You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaed0.c 29 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__9 = 9;
  487. static integer c__0 = 0;
  488. static integer c__2 = 2;
  489. static doublereal c_b23 = 1.;
  490. static doublereal c_b24 = 0.;
  491. static integer c__1 = 1;
  492. /* > \brief \b DLAED0 used by sstedc. Computes all eigenvalues and corresponding eigenvectors of an unreduced
  493. symmetric tridiagonal matrix using the divide and conquer method. */
  494. /* =========== DOCUMENTATION =========== */
  495. /* Online html documentation available at */
  496. /* http://www.netlib.org/lapack/explore-html/ */
  497. /* > \htmlonly */
  498. /* > Download DLAED0 + dependencies */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed0.
  500. f"> */
  501. /* > [TGZ]</a> */
  502. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed0.
  503. f"> */
  504. /* > [ZIP]</a> */
  505. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed0.
  506. f"> */
  507. /* > [TXT]</a> */
  508. /* > \endhtmlonly */
  509. /* Definition: */
  510. /* =========== */
  511. /* SUBROUTINE DLAED0( ICOMPQ, QSIZ, N, D, E, Q, LDQ, QSTORE, LDQS, */
  512. /* WORK, IWORK, INFO ) */
  513. /* INTEGER ICOMPQ, INFO, LDQ, LDQS, N, QSIZ */
  514. /* INTEGER IWORK( * ) */
  515. /* DOUBLE PRECISION D( * ), E( * ), Q( LDQ, * ), QSTORE( LDQS, * ), */
  516. /* $ WORK( * ) */
  517. /* > \par Purpose: */
  518. /* ============= */
  519. /* > */
  520. /* > \verbatim */
  521. /* > */
  522. /* > DLAED0 computes all eigenvalues and corresponding eigenvectors of a */
  523. /* > symmetric tridiagonal matrix using the divide and conquer method. */
  524. /* > \endverbatim */
  525. /* Arguments: */
  526. /* ========== */
  527. /* > \param[in] ICOMPQ */
  528. /* > \verbatim */
  529. /* > ICOMPQ is INTEGER */
  530. /* > = 0: Compute eigenvalues only. */
  531. /* > = 1: Compute eigenvectors of original dense symmetric matrix */
  532. /* > also. On entry, Q contains the orthogonal matrix used */
  533. /* > to reduce the original matrix to tridiagonal form. */
  534. /* > = 2: Compute eigenvalues and eigenvectors of tridiagonal */
  535. /* > matrix. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in] QSIZ */
  539. /* > \verbatim */
  540. /* > QSIZ is INTEGER */
  541. /* > The dimension of the orthogonal matrix used to reduce */
  542. /* > the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
  543. /* > \endverbatim */
  544. /* > */
  545. /* > \param[in] N */
  546. /* > \verbatim */
  547. /* > N is INTEGER */
  548. /* > The dimension of the symmetric tridiagonal matrix. N >= 0. */
  549. /* > \endverbatim */
  550. /* > */
  551. /* > \param[in,out] D */
  552. /* > \verbatim */
  553. /* > D is DOUBLE PRECISION array, dimension (N) */
  554. /* > On entry, the main diagonal of the tridiagonal matrix. */
  555. /* > On exit, its eigenvalues. */
  556. /* > \endverbatim */
  557. /* > */
  558. /* > \param[in] E */
  559. /* > \verbatim */
  560. /* > E is DOUBLE PRECISION array, dimension (N-1) */
  561. /* > The off-diagonal elements of the tridiagonal matrix. */
  562. /* > On exit, E has been destroyed. */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[in,out] Q */
  566. /* > \verbatim */
  567. /* > Q is DOUBLE PRECISION array, dimension (LDQ, N) */
  568. /* > On entry, Q must contain an N-by-N orthogonal matrix. */
  569. /* > If ICOMPQ = 0 Q is not referenced. */
  570. /* > If ICOMPQ = 1 On entry, Q is a subset of the columns of the */
  571. /* > orthogonal matrix used to reduce the full */
