You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dorbdb.c 42 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b DORBDB */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download DORBDB + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorbdb.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorbdb.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorbdb.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE DORBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, */
  506. /* X21, LDX21, X22, LDX22, THETA, PHI, TAUP1, */
  507. /* TAUP2, TAUQ1, TAUQ2, WORK, LWORK, INFO ) */
  508. /* CHARACTER SIGNS, TRANS */
  509. /* INTEGER INFO, LDX11, LDX12, LDX21, LDX22, LWORK, M, P, */
  510. /* $ Q */
  511. /* DOUBLE PRECISION PHI( * ), THETA( * ) */
  512. /* DOUBLE PRECISION TAUP1( * ), TAUP2( * ), TAUQ1( * ), TAUQ2( * ), */
  513. /* $ WORK( * ), X11( LDX11, * ), X12( LDX12, * ), */
  514. /* $ X21( LDX21, * ), X22( LDX22, * ) */
  515. /* > \par Purpose: */
  516. /* ============= */
  517. /* > */
  518. /* > \verbatim */
  519. /* > */
  520. /* > DORBDB simultaneously bidiagonalizes the blocks of an M-by-M */
  521. /* > partitioned orthogonal matrix X: */
  522. /* > */
  523. /* > [ B11 | B12 0 0 ] */
  524. /* > [ X11 | X12 ] [ P1 | ] [ 0 | 0 -I 0 ] [ Q1 | ]**T */
  525. /* > X = [-----------] = [---------] [----------------] [---------] . */
  526. /* > [ X21 | X22 ] [ | P2 ] [ B21 | B22 0 0 ] [ | Q2 ] */
  527. /* > [ 0 | 0 0 I ] */
  528. /* > */
  529. /* > X11 is P-by-Q. Q must be no larger than P, M-P, or M-Q. (If this is */
  530. /* > not the case, then X must be transposed and/or permuted. This can be */
  531. /* > done in constant time using the TRANS and SIGNS options. See DORCSD */
  532. /* > for details.) */
  533. /* > */
  534. /* > The orthogonal matrices P1, P2, Q1, and Q2 are P-by-P, (M-P)-by- */
  535. /* > (M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. They are */
  536. /* > represented implicitly by Householder vectors. */
  537. /* > */
  538. /* > B11, B12, B21, and B22 are Q-by-Q bidiagonal matrices represented */
  539. /* > implicitly by angles THETA, PHI. */
  540. /* > \endverbatim */
  541. /* Arguments: */
  542. /* ========== */
  543. /* > \param[in] TRANS */
  544. /* > \verbatim */
  545. /* > TRANS is CHARACTER */
  546. /* > = 'T': X, U1, U2, V1T, and V2T are stored in row-major */
  547. /* > order; */
  548. /* > otherwise: X, U1, U2, V1T, and V2T are stored in column- */
  549. /* > major order. */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] SIGNS */
  553. /* > \verbatim */
  554. /* > SIGNS is CHARACTER */
  555. /* > = 'O': The lower-left block is made nonpositive (the */
  556. /* > "other" convention); */
  557. /* > otherwise: The upper-right block is made nonpositive (the */
  558. /* > "default" convention). */
  559. /* > \endverbatim */
  560. /* > */
  561. /* > \param[in] M */
  562. /* > \verbatim */
  563. /* > M is INTEGER */
  564. /* > The number of rows and columns in X. */
  565. /* > \endverbatim */
  566. /* > */
  567. /* > \param[in] P */
  568. /* > \verbatim */
  569. /* > P is INTEGER */
  570. /* > The number of rows in X11 and X12. 0 <= P <= M. */
  571. /* > \endverbatim */
  572. /* > */
  573. /* > \param[in] Q */
  574. /* > \verbatim */
  575. /* > Q is INTEGER */
  576. /* > The number of columns in X11 and X21. 0 <= Q <= */
  577. /* > MIN(P,M-P,M-Q). */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in,out] X11 */
  581. /* > \verbatim */
  582. /* > X11 is DOUBLE PRECISION array, dimension (LDX11,Q) */
  583. /* > On entry, the top-left block of the orthogonal matrix to be */
  584. /* > reduced. On exit, the form depends on TRANS: */
  585. /* > If TRANS = 'N', then */
  586. /* > the columns of tril(X11) specify reflectors for P1, */
