If SORT = 'N', SELCTG is not referenced. */
  595. /* > If SORT = 'S', SELCTG is used to select eigenvalues to sort */
  596. /* > to the top left of the Schur form. */
  597. /* > An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
  598. /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
  599. /* > one of a complex conjugate pair of eigenvalues is selected, */
  600. /* > then both complex eigenvalues are selected. */
  601. /* > Note that a selected complex eigenvalue may no longer satisfy */
  602. /* > SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) = .TRUE. after ordering, */
  603. /* > since ordering may change the value of complex eigenvalues */
  604. /* > (especially if the eigenvalue is ill-conditioned), in this */
  605. /* > case INFO is set to N+3. */
  606. /* > \endverbatim */
  607. /* > */
  608. /* > \param[in] SENSE */
  609. /* > \verbatim */
  610. /* > SENSE is CHARACTER*1 */
  611. /* > Determines which reciprocal condition numbers are computed. */
  612. /* > = 'N': None are computed; */
  613. /* > = 'E': Computed for average of selected eigenvalues only; */
  614. /* > = 'V': Computed for selected deflating subspaces only; */
  615. /* > = 'B': Computed for both. */
  616. /* > If SENSE = 'E', 'V', or 'B', SORT must equal 'S'. */
  617. /* > \endverbatim */
  618. /* > */
  619. /* > \param[in] N */
  620. /* > \verbatim */
  621. /* > N is INTEGER */
  622. /* > The order of the matrices A, B, VSL, and VSR. N >= 0. */
  623. /* > \endverbatim */
  624. /* > */
  625. /* > \param[in,out] A */
  626. /* > \verbatim */
  627. /* > A is REAL array, dimension (LDA, N) */
  628. /* > On entry, the first of the pair of matrices. */
  629. /* > On exit, A has been overwritten by its generalized Schur */
  630. /* > form S. */
  631. /* > \endverbatim */
  632. /* > */
  633. /* > \param[in] LDA */
  634. /* > \verbatim */
  635. /* > LDA is INTEGER */
  636. /* > The leading dimension of A. LDA >= f2cmax(1,N). */
  637. /* > \endverbatim */
  638. /* > */
  639. /* > \param[in,out] B */
  640. /* > \verbatim */
  641. /* > B is REAL array, dimension (LDB, N) */
  642. /* > On entry, the second of the pair of matrices. */
  643. /* > On exit, B has been overwritten by its generalized Schur */
  644. /* > form T. */
  645. /* > \endverbatim */
  646. /* > */
  647. /* > \param[in] LDB */
  648. /* > \verbatim */
  649. /* > LDB is INTEGER */
  650. /* > The leading dimension of B. LDB >= f2cmax(1,N). */
  651. /* > \endverbatim */
  652. /* > */
  653. /* > \param[out] SDIM */
  654. /* > \verbatim */
  655. /* > SDIM is INTEGER */
  656. /* > If SORT = 'N', SDIM = 0. */
  657. /* > If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
  658. /* > for which SELCTG is true. (Complex conjugate pairs for which */
  659. /* > SELCTG is true for either eigenvalue count as 2.) */
  660. /* > \endverbatim */
  661. /* > */
  662. /* > \param[out] ALPHAR */
  663. /* > \verbatim */
  664. /* > ALPHAR is REAL array, dimension (N) */
  665. /* > \endverbatim */
  666. /* > */
  667. /* > \param[out] ALPHAI */
  668. /* > \verbatim */
  669. /* > ALPHAI is REAL array, dimension (N) */
  670. /* > \endverbatim */
  671. /* > */
  672. /* > \param[out] BETA */
  673. /* > \verbatim */
  674. /* > BETA is REAL array, dimension (N) */
  675. /* > On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
  676. /* > be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
  677. /* > and BETA(j),j=1,...,N are the diagonals of the complex Schur */
  678. /* > form (S,T) that would result if the 2-by-2 diagonal blocks of */
  679. /* > the real Schur form of (A,B) were further reduced to */
  680. /* > triangular form using 2-by-2 complex unitary transformations. */
  681. /* > If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
  682. /* > positive, then the j-th and (j+1)-st eigenvalues are a */
  683. /* > complex conjugate pair, with ALPHAI(j+1) negative. */