  572. /* > matrix to tridiagonal form corresponding to */
  573. /* > the subset of the full matrix which is being */
  574. /* > decomposed at this time. */
  575. /* > If ICOMPQ = 2 On entry, Q will be the identity matrix. */
  576. /* > On exit, Q contains the eigenvectors of the */
  577. /* > tridiagonal matrix. */
  578. /* > \endverbatim */
  579. /* > */
  580. /* > \param[in] LDQ */
  581. /* > \verbatim */
  582. /* > LDQ is INTEGER */
  583. /* > The leading dimension of the array Q. If eigenvectors are */
  584. /* > desired, then LDQ >= f2cmax(1,N). In any case, LDQ >= 1. */
  585. /* > \endverbatim */
  586. /* > */
  587. /* > \param[out] QSTORE */
  588. /* > \verbatim */
  589. /* > QSTORE is DOUBLE PRECISION array, dimension (LDQS, N) */
  590. /* > Referenced only when ICOMPQ = 1. Used to store parts of */
  591. /* > the eigenvector matrix when the updating matrix multiplies */
  592. /* > take place. */
  593. /* > \endverbatim */
  594. /* > */
  595. /* > \param[in] LDQS */
  596. /* > \verbatim */
  597. /* > LDQS is INTEGER */
  598. /* > The leading dimension of the array QSTORE. If ICOMPQ = 1, */
  599. /* > then LDQS >= f2cmax(1,N). In any case, LDQS >= 1. */
  600. /* > \endverbatim */
  601. /* > */
  602. /* > \param[out] WORK */
  603. /* > \verbatim */
  604. /* > WORK is DOUBLE PRECISION array, */
  605. /* > If ICOMPQ = 0 or 1, the dimension of WORK must be at least */
  606. /* > 1 + 3*N + 2*N*lg N + 3*N**2 */
  607. /* > ( lg( N ) = smallest integer k */
  608. /* > such that 2^k >= N ) */
  609. /* > If ICOMPQ = 2, the dimension of WORK must be at least */
  610. /* > 4*N + N**2. */
  611. /* > \endverbatim */
  612. /* > */
  613. /* > \param[out] IWORK */
  614. /* > \verbatim */
  615. /* > IWORK is INTEGER array, */
  616. /* > If ICOMPQ = 0 or 1, the dimension of IWORK must be at least */
  617. /* > 6 + 6*N + 5*N*lg N. */
  618. /* > ( lg( N ) = smallest integer k */
  619. /* > such that 2^k >= N ) */
  620. /* > If ICOMPQ = 2, the dimension of IWORK must be at least */
  621. /* > 3 + 5*N. */
  622. /* > \endverbatim */
  623. /* > */
  624. /* > \param[out] INFO */
  625. /* > \verbatim */
  626. /* > INFO is INTEGER */
  627. /* > = 0: successful exit. */
  628. /* > < 0: if INFO = -i, the i-th argument had an illegal value. */
  629. /* > > 0: The algorithm failed to compute an eigenvalue while */
  630. /* > working on the submatrix lying in rows and columns */
  631. /* > INFO/(N+1) through mod(INFO,N+1). */
  632. /* > \endverbatim */
  633. /* Authors: */
  634. /* ======== */
  635. /* > \author Univ. of Tennessee */
  636. /* > \author Univ. of California Berkeley */
  637. /* > \author Univ. of Colorado Denver */
  638. /* > \author NAG Ltd. */
  639. /* > \date December 2016 */
  640. /* > \ingroup auxOTHERcomputational */
  641. /* > \par Contributors: */
  642. /* ================== */
  643. /* > */
  644. /* > Jeff Rutter, Computer Science Division, University of California */
  645. /* > at Berkeley, USA */
  646. /* ===================================================================== */
  647. /* Subroutine */ int dlaed0_(integer *icompq, integer *qsiz, integer *n,
  648. doublereal *d__, doublereal *e, doublereal *q, integer *ldq,
  649. doublereal *qstore, integer *ldqs, doublereal *work, integer *iwork,
  650. integer *info)
  651. {
  652. /* System generated locals */
  653. integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
  654. doublereal d__1;
  655. /* Local variables */
  656. doublereal temp;
  657. integer curr, i__, j, k;
  658. extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