  587. /* > the rows of triu(X11,1) specify reflectors for Q1; */
  588. /* > else TRANS = 'T', and */
  589. /* > the rows of triu(X11) specify reflectors for P1, */
  590. /* > the columns of tril(X11,-1) specify reflectors for Q1. */
  591. /* > \endverbatim */
  592. /* > */
  593. /* > \param[in] LDX11 */
  594. /* > \verbatim */
  595. /* > LDX11 is INTEGER */
  596. /* > The leading dimension of X11. If TRANS = 'N', then LDX11 >= */
  597. /* > P; else LDX11 >= Q. */
  598. /* > \endverbatim */
  599. /* > */
  600. /* > \param[in,out] X12 */
  601. /* > \verbatim */
  602. /* > X12 is DOUBLE PRECISION array, dimension (LDX12,M-Q) */
  603. /* > On entry, the top-right block of the orthogonal matrix to */
  604. /* > be reduced. On exit, the form depends on TRANS: */
  605. /* > If TRANS = 'N', then */
  606. /* > the rows of triu(X12) specify the first P reflectors for */
  607. /* > Q2; */
  608. /* > else TRANS = 'T', and */
  609. /* > the columns of tril(X12) specify the first P reflectors */
  610. /* > for Q2. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[in] LDX12 */
  614. /* > \verbatim */
  615. /* > LDX12 is INTEGER */
  616. /* > The leading dimension of X12. If TRANS = 'N', then LDX12 >= */
  617. /* > P; else LDX11 >= M-Q. */
  618. /* > \endverbatim */
  619. /* > */
  620. /* > \param[in,out] X21 */
  621. /* > \verbatim */
  622. /* > X21 is DOUBLE PRECISION array, dimension (LDX21,Q) */
  623. /* > On entry, the bottom-left block of the orthogonal matrix to */
  624. /* > be reduced. On exit, the form depends on TRANS: */
  625. /* > If TRANS = 'N', then */
  626. /* > the columns of tril(X21) specify reflectors for P2; */
  627. /* > else TRANS = 'T', and */
  628. /* > the rows of triu(X21) specify reflectors for P2. */
  629. /* > \endverbatim */
  630. /* > */
  631. /* > \param[in] LDX21 */
  632. /* > \verbatim */
  633. /* > LDX21 is INTEGER */
  634. /* > The leading dimension of X21. If TRANS = 'N', then LDX21 >= */
  635. /* > M-P; else LDX21 >= Q. */
  636. /* > \endverbatim */
  637. /* > */
  638. /* > \param[in,out] X22 */
  639. /* > \verbatim */
  640. /* > X22 is DOUBLE PRECISION array, dimension (LDX22,M-Q) */
  641. /* > On entry, the bottom-right block of the orthogonal matrix to */
  642. /* > be reduced. On exit, the form depends on TRANS: */
  643. /* > If TRANS = 'N', then */
  644. /* > the rows of triu(X22(Q+1:M-P,P+1:M-Q)) specify the last */
  645. /* > M-P-Q reflectors for Q2, */
  646. /* > else TRANS = 'T', and */
  647. /* > the columns of tril(X22(P+1:M-Q,Q+1:M-P)) specify the last */
  648. /* > M-P-Q reflectors for P2. */
  649. /* > \endverbatim */
  650. /* > */
  651. /* > \param[in] LDX22 */
  652. /* > \verbatim */
  653. /* > LDX22 is INTEGER */
  654. /* > The leading dimension of X22. If TRANS = 'N', then LDX22 >= */
  655. /* > M-P; else LDX22 >= M-Q. */
  656. /* > \endverbatim */
  657. /* > */
  658. /* > \param[out] THETA */
  659. /* > \verbatim */
  660. /* > THETA is DOUBLE PRECISION array, dimension (Q) */
  661. /* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
  662. /* > be computed from the angles THETA and PHI. See Further */
  663. /* > Details. */
  664. /* > \endverbatim */
  665. /* > */
  666. /* > \param[out] PHI */
  667. /* > \verbatim */
  668. /* > PHI is DOUBLE PRECISION array, dimension (Q-1) */
  669. /* > The entries of the bidiagonal blocks B11, B12, B21, B22 can */
  670. /* > be computed from the angles THETA and PHI. See Further */
  671. /* > Details. */
  672. /* > \endverbatim */
  673. /* > */
  674. /* > \param[out] TAUP1 */
  675. /* > \verbatim */
  676. /* > TAUP1 is DOUBLE PRECISION array, dimension (P) */
  677. /* > The scalar factors of the elementary reflectors that define */
  678. /* > P1. */
  679. /* > \endverbatim */