  684. /* > */
  685. /* > Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
  686. /* > may easily over- or underflow, and BETA(j) may even be zero. */
  687. /* > Thus, the user should avoid naively computing the ratio. */
  688. /* > However, ALPHAR and ALPHAI will be always less than and */
  689. /* > usually comparable with norm(A) in magnitude, and BETA always */
  690. /* > less than and usually comparable with norm(B). */
  691. /* > \endverbatim */
  692. /* > */
  693. /* > \param[out] VSL */
  694. /* > \verbatim */
  695. /* > VSL is REAL array, dimension (LDVSL,N) */
  696. /* > If JOBVSL = 'V', VSL will contain the left Schur vectors. */
  697. /* > Not referenced if JOBVSL = 'N'. */
  698. /* > \endverbatim */
  699. /* > */
  700. /* > \param[in] LDVSL */
  701. /* > \verbatim */
  702. /* > LDVSL is INTEGER */
  703. /* > The leading dimension of the matrix VSL. LDVSL >=1, and */
  704. /* > if JOBVSL = 'V', LDVSL >= N. */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[out] VSR */
  708. /* > \verbatim */
  709. /* > VSR is REAL array, dimension (LDVSR,N) */
  710. /* > If JOBVSR = 'V', VSR will contain the right Schur vectors. */
  711. /* > Not referenced if JOBVSR = 'N'. */
  712. /* > \endverbatim */
  713. /* > */
  714. /* > \param[in] LDVSR */
  715. /* > \verbatim */
  716. /* > LDVSR is INTEGER */
  717. /* > The leading dimension of the matrix VSR. LDVSR >= 1, and */
  718. /* > if JOBVSR = 'V', LDVSR >= N. */
  719. /* > \endverbatim */
  720. /* > */
  721. /* > \param[out] RCONDE */
  722. /* > \verbatim */
  723. /* > RCONDE is REAL array, dimension ( 2 ) */
  724. /* > If SENSE = 'E' or 'B', RCONDE(1) and RCONDE(2) contain the */
  725. /* > reciprocal condition numbers for the average of the selected */
  726. /* > eigenvalues. */
  727. /* > Not referenced if SENSE = 'N' or 'V'. */
  728. /* > \endverbatim */
  729. /* > */
  730. /* > \param[out] RCONDV */
  731. /* > \verbatim */
  732. /* > RCONDV is REAL array, dimension ( 2 ) */
  733. /* > If SENSE = 'V' or 'B', RCONDV(1) and RCONDV(2) contain the */
  734. /* > reciprocal condition numbers for the selected deflating */
  735. /* > subspaces. */
  736. /* > Not referenced if SENSE = 'N' or 'E'. */
  737. /* > \endverbatim */
  738. /* > */
  739. /* > \param[out] WORK */
  740. /* > \verbatim */
  741. /* > WORK is REAL array, dimension (MAX(1,LWORK)) */
  742. /* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
  743. /* > \endverbatim */
  744. /* > */
  745. /* > \param[in] LWORK */
  746. /* > \verbatim */
  747. /* > LWORK is INTEGER */
  748. /* > The dimension of the array WORK. */
  749. /* > If N = 0, LWORK >= 1, else if SENSE = 'E', 'V', or 'B', */
  750. /* > LWORK >= f2cmax( 8*N, 6*N+16, 2*SDIM*(N-SDIM) ), else */
  751. /* > LWORK >= f2cmax( 8*N, 6*N+16 ). */
  752. /* > Note that 2*SDIM*(N-SDIM) <= N*N/2. */
  753. /* > Note also that an error is only returned if */
  754. /* > LWORK < f2cmax( 8*N, 6*N+16), but if SENSE = 'E' or 'V' or 'B' */
  755. /* > this may not be large enough. */
  756. /* > */
  757. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  758. /* > only calculates the bound on the optimal size of the WORK */
  759. /* > array and the minimum size of the IWORK array, returns these */
  760. /* > values as the first entries of the WORK and IWORK arrays, and */
  761. /* > no error message related to LWORK or LIWORK is issued by */
  762. /* > XERBLA. */
  763. /* > \endverbatim */
  764. /* > */
  765. /* > \param[out] IWORK */
  766. /* > \verbatim */
  767. /* > IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
  768. /* > On exit, if INFO = 0, IWORK(1) returns the minimum LIWORK. */
  769. /* > \endverbatim */
  770. /* > */
  771. /* > \param[in] LIWORK */
  772. /* > \verbatim */
  773. /* > LIWORK is INTEGER */
  774. /* > The dimension of the array IWORK. */
  775. /* > If SENSE = 'N' or N = 0, LIWORK >= 1, otherwise */
  776. /* > LIWORK >= N+6. */
  777. /* > */
  778. /* > If LIWORK = -1, then a workspace query is assumed; the */
  779. /* > routine only calculates the bound on the optimal size of the */
  780. /* > WORK array and the minimum size of the IWORK array, returns */
  781. /* > these values as the first entries of the WORK and IWORK */
  782. /* > arrays, and no error message related to LWORK or LIWORK is */
  783. /* > issued by XERBLA. */
  784. /* > \endverbatim */
  785. /* > */
  786. /* > \param[out] BWORK */
  787. /* > \verbatim */
  788. /* > BWORK is LOGICAL array, dimension (N) */
  789. /* > Not referenced if SORT = 'N'. */
  790. /* > \endverbatim */
  791. /* > */
  792. /* > \param[out] INFO */
  793. /* > \verbatim */
  794. /* > INFO is INTEGER */
  795. /* > = 0: successful exit */
  796. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  797. /* > = 1,...,N: */
  798. /* > The QZ iteration failed. (A,B) are not in Schur */
  799. /* > form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
  800. /* > be correct for j=INFO+1,...,N. */
  801. /* > > N: =N+1: other than QZ iteration failed in SHGEQZ */
  802. /* > =N+2: after reordering, roundoff changed values of */
  803. /* > some complex eigenvalues so that leading */
  804. /* > eigenvalues in the Generalized Schur form no */
  805. /* > longer satisfy SELCTG=.TRUE. This could also */
  806. /* > be caused due to scaling. */
  807. /* > =N+3: reordering failed in STGSEN. */
  808. /* > \endverbatim */
  809. /* Authors: */
  810. /* ======== */
  811. /* > \author Univ. of Tennessee */
  812. /* > \author Univ. of California Berkeley */
  813. /* > \author Univ. of Colorado Denver */
  814. /* > \author NAG Ltd. */
  815. /* > \date June 2017 */
  816. /* > \ingroup realGEeigen */
  817. /* > \par Further Details: */
  818. /* ===================== */
  819. /* > */
  820. /* > \verbatim */
  821. /* > */
  822. /* > An approximate (asymptotic) bound on the average absolute error of */
  823. /* > the selected eigenvalues is */
  824. /* > */
  825. /* > EPS * norm((A, B)) / RCONDE( 1 ). */
  826. /* > */
  827. /* > An approximate (asymptotic) bound on the maximum angular error in */
  828. /* > the computed deflating subspaces is */
  829. /* > */
  830. /* > EPS * norm((A, B)) / RCONDV( 2 ). */
  831. /* > */
  832. /* > See LAPACK User's Guide, section 4.11 for more information. */
  833. /* > \endverbatim */
  834. /* > */
  835. /* ===================================================================== */
  836. /* Subroutine */ int sggesx_(char *jobvsl, char *jobvsr, char *sort, L_fp
  837. selctg, char *sense, integer *n, real *a, integer *lda, real *b,
  838. integer *ldb, integer *sdim, real *alphar, real *alphai, real *beta,
  839. real *vsl, integer *ldvsl, real *vsr, integer *ldvsr, real *rconde,
  840. real *rcondv, real *work, integer *lwork, integer *iwork, integer *
  841. liwork, logical *bwork, integer *info)
  842. {
  843. /* System generated locals */
  844. integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset,
  845. vsr_dim1, vsr_offset, i__1, i__2;
  846. real r__1;
  847. /* Local variables */
  848. integer ijob;
  849. real anrm, bnrm;
  850. integer ierr, itau, iwrk, lwrk, i__;
  851. extern logical lsame_(char *, char *);
  852. integer ileft, icols;
  853. logical cursl, ilvsl, ilvsr;
  854. integer irows;
  855. logical lst2sl;
  856. extern /* Subroutine */ int slabad_(real *, real *);
  857. integer ip;
  858. real pl;
  859. extern /* Subroutine */ int sggbak_(char *, char *, integer *, integer *,
  860. integer *, real *, real *, integer *, real *, integer *, integer *
  861. ), sggbal_(char *, integer *, real *, integer *,
  862. real *, integer *, integer *, integer *, real *, real *, real *,
  863. integer *);
  864. real pr;
  865. logical ilascl, ilbscl;
  866. extern real slamch_(char *), slange_(char *, integer *, integer *,
  867. real *, integer *, real *);
  868. real safmin;