  680. /* > */
  681. /* > \param[out] TAUP2 */
  682. /* > \verbatim */
  683. /* > TAUP2 is DOUBLE PRECISION array, dimension (M-P) */
  684. /* > The scalar factors of the elementary reflectors that define */
  685. /* > P2. */
  686. /* > \endverbatim */
  687. /* > */
  688. /* > \param[out] TAUQ1 */
  689. /* > \verbatim */
  690. /* > TAUQ1 is DOUBLE PRECISION array, dimension (Q) */
  691. /* > The scalar factors of the elementary reflectors that define */
  692. /* > Q1. */
  693. /* > \endverbatim */
  694. /* > */
  695. /* > \param[out] TAUQ2 */
  696. /* > \verbatim */
  697. /* > TAUQ2 is DOUBLE PRECISION array, dimension (M-Q) */
  698. /* > The scalar factors of the elementary reflectors that define */
  699. /* > Q2. */
  700. /* > \endverbatim */
  701. /* > */
  702. /* > \param[out] WORK */
  703. /* > \verbatim */
  704. /* > WORK is DOUBLE PRECISION array, dimension (LWORK) */
  705. /* > \endverbatim */
  706. /* > */
  707. /* > \param[in] LWORK */
  708. /* > \verbatim */
  709. /* > LWORK is INTEGER */
  710. /* > The dimension of the array WORK. LWORK >= M-Q. */
  711. /* > */
  712. /* > If LWORK = -1, then a workspace query is assumed; the routine */
  713. /* > only calculates the optimal size of the WORK array, returns */
  714. /* > this value as the first entry of the WORK array, and no error */
  715. /* > message related to LWORK is issued by XERBLA. */
  716. /* > \endverbatim */
  717. /* > */
  718. /* > \param[out] INFO */
  719. /* > \verbatim */
  720. /* > INFO is INTEGER */
  721. /* > = 0: successful exit. */
  722. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  723. /* > \endverbatim */
  724. /* Authors: */
  725. /* ======== */
  726. /* > \author Univ. of Tennessee */
  727. /* > \author Univ. of California Berkeley */
  728. /* > \author Univ. of Colorado Denver */
  729. /* > \author NAG Ltd. */
  730. /* > \date December 2016 */
  731. /* > \ingroup doubleOTHERcomputational */
  732. /* > \par Further Details: */
  733. /* ===================== */
  734. /* > */
  735. /* > \verbatim */
  736. /* > */
  737. /* > The bidiagonal blocks B11, B12, B21, and B22 are represented */
  738. /* > implicitly by angles THETA(1), ..., THETA(Q) and PHI(1), ..., */
  739. /* > PHI(Q-1). B11 and B21 are upper bidiagonal, while B21 and B22 are */
  740. /* > lower bidiagonal. Every entry in each bidiagonal band is a product */
  741. /* > of a sine or cosine of a THETA with a sine or cosine of a PHI. See */
  742. /* > [1] or DORCSD for details. */
  743. /* > */
  744. /* > P1, P2, Q1, and Q2 are represented as products of elementary */
  745. /* > reflectors. See DORCSD for details on generating P1, P2, Q1, and Q2 */
  746. /* > using DORGQR and DORGLQ. */
  747. /* > \endverbatim */
  748. /* > \par References: */
  749. /* ================ */
  750. /* > */
  751. /* > [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
  752. /* > Algorithms, 50(1):33-65, 2009. */
  753. /* > */
  754. /* ===================================================================== */
  755. /* Subroutine */ int dorbdb_(char *trans, char *signs, integer *m, integer *p,
  756. integer *q, doublereal *x11, integer *ldx11, doublereal *x12,
  757. integer *ldx12, doublereal *x21, integer *ldx21, doublereal *x22,
  758. integer *ldx22, doublereal *theta, doublereal *phi, doublereal *taup1,
  759. doublereal *taup2, doublereal *tauq1, doublereal *tauq2, doublereal *
  760. work, integer *lwork, integer *info)
  761. {
  762. /* System generated locals */
  763. integer x11_dim1, x11_offset, x12_dim1, x12_offset, x21_dim1, x21_offset,
  764. x22_dim1, x22_offset, i__1, i__2, i__3;
  765. doublereal d__1;
  766. /* Local variables */
  767. logical colmajor;
  768. integer lworkmin;
  769. extern doublereal dnrm2_(integer *, doublereal *, integer *);