  869. extern /* Subroutine */ int sgghrd_(char *, char *, integer *, integer *,
  870. integer *, real *, integer *, real *, integer *, real *, integer *
  871. , real *, integer *, integer *);
  872. real safmax;
  873. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  874. real bignum;
  875. extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
  876. real *, integer *, integer *, real *, integer *, integer *);
  877. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  878. integer *, integer *, ftnlen, ftnlen);
  879. integer ijobvl, iright;
  880. extern /* Subroutine */ int sgeqrf_(integer *, integer *, real *, integer
  881. *, real *, real *, integer *, integer *);
  882. integer ijobvr;
  883. extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
  884. integer *, real *, integer *);
  885. logical wantsb, wantse, lastsl;
  886. integer liwmin;
  887. real anrmto, bnrmto;
  888. integer minwrk, maxwrk;
  889. logical wantsn;
  890. real smlnum;
  891. extern /* Subroutine */ int shgeqz_(char *, char *, char *, integer *,
  892. integer *, integer *, real *, integer *, real *, integer *, real *
  893. , real *, real *, real *, integer *, real *, integer *, real *,
  894. integer *, integer *), slaset_(char *,
  895. integer *, integer *, real *, real *, real *, integer *),
  896. sorgqr_(integer *, integer *, integer *, real *, integer *, real *
  897. , real *, integer *, integer *), stgsen_(integer *, logical *,
  898. logical *, logical *, integer *, real *, integer *, real *,
  899. integer *, real *, real *, real *, real *, integer *, real *,
  900. integer *, integer *, real *, real *, real *, real *, integer *,
  901. integer *, integer *, integer *);
  902. logical wantst, lquery, wantsv;
  903. extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
  904. integer *, real *, integer *, real *, real *, integer *, real *,
  905. integer *, integer *);
  906. real dif[2];
  907. integer ihi, ilo;
  908. real eps;
  909. /* -- LAPACK driver routine (version 3.7.1) -- */
  910. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  911. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  912. /* June 2017 */
  913. /* ===================================================================== */
  914. /* Decode the input arguments */
  915. /* Parameter adjustments */
  916. a_dim1 = *lda;
  917. a_offset = 1 + a_dim1 * 1;
  918. a -= a_offset;
  919. b_dim1 = *ldb;
  920. b_offset = 1 + b_dim1 * 1;
  921. b -= b_offset;
  922. --alphar;
  923. --alphai;
  924. --beta;
  925. vsl_dim1 = *ldvsl;
  926. vsl_offset = 1 + vsl_dim1 * 1;
  927. vsl -= vsl_offset;
  928. vsr_dim1 = *ldvsr;
  929. vsr_offset = 1 + vsr_dim1 * 1;
  930. vsr -= vsr_offset;
  931. --rconde;
  932. --rcondv;
  933. --work;
  934. --iwork;
  935. --bwork;
  936. /* Function Body */
  937. if (lsame_(jobvsl, "N")) {
  938. ijobvl = 1;
  939. ilvsl = FALSE_;
  940. } else if (lsame_(jobvsl, "V")) {
  941. ijobvl = 2;
  942. ilvsl = TRUE_;
  943. } else {
  944. ijobvl = -1;
  945. ilvsl = FALSE_;
  946. }
  947. if (lsame_(jobvsr, "N")) {
  948. ijobvr = 1;
  949. ilvsr = FALSE_;
  950. } else if (lsame_(jobvsr, "V")) {
  951. ijobvr = 2;
  952. ilvsr = TRUE_;
  953. } else {
  954. ijobvr = -1;
  955. ilvsr = FALSE_;
  956. }
  957. wantst = lsame_(sort, "S");
  958. wantsn = lsame_(sense, "N");
  959. wantse = lsame_(sense, "E");
  960. wantsv = lsame_(sense, "V");
  961. wantsb = lsame_(sense, "B");
  962. lquery = *lwork == -1 || *liwork == -1;
  963. if (wantsn) {
  964. ijob = 0;
  965. } else if (wantse) {
  966. ijob = 1;
  967. } else if (wantsv) {
  968. ijob = 2;
  969. } else if (wantsb) {
  970. ijob = 4;
  971. }
  972. /* Test the input arguments */
  973. *info = 0;
  974. if (ijobvl <= 0) {
  975. *info = -1;
  976. } else if (ijobvr <= 0) {
  977. *info = -2;
  978. } else if (! wantst && ! lsame_(sort, "N")) {
  979. *info = -3;
  980. } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && !
  981. wantsn) {
  982. *info = -5;
  983. } else if (*n < 0) {
  984. *info = -6;
  985. } else if (*lda < f2cmax(1,*n)) {
  986. *info = -8;
  987. } else if (*ldb < f2cmax(1,*n)) {
  988. *info = -10;
  989. } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
  990. *info = -16;
  991. } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
  992. *info = -18;
  993. }
  994. /* Compute workspace */
  995. /* (Note: Comments in the code beginning "Workspace:" describe the */
  996. /* minimal amount of workspace needed at that point in the code, */
  997. /* as well as the preferred amount for good performance. */
  998. /* NB refers to the optimal block size for the immediately */
  999. /* following subroutine, as returned by ILAENV.) */
  1000. if (*info == 0) {
  1001. if (*n > 0) {
  1002. /* Computing MAX */
  1003. i__1 = *n << 3, i__2 = *n * 6 + 16;
  1004. minwrk = f2cmax(i__1,i__2);
  1005. maxwrk = minwrk - *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
  1006. c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
  1007. /* Computing MAX */
  1008. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SORMQR",
  1009. " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  1010. maxwrk = f2cmax(i__1,i__2);
  1011. if (ilvsl) {
  1012. /* Computing MAX */
  1013. i__1 = maxwrk, i__2 = minwrk - *n + *n * ilaenv_(&c__1, "SOR"
  1014. "GQR", " ", n, &c__1, n, &c_n1, (ftnlen)6, (ftnlen)1);
  1015. maxwrk = f2cmax(i__1,i__2);
  1016. }
  1017. lwrk = maxwrk;
  1018. if (ijob >= 1) {
  1019. /* Computing MAX */
  1020. i__1 = lwrk, i__2 = *n * *n / 2;
  1021. lwrk = f2cmax(i__1,i__2);
  1022. }
  1023. } else {
  1024. minwrk = 1;
  1025. maxwrk = 1;
  1026. lwrk = 1;
  1027. }
  1028. work[1] = (real) lwrk;
  1029. if (wantsn || *n == 0) {
  1030. liwmin = 1;
  1031. } else {
  1032. liwmin = *n + 6;
  1033. }
  1034. iwork[1] = liwmin;
  1035. if (*lwork < minwrk && ! lquery) {
  1036. *info = -22;
  1037. } else if (*liwork < liwmin && ! lquery) {
  1038. *info = -24;
  1039. }
  1040. }
  1041. if (*info != 0) {
  1042. i__1 = -(*info);
  1043. xerbla_("SGGESX", &i__1, (ftnlen)6);
  1044. return 0;
  1045. } else if (lquery) {
  1046. return 0;
  1047. }
  1048. /* Quick return if possible */
  1049. if (*n == 0) {
  1050. *sdim = 0;
  1051. return 0;
  1052. }
  1053. /* Get machine constants */
  1054. eps = slamch_("P");
  1055. safmin = slamch_("S");
  1056. safmax = 1.f / safmin;
  1057. slabad_(&safmin, &safmax);
  1058. smlnum = sqrt(safmin) / eps;
  1059. bignum = 1.f / smlnum;
  1060. /* Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
  1061. anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
  1062. ilascl = FALSE_;
  1063. if (anrm > 0.f && anrm < smlnum) {
  1064. anrmto = smlnum;
  1065. ilascl = TRUE_;
  1066. } else if (anrm > bignum) {
  1067. anrmto = bignum;
  1068. ilascl = TRUE_;
  1069. }
  1070. if (ilascl) {
  1071. slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
  1072. ierr);
  1073. }
  1074. /* Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
  1075. bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
  1076. ilbscl = FALSE_;
  1077. if (bnrm > 0.f && bnrm < smlnum) {
  1078. bnrmto = smlnum;
  1079. ilbscl = TRUE_;
  1080. } else if (bnrm > bignum) {
  1081. bnrmto = bignum;
  1082. ilbscl = TRUE_;
  1083. }
  1084. if (ilbscl) {
  1085. slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
  1086. ierr);
  1087. }
  1088. /* Permute the matrix to make it more nearly triangular */
  1089. /* (Workspace: need 6*N + 2*N for permutation parameters) */
  1090. ileft = 1;
  1091. iright = *n + 1;
  1092. iwrk = iright + *n;