  770. integer lworkopt, i__;
  771. extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
  772. integer *), dlarf_(char *, integer *, integer *, doublereal *,
  773. integer *, doublereal *, doublereal *, integer *, doublereal *);
  774. extern logical lsame_(char *, char *);
  775. extern /* Subroutine */ int daxpy_(integer *, doublereal *, doublereal *,
  776. integer *, doublereal *, integer *);
  777. doublereal z1, z2, z3, z4;
  778. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  779. logical lquery;
  780. extern /* Subroutine */ int dlarfgp_(integer *, doublereal *, doublereal *
  781. , integer *, doublereal *);
  782. /* -- LAPACK computational routine (version 3.7.0) -- */
  783. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  784. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  785. /* December 2016 */
  786. /* ==================================================================== */
  787. /* Test input arguments */
  788. /* Parameter adjustments */
  789. x11_dim1 = *ldx11;
  790. x11_offset = 1 + x11_dim1 * 1;
  791. x11 -= x11_offset;
  792. x12_dim1 = *ldx12;
  793. x12_offset = 1 + x12_dim1 * 1;
  794. x12 -= x12_offset;
  795. x21_dim1 = *ldx21;
  796. x21_offset = 1 + x21_dim1 * 1;
  797. x21 -= x21_offset;
  798. x22_dim1 = *ldx22;
  799. x22_offset = 1 + x22_dim1 * 1;
  800. x22 -= x22_offset;
  801. --theta;
  802. --phi;
  803. --taup1;
  804. --taup2;
  805. --tauq1;
  806. --tauq2;
  807. --work;
  808. /* Function Body */
  809. *info = 0;
  810. colmajor = ! lsame_(trans, "T");
  811. if (! lsame_(signs, "O")) {
  812. z1 = 1.;
  813. z2 = 1.;
  814. z3 = 1.;
  815. z4 = 1.;
  816. } else {
  817. z1 = 1.;
  818. z2 = -1.;
  819. z3 = 1.;
  820. z4 = -1.;
  821. }
  822. lquery = *lwork == -1;
  823. if (*m < 0) {
  824. *info = -3;
  825. } else if (*p < 0 || *p > *m) {
  826. *info = -4;
  827. } else if (*q < 0 || *q > *p || *q > *m - *p || *q > *m - *q) {
  828. *info = -5;
  829. } else if (colmajor && *ldx11 < f2cmax(1,*p)) {
  830. *info = -7;
  831. } else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
  832. *info = -7;
  833. } else if (colmajor && *ldx12 < f2cmax(1,*p)) {
  834. *info = -9;
  835. } else /* if(complicated condition) */ {
  836. /* Computing MAX */
  837. i__1 = 1, i__2 = *m - *q;
  838. if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
  839. *info = -9;
  840. } else /* if(complicated condition) */ {
  841. /* Computing MAX */
  842. i__1 = 1, i__2 = *m - *p;
  843. if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
  844. *info = -11;
  845. } else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
  846. *info = -11;
  847. } else /* if(complicated condition) */ {
  848. /* Computing MAX */
  849. i__1 = 1, i__2 = *m - *p;
  850. if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
  851. *info = -13;
  852. } else /* if(complicated condition) */ {
  853. /* Computing MAX */
  854. i__1 = 1, i__2 = *m - *q;
  855. if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
  856. *info = -13;
  857. }
  858. }
  859. }
  860. }
  861. }
  862. /* Compute workspace */
  863. if (*info == 0) {
  864. lworkopt = *m - *q;
  865. lworkmin = *m - *q;
  866. work[1] = (doublereal) lworkopt;
  867. if (*lwork < lworkmin && ! lquery) {
  868. *info = -21;
  869. }
  870. }
  871. if (*info != 0) {
  872. i__1 = -(*info);
  873. xerbla_("xORBDB", &i__1, (ftnlen)6);
  874. return 0;
  875. } else if (lquery) {
  876. return 0;
  877. }
  878. /* Handle column-major and row-major separately */
  879. if (colmajor) {
  880. /* Reduce columns 1, ..., Q of X11, X12, X21, and X22 */
  881. i__1 = *q;
  882. for (i__ = 1; i__ <= i__1; ++i__) {
  883. if (i__ == 1) {
  884. i__2 = *p - i__ + 1;
  885. dscal_(&i__2, &z1, &x11[i__ + i__ * x11_dim1], &c__1);
  886. } else {