  1093. sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
  1094. ileft], &work[iright], &work[iwrk], &ierr);
  1095. /* Reduce B to triangular form (QR decomposition of B) */
  1096. /* (Workspace: need N, prefer N*NB) */
  1097. irows = ihi + 1 - ilo;
  1098. icols = *n + 1 - ilo;
  1099. itau = iwrk;
  1100. iwrk = itau + irows;
  1101. i__1 = *lwork + 1 - iwrk;
  1102. sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
  1103. iwrk], &i__1, &ierr);
  1104. /* Apply the orthogonal transformation to matrix A */
  1105. /* (Workspace: need N, prefer N*NB) */
  1106. i__1 = *lwork + 1 - iwrk;
  1107. sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
  1108. work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
  1109. ierr);
  1110. /* Initialize VSL */
  1111. /* (Workspace: need N, prefer N*NB) */
  1112. if (ilvsl) {
  1113. slaset_("Full", n, n, &c_b42, &c_b43, &vsl[vsl_offset], ldvsl);
  1114. if (irows > 1) {
  1115. i__1 = irows - 1;
  1116. i__2 = irows - 1;
  1117. slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
  1118. ilo + 1 + ilo * vsl_dim1], ldvsl);
  1119. }
  1120. i__1 = *lwork + 1 - iwrk;
  1121. sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
  1122. work[itau], &work[iwrk], &i__1, &ierr);
  1123. }
  1124. /* Initialize VSR */
  1125. if (ilvsr) {
  1126. slaset_("Full", n, n, &c_b42, &c_b43, &vsr[vsr_offset], ldvsr);
  1127. }
  1128. /* Reduce to generalized Hessenberg form */
  1129. /* (Workspace: none needed) */
  1130. sgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
  1131. ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &ierr);
  1132. *sdim = 0;
  1133. /* Perform QZ algorithm, computing Schur vectors if desired */
  1134. /* (Workspace: need N) */
  1135. iwrk = itau;
  1136. i__1 = *lwork + 1 - iwrk;
  1137. shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
  1138. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
  1139. , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
  1140. if (ierr != 0) {
  1141. if (ierr > 0 && ierr <= *n) {
  1142. *info = ierr;
  1143. } else if (ierr > *n && ierr <= *n << 1) {
  1144. *info = ierr - *n;
  1145. } else {
  1146. *info = *n + 1;
  1147. }
  1148. goto L50;
  1149. }
  1150. /* Sort eigenvalues ALPHA/BETA and compute the reciprocal of */
  1151. /* condition number(s) */
  1152. /* (Workspace: If IJOB >= 1, need MAX( 8*(N+1), 2*SDIM*(N-SDIM) ) */
  1153. /* otherwise, need 8*(N+1) ) */
  1154. if (wantst) {
  1155. /* Undo scaling on eigenvalues before SELCTGing */
  1156. if (ilascl) {
  1157. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1],
  1158. n, &ierr);
  1159. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1],
  1160. n, &ierr);
  1161. }
  1162. if (ilbscl) {
  1163. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n,
  1164. &ierr);
  1165. }
  1166. /* Select eigenvalues */
  1167. i__1 = *n;
  1168. for (i__ = 1; i__ <= i__1; ++i__) {
  1169. bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1170. /* L10: */
  1171. }
  1172. /* Reorder eigenvalues, transform Generalized Schur vectors, and */
  1173. /* compute reciprocal condition numbers */
  1174. i__1 = *lwork - iwrk + 1;
  1175. stgsen_(&ijob, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
  1176. b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
  1177. vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pl, &pr,
  1178. dif, &work[iwrk], &i__1, &iwork[1], liwork, &ierr);
  1179. if (ijob >= 1) {
  1180. /* Computing MAX */
  1181. i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim);
  1182. maxwrk = f2cmax(i__1,i__2);
  1183. }
  1184. if (ierr == -22) {