  887. i__2 = *p - i__ + 1;
  888. d__1 = z1 * cos(phi[i__ - 1]);
  889. dscal_(&i__2, &d__1, &x11[i__ + i__ * x11_dim1], &c__1);
  890. i__2 = *p - i__ + 1;
  891. d__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
  892. daxpy_(&i__2, &d__1, &x12[i__ + (i__ - 1) * x12_dim1], &c__1,
  893. &x11[i__ + i__ * x11_dim1], &c__1);
  894. }
  895. if (i__ == 1) {
  896. i__2 = *m - *p - i__ + 1;
  897. dscal_(&i__2, &z2, &x21[i__ + i__ * x21_dim1], &c__1);
  898. } else {
  899. i__2 = *m - *p - i__ + 1;
  900. d__1 = z2 * cos(phi[i__ - 1]);
  901. dscal_(&i__2, &d__1, &x21[i__ + i__ * x21_dim1], &c__1);
  902. i__2 = *m - *p - i__ + 1;
  903. d__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
  904. daxpy_(&i__2, &d__1, &x22[i__ + (i__ - 1) * x22_dim1], &c__1,
  905. &x21[i__ + i__ * x21_dim1], &c__1);
  906. }
  907. i__2 = *m - *p - i__ + 1;
  908. i__3 = *p - i__ + 1;
  909. theta[i__] = atan2(dnrm2_(&i__2, &x21[i__ + i__ * x21_dim1], &
  910. c__1), dnrm2_(&i__3, &x11[i__ + i__ * x11_dim1], &c__1));
  911. if (*p > i__) {
  912. i__2 = *p - i__ + 1;
  913. dlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + 1 +
  914. i__ * x11_dim1], &c__1, &taup1[i__]);
  915. } else if (*p == i__) {
  916. i__2 = *p - i__ + 1;
  917. dlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + i__ *
  918. x11_dim1], &c__1, &taup1[i__]);
  919. }
  920. x11[i__ + i__ * x11_dim1] = 1.;
  921. if (*m - *p > i__) {
  922. i__2 = *m - *p - i__ + 1;
  923. dlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + 1 +
  924. i__ * x21_dim1], &c__1, &taup2[i__]);
  925. } else if (*m - *p == i__) {
  926. i__2 = *m - *p - i__ + 1;
  927. dlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
  928. x21_dim1], &c__1, &taup2[i__]);
  929. }
  930. x21[i__ + i__ * x21_dim1] = 1.;
  931. if (*q > i__) {
  932. i__2 = *p - i__ + 1;
  933. i__3 = *q - i__;
  934. dlarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
  935. taup1[i__], &x11[i__ + (i__ + 1) * x11_dim1], ldx11, &
  936. work[1]);
  937. }
  938. if (*m - *q + 1 > i__) {
  939. i__2 = *p - i__ + 1;
  940. i__3 = *m - *q - i__ + 1;
  941. dlarf_("L", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], &c__1, &
  942. taup1[i__], &x12[i__ + i__ * x12_dim1], ldx12, &work[
  943. 1]);
  944. }
  945. if (*q > i__) {
  946. i__2 = *m - *p - i__ + 1;
  947. i__3 = *q - i__;
  948. dlarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
  949. taup2[i__], &x21[i__ + (i__ + 1) * x21_dim1], ldx21, &
  950. work[1]);
  951. }
  952. if (*m - *q + 1 > i__) {
  953. i__2 = *m - *p - i__ + 1;
  954. i__3 = *m - *q - i__ + 1;
  955. dlarf_("L", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], &c__1, &
  956. taup2[i__], &x22[i__ + i__ * x22_dim1], ldx22, &work[
  957. 1]);
  958. }
  959. if (i__ < *q) {
  960. i__2 = *q - i__;
  961. d__1 = -z1 * z3 * sin(theta[i__]);
  962. dscal_(&i__2, &d__1, &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
  963. i__2 = *q - i__;
  964. d__1 = z2 * z3 * cos(theta[i__]);
  965. daxpy_(&i__2, &d__1, &x21[i__ + (i__ + 1) * x21_dim1], ldx21,
  966. &x11[i__ + (i__ + 1) * x11_dim1], ldx11);
  967. }
  968. i__2 = *m - *q - i__ + 1;
  969. d__1 = -z1 * z4 * sin(theta[i__]);
  970. dscal_(&i__2, &d__1, &x12[i__ + i__ * x12_dim1], ldx12);
  971. i__2 = *m - *q - i__ + 1;
  972. d__1 = z2 * z4 * cos(theta[i__]);
  973. daxpy_(&i__2, &d__1, &x22[i__ + i__ * x22_dim1], ldx22, &x12[i__
  974. + i__ * x12_dim1], ldx12);
  975. if (i__ < *q) {
  976. i__2 = *q - i__;
  977. i__3 = *m - *q - i__ + 1;
  978. phi[i__] = atan2(dnrm2_(&i__2, &x11[i__ + (i__ + 1) *
  979. x11_dim1], ldx11), dnrm2_(&i__3, &x12[i__ + i__ *
  980. x12_dim1], ldx12));
  981. }
  982. if (i__ < *q) {
  983. if (*q - i__ == 1) {
  984. i__2 = *q - i__;
  985. dlarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
  986. i__ + (i__ + 1) * x11_dim1], ldx11, &tauq1[i__]);
  987. } else {
  988. i__2 = *q - i__;
  989. dlarfgp_(&i__2, &x11[i__ + (i__ + 1) * x11_dim1], &x11[
  990. i__ + (i__ + 2) * x11_dim1], ldx11, &tauq1[i__]);
  991. }
  992. x11[i__ + (i__ + 1) * x11_dim1] = 1.;
  993. }
  994. if (*q + i__ - 1 < *m) {
  995. if (*m - *q == i__) {
  996. i__2 = *m - *q - i__ + 1;
  997. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ +
  998. i__ * x12_dim1], ldx12, &tauq2[i__]);
  999. } else {
  1000. i__2 = *m - *q - i__ + 1;
  1001. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (
  1002. i__ + 1) * x12_dim1], ldx12, &tauq2[i__]);
  1003. }
  1004. }
  1005. x12[i__ + i__ * x12_dim1] = 1.;
  1006. if (i__ < *q) {
  1007. i__2 = *p - i__;
  1008. i__3 = *q - i__;
  1009. dlarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
  1010. ldx11, &tauq1[i__], &x11[i__ + 1 + (i__ + 1) *
  1011. x11_dim1], ldx11, &work[1]);
  1012. i__2 = *m - *p - i__;
  1013. i__3 = *q - i__;
  1014. dlarf_("R", &i__2, &i__3, &x11[i__ + (i__ + 1) * x11_dim1],
  1015. ldx11, &tauq1[i__], &x21[i__ + 1 + (i__ + 1) *
  1016. x21_dim1], ldx21, &work[1]);
  1017. }
  1018. if (*p > i__) {
  1019. i__2 = *p - i__;
  1020. i__3 = *m - *q - i__ + 1;
  1021. dlarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
  1022. tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
  1023. work[1]);
  1024. }
  1025. if (*m - *p > i__) {
  1026. i__2 = *m - *p - i__;
  1027. i__3 = *m - *q - i__ + 1;
  1028. dlarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
  1029. tauq2[i__], &x22[i__ + 1 + i__ * x22_dim1], ldx22, &
  1030. work[1]);
  1031. }
  1032. }
  1033. /* Reduce columns Q + 1, ..., P of X12, X22 */
  1034. i__1 = *p;
  1035. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1036. i__2 = *m - *q - i__ + 1;
  1037. d__1 = -z1 * z4;
  1038. dscal_(&i__2, &d__1, &x12[i__ + i__ * x12_dim1], ldx12);
  1039. if (i__ >= *m - *q) {
  1040. i__2 = *m - *q - i__ + 1;
  1041. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + i__ *
  1042. x12_dim1], ldx12, &tauq2[i__]);
  1043. } else {
  1044. i__2 = *m - *q - i__ + 1;
  1045. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + (i__ +
  1046. 1) * x12_dim1], ldx12, &tauq2[i__]);
  1047. }
  1048. x12[i__ + i__ * x12_dim1] = 1.;
  1049. if (*p > i__) {
  1050. i__2 = *p - i__;
  1051. i__3 = *m - *q - i__ + 1;
  1052. dlarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
  1053. tauq2[i__], &x12[i__ + 1 + i__ * x12_dim1], ldx12, &
  1054. work[1]);
  1055. }
  1056. if (*m - *p - *q >= 1) {
  1057. i__2 = *m - *p - *q;
  1058. i__3 = *m - *q - i__ + 1;
  1059. dlarf_("R", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], ldx12, &
  1060. tauq2[i__], &x22[*q + 1 + i__ * x22_dim1], ldx22, &
  1061. work[1]);
  1062. }
  1063. }
  1064. /* Reduce columns P + 1, ..., M - Q of X12, X22 */
  1065. i__1 = *m - *p - *q;
  1066. for (i__ = 1; i__ <= i__1; ++i__) {
  1067. i__2 = *m - *p - *q - i__ + 1;
  1068. d__1 = z2 * z4;
  1069. dscal_(&i__2, &d__1, &x22[*q + i__ + (*p + i__) * x22_dim1],
  1070. ldx22);
  1071. if (i__ == *m - *p - *q) {
  1072. i__2 = *m - *p - *q - i__ + 1;
  1073. dlarfgp_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], &x22[*
  1074. q + i__ + (*p + i__) * x22_dim1], ldx22, &tauq2[*p +
  1075. i__]);
  1076. } else {
  1077. i__2 = *m - *p - *q - i__ + 1;
  1078. dlarfgp_(&i__2, &x22[*q + i__ + (*p + i__) * x22_dim1], &x22[*
  1079. q + i__ + (*p + i__ + 1) * x22_dim1], ldx22, &tauq2[*
  1080. p + i__]);
  1081. }
  1082. x22[*q + i__ + (*p + i__) * x22_dim1] = 1.;
  1083. if (i__ < *m - *p - *q) {
  1084. i__2 = *m - *p - *q - i__;
  1085. i__3 = *m - *p - *q - i__ + 1;
  1086. dlarf_("R", &i__2, &i__3, &x22[*q + i__ + (*p + i__) *
  1087. x22_dim1], ldx22, &tauq2[*p + i__], &x22[*q + i__ + 1