  1185. /* not enough real workspace */
  1186. *info = -22;
  1187. } else {
  1188. if (ijob == 1 || ijob == 4) {
  1189. rconde[1] = pl;
  1190. rconde[2] = pr;
  1191. }
  1192. if (ijob == 2 || ijob == 4) {
  1193. rcondv[1] = dif[0];
  1194. rcondv[2] = dif[1];
  1195. }
  1196. if (ierr == 1) {
  1197. *info = *n + 3;
  1198. }
  1199. }
  1200. }
  1201. /* Apply permutation to VSL and VSR */
  1202. /* (Workspace: none needed) */
  1203. if (ilvsl) {
  1204. sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
  1205. vsl_offset], ldvsl, &ierr);
  1206. }
  1207. if (ilvsr) {
  1208. sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
  1209. vsr_offset], ldvsr, &ierr);
  1210. }
  1211. /* Check if unscaling would cause over/underflow, if so, rescale */
  1212. /* (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
  1213. /* B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
  1214. if (ilascl) {
  1215. i__1 = *n;
  1216. for (i__ = 1; i__ <= i__1; ++i__) {
  1217. if (alphai[i__] != 0.f) {
  1218. if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
  1219. i__] > anrm / anrmto) {
  1220. work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__],
  1221. abs(r__1));
  1222. beta[i__] *= work[1];
  1223. alphar[i__] *= work[1];
  1224. alphai[i__] *= work[1];
  1225. } else if (alphai[i__] / safmax > anrmto / anrm || safmin /
  1226. alphai[i__] > anrm / anrmto) {
  1227. work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
  1228. i__], abs(r__1));
  1229. beta[i__] *= work[1];
  1230. alphar[i__] *= work[1];
  1231. alphai[i__] *= work[1];
  1232. }
  1233. }
  1234. /* L20: */
  1235. }
  1236. }
  1237. if (ilbscl) {
  1238. i__1 = *n;
  1239. for (i__ = 1; i__ <= i__1; ++i__) {
  1240. if (alphai[i__] != 0.f) {
  1241. if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__]
  1242. > bnrm / bnrmto) {
  1243. work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
  1244. r__1));
  1245. beta[i__] *= work[1];
  1246. alphar[i__] *= work[1];
  1247. alphai[i__] *= work[1];
  1248. }
  1249. }
  1250. /* L25: */
  1251. }
  1252. }
  1253. /* Undo scaling */
  1254. if (ilascl) {
  1255. slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
  1256. ierr);
  1257. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
  1258. ierr);
  1259. slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
  1260. ierr);
  1261. }
  1262. if (ilbscl) {
  1263. slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
  1264. ierr);
  1265. slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
  1266. ierr);
  1267. }
  1268. if (wantst) {
  1269. /* Check if reordering is correct */
  1270. lastsl = TRUE_;
  1271. lst2sl = TRUE_;
  1272. *sdim = 0;
  1273. ip = 0;
  1274. i__1 = *n;
  1275. for (i__ = 1; i__ <= i__1; ++i__) {
  1276. cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
  1277. if (alphai[i__] == 0.f) {
  1278. if (cursl) {
  1279. ++(*sdim);
  1280. }
  1281. ip = 0;
  1282. if (cursl && ! lastsl) {
  1283. *info = *n + 2;
  1284. }
  1285. } else {
  1286. if (ip == 1) {
  1287. /* Last eigenvalue of conjugate pair */
  1288. cursl = cursl || lastsl;
  1289. lastsl = cursl;
  1290. if (cursl) {
  1291. *sdim += 2;
  1292. }
  1293. ip = -1;
  1294. if (cursl && ! lst2sl) {
  1295. *info = *n + 2;
  1296. }
  1297. } else {
  1298. /* First eigenvalue of conjugate pair */
  1299. ip = 1;
  1300. }
  1301. }
  1302. lst2sl = lastsl;
  1303. lastsl = cursl;
  1304. /* L40: */
  1305. }
  1306. }
  1307. L50:
  1308. work[1] = (real) maxwrk;
  1309. iwork[1] = liwmin;
  1310. return 0;
  1311. /* End of SGGESX */
  1312. } /* sggesx_ */