  1088. + (*p + i__) * x22_dim1], ldx22, &work[1]);
  1089. }
  1090. }
  1091. } else {
  1092. /* Reduce columns 1, ..., Q of X11, X12, X21, X22 */
  1093. i__1 = *q;
  1094. for (i__ = 1; i__ <= i__1; ++i__) {
  1095. if (i__ == 1) {
  1096. i__2 = *p - i__ + 1;
  1097. dscal_(&i__2, &z1, &x11[i__ + i__ * x11_dim1], ldx11);
  1098. } else {
  1099. i__2 = *p - i__ + 1;
  1100. d__1 = z1 * cos(phi[i__ - 1]);
  1101. dscal_(&i__2, &d__1, &x11[i__ + i__ * x11_dim1], ldx11);
  1102. i__2 = *p - i__ + 1;
  1103. d__1 = -z1 * z3 * z4 * sin(phi[i__ - 1]);
  1104. daxpy_(&i__2, &d__1, &x12[i__ - 1 + i__ * x12_dim1], ldx12, &
  1105. x11[i__ + i__ * x11_dim1], ldx11);
  1106. }
  1107. if (i__ == 1) {
  1108. i__2 = *m - *p - i__ + 1;
  1109. dscal_(&i__2, &z2, &x21[i__ + i__ * x21_dim1], ldx21);
  1110. } else {
  1111. i__2 = *m - *p - i__ + 1;
  1112. d__1 = z2 * cos(phi[i__ - 1]);
  1113. dscal_(&i__2, &d__1, &x21[i__ + i__ * x21_dim1], ldx21);
  1114. i__2 = *m - *p - i__ + 1;
  1115. d__1 = -z2 * z3 * z4 * sin(phi[i__ - 1]);
  1116. daxpy_(&i__2, &d__1, &x22[i__ - 1 + i__ * x22_dim1], ldx22, &
  1117. x21[i__ + i__ * x21_dim1], ldx21);
  1118. }
  1119. i__2 = *m - *p - i__ + 1;
  1120. i__3 = *p - i__ + 1;
  1121. theta[i__] = atan2(dnrm2_(&i__2, &x21[i__ + i__ * x21_dim1],
  1122. ldx21), dnrm2_(&i__3, &x11[i__ + i__ * x11_dim1], ldx11));
  1123. i__2 = *p - i__ + 1;
  1124. dlarfgp_(&i__2, &x11[i__ + i__ * x11_dim1], &x11[i__ + (i__ + 1) *
  1125. x11_dim1], ldx11, &taup1[i__]);
  1126. x11[i__ + i__ * x11_dim1] = 1.;
  1127. if (i__ == *m - *p) {
  1128. i__2 = *m - *p - i__ + 1;
  1129. dlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + i__ *
  1130. x21_dim1], ldx21, &taup2[i__]);
  1131. } else {
  1132. i__2 = *m - *p - i__ + 1;
  1133. dlarfgp_(&i__2, &x21[i__ + i__ * x21_dim1], &x21[i__ + (i__ +
  1134. 1) * x21_dim1], ldx21, &taup2[i__]);
  1135. }
  1136. x21[i__ + i__ * x21_dim1] = 1.;
  1137. if (*q > i__) {
  1138. i__2 = *q - i__;
  1139. i__3 = *p - i__ + 1;
  1140. dlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
  1141. taup1[i__], &x11[i__ + 1 + i__ * x11_dim1], ldx11, &
  1142. work[1]);
  1143. }
  1144. if (*m - *q + 1 > i__) {
  1145. i__2 = *m - *q - i__ + 1;
  1146. i__3 = *p - i__ + 1;
  1147. dlarf_("R", &i__2, &i__3, &x11[i__ + i__ * x11_dim1], ldx11, &
  1148. taup1[i__], &x12[i__ + i__ * x12_dim1], ldx12, &work[
  1149. 1]);
  1150. }
  1151. if (*q > i__) {
  1152. i__2 = *q - i__;
  1153. i__3 = *m - *p - i__ + 1;
  1154. dlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
  1155. taup2[i__], &x21[i__ + 1 + i__ * x21_dim1], ldx21, &
  1156. work[1]);
  1157. }
  1158. if (*m - *q + 1 > i__) {
  1159. i__2 = *m - *q - i__ + 1;
  1160. i__3 = *m - *p - i__ + 1;
  1161. dlarf_("R", &i__2, &i__3, &x21[i__ + i__ * x21_dim1], ldx21, &
  1162. taup2[i__], &x22[i__ + i__ * x22_dim1], ldx22, &work[
  1163. 1]);
  1164. }
  1165. if (i__ < *q) {
  1166. i__2 = *q - i__;
  1167. d__1 = -z1 * z3 * sin(theta[i__]);
  1168. dscal_(&i__2, &d__1, &x11[i__ + 1 + i__ * x11_dim1], &c__1);
  1169. i__2 = *q - i__;
  1170. d__1 = z2 * z3 * cos(theta[i__]);
  1171. daxpy_(&i__2, &d__1, &x21[i__ + 1 + i__ * x21_dim1], &c__1, &
  1172. x11[i__ + 1 + i__ * x11_dim1], &c__1);
  1173. }
  1174. i__2 = *m - *q - i__ + 1;
  1175. d__1 = -z1 * z4 * sin(theta[i__]);
  1176. dscal_(&i__2, &d__1, &x12[i__ + i__ * x12_dim1], &c__1);
  1177. i__2 = *m - *q - i__ + 1;
  1178. d__1 = z2 * z4 * cos(theta[i__]);
  1179. daxpy_(&i__2, &d__1, &x22[i__ + i__ * x22_dim1], &c__1, &x12[i__
  1180. + i__ * x12_dim1], &c__1);
  1181. if (i__ < *q) {
  1182. i__2 = *q - i__;
  1183. i__3 = *m - *q - i__ + 1;
  1184. phi[i__] = atan2(dnrm2_(&i__2, &x11[i__ + 1 + i__ * x11_dim1],
  1185. &c__1), dnrm2_(&i__3, &x12[i__ + i__ * x12_dim1], &
  1186. c__1));
  1187. }
  1188. if (i__ < *q) {
  1189. if (*q - i__ == 1) {
  1190. i__2 = *q - i__;
  1191. dlarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__
  1192. + 1 + i__ * x11_dim1], &c__1, &tauq1[i__]);
  1193. } else {
  1194. i__2 = *q - i__;
  1195. dlarfgp_(&i__2, &x11[i__ + 1 + i__ * x11_dim1], &x11[i__
  1196. + 2 + i__ * x11_dim1], &c__1, &tauq1[i__]);
  1197. }
  1198. x11[i__ + 1 + i__ * x11_dim1] = 1.;
  1199. }
  1200. if (*m - *q > i__) {
  1201. i__2 = *m - *q - i__ + 1;
  1202. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 +
  1203. i__ * x12_dim1], &c__1, &tauq2[i__]);
  1204. } else {
  1205. i__2 = *m - *q - i__ + 1;
  1206. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + i__ *
  1207. x12_dim1], &c__1, &tauq2[i__]);
  1208. }
  1209. x12[i__ + i__ * x12_dim1] = 1.;
  1210. if (i__ < *q) {
  1211. i__2 = *q - i__;
  1212. i__3 = *p - i__;
  1213. dlarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
  1214. c__1, &tauq1[i__], &x11[i__ + 1 + (i__ + 1) *
  1215. x11_dim1], ldx11, &work[1]);
  1216. i__2 = *q - i__;
  1217. i__3 = *m - *p - i__;
  1218. dlarf_("L", &i__2, &i__3, &x11[i__ + 1 + i__ * x11_dim1], &
  1219. c__1, &tauq1[i__], &x21[i__ + 1 + (i__ + 1) *
  1220. x21_dim1], ldx21, &work[1]);
  1221. }
  1222. i__2 = *m - *q - i__ + 1;
  1223. i__3 = *p - i__;
  1224. dlarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
  1225. tauq2[i__], &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &
  1226. work[1]);
  1227. if (*m - *p - i__ > 0) {
  1228. i__2 = *m - *q - i__ + 1;
  1229. i__3 = *m - *p - i__;
  1230. dlarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
  1231. tauq2[i__], &x22[i__ + (i__ + 1) * x22_dim1], ldx22, &
  1232. work[1]);
  1233. }
  1234. }
  1235. /* Reduce columns Q + 1, ..., P of X12, X22 */
  1236. i__1 = *p;
  1237. for (i__ = *q + 1; i__ <= i__1; ++i__) {
  1238. i__2 = *m - *q - i__ + 1;
  1239. d__1 = -z1 * z4;
  1240. dscal_(&i__2, &d__1, &x12[i__ + i__ * x12_dim1], &c__1);
  1241. i__2 = *m - *q - i__ + 1;
  1242. dlarfgp_(&i__2, &x12[i__ + i__ * x12_dim1], &x12[i__ + 1 + i__ *
  1243. x12_dim1], &c__1, &tauq2[i__]);
  1244. x12[i__ + i__ * x12_dim1] = 1.;
  1245. if (*p > i__) {
  1246. i__2 = *m - *q - i__ + 1;
  1247. i__3 = *p - i__;
  1248. dlarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
  1249. tauq2[i__], &x12[i__ + (i__ + 1) * x12_dim1], ldx12, &
  1250. work[1]);
  1251. }
  1252. if (*m - *p - *q >= 1) {
  1253. i__2 = *m - *q - i__ + 1;
  1254. i__3 = *m - *p - *q;
  1255. dlarf_("L", &i__2, &i__3, &x12[i__ + i__ * x12_dim1], &c__1, &
  1256. tauq2[i__], &x22[i__ + (*q + 1) * x22_dim1], ldx22, &
  1257. work[1]);
  1258. }
  1259. }
  1260. /* Reduce columns P + 1, ..., M - Q of X12, X22 */
  1261. i__1 = *m - *p - *q;
  1262. for (i__ = 1; i__ <= i__1; ++i__) {
  1263. i__2 = *m - *p - *q - i__ + 1;
  1264. d__1 = z2 * z4;
  1265. dscal_(&i__2, &d__1, &x22[*p + i__ + (*q + i__) * x22_dim1], &
  1266. c__1);
  1267. if (*m - *p - *q == i__) {
  1268. i__2 = *m - *p - *q - i__ + 1;
  1269. dlarfgp_(&i__2, &x22[*p + i__ + (*q + i__) * x22_dim1], &x22[*
  1270. p + i__ + (*q + i__) * x22_dim1], &c__1, &tauq2[*p +
  1271. i__]);
  1272. } else {
  1273. i__2 = *m - *p - *q - i__ + 1;
  1274. dlarfgp_(&i__2, &x22[*p + i__ + (*q + i__) * x22_dim1], &x22[*
  1275. p + i__ + 1 + (*q + i__) * x22_dim1], &c__1, &tauq2[*
  1276. p + i__]);
  1277. i__2 = *m - *p - *q - i__ + 1;
  1278. i__3 = *m - *p - *q - i__;
  1279. dlarf_("L", &i__2, &i__3, &x22[*p + i__ + (*q + i__) *
  1280. x22_dim1], &c__1, &tauq2[*p + i__], &x22[*p + i__ + (*
  1281. q + i__ + 1) * x22_dim1], ldx22, &work[1]);
  1282. }
  1283. x22[*p + i__ + (*q + i__) * x22_dim1] = 1.;
  1284. }
  1285. }
  1286. return 0;
  1287. /* End of DORBDB */
  1288. } /* dorbdb_ */