  659. integer *, doublereal *, doublereal *, integer *, doublereal *,
  660. integer *, doublereal *, doublereal *, integer *);
  661. integer iperm;
  662. extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
  663. doublereal *, integer *);
  664. integer indxq, iwrem;
  665. extern /* Subroutine */ int dlaed1_(integer *, doublereal *, doublereal *,
  666. integer *, integer *, doublereal *, integer *, doublereal *,
  667. integer *, integer *);
  668. integer iqptr;
  669. extern /* Subroutine */ int dlaed7_(integer *, integer *, integer *,
  670. integer *, integer *, integer *, doublereal *, doublereal *,
  671. integer *, integer *, doublereal *, integer *, doublereal *,
  672. integer *, integer *, integer *, integer *, integer *, doublereal
  673. *, doublereal *, integer *, integer *);
  674. integer tlvls, iq;
  675. extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
  676. doublereal *, integer *, doublereal *, integer *);
  677. integer igivcl;
  678. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  679. extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
  680. integer *, integer *, ftnlen, ftnlen);
  681. integer igivnm, submat, curprb, subpbs, igivpt;
  682. extern /* Subroutine */ int dsteqr_(char *, integer *, doublereal *,
  683. doublereal *, doublereal *, integer *, doublereal *, integer *);
  684. integer curlvl, matsiz, iprmpt, smlsiz, lgn, msd2, smm1, spm1, spm2;
  685. /* -- LAPACK computational routine (version 3.7.0) -- */
  686. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  687. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  688. /* December 2016 */
  689. /* ===================================================================== */
  690. /* Test the input parameters. */
  691. /* Parameter adjustments */
  692. --d__;
  693. --e;
  694. q_dim1 = *ldq;
  695. q_offset = 1 + q_dim1 * 1;
  696. q -= q_offset;
  697. qstore_dim1 = *ldqs;
  698. qstore_offset = 1 + qstore_dim1 * 1;
  699. qstore -= qstore_offset;
  700. --work;
  701. --iwork;
  702. /* Function Body */
  703. *info = 0;
  704. if (*icompq < 0 || *icompq > 2) {
  705. *info = -1;
  706. } else if (*icompq == 1 && *qsiz < f2cmax(0,*n)) {
  707. *info = -2;
  708. } else if (*n < 0) {
  709. *info = -3;
  710. } else if (*ldq < f2cmax(1,*n)) {
  711. *info = -7;
  712. } else if (*ldqs < f2cmax(1,*n)) {
  713. *info = -9;
  714. }
  715. if (*info != 0) {
  716. i__1 = -(*info);
  717. xerbla_("DLAED0", &i__1, (ftnlen)6);
  718. return 0;
  719. }
  720. /* Quick return if possible */
  721. if (*n == 0) {
  722. return 0;
  723. }
  724. smlsiz = ilaenv_(&c__9, "DLAED0", " ", &c__0, &c__0, &c__0, &c__0, (
  725. ftnlen)6, (ftnlen)1);
  726. /* Determine the size and placement of the submatrices, and save in */
  727. /* the leading elements of IWORK. */
  728. iwork[1] = *n;
  729. subpbs = 1;
  730. tlvls = 0;
  731. L10:
  732. if (iwork[subpbs] > smlsiz) {
  733. for (j = subpbs; j >= 1; --j) {
  734. iwork[j * 2] = (iwork[j] + 1) / 2;
  735. iwork[(j << 1) - 1] = iwork[j] / 2;
  736. /* L20: */
  737. }
  738. ++tlvls;
  739. subpbs <<= 1;
  740. goto L10;
  741. }
  742. i__1 = subpbs;
  743. for (j = 2; j <= i__1; ++j) {
  744. iwork[j] += iwork[j - 1];
  745. /* L30: */
  746. }
  747. /* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
  748. /* using rank-1 modifications (cuts). */
  749. spm1 = subpbs - 1;
  750. i__1 = spm1;
  751. for (i__ = 1; i__ <= i__1; ++i__) {
  752. submat = iwork[i__] + 1;
  753. smm1 = submat - 1;
  754. d__[smm1] -= (d__1 = e[smm1], abs(d__1));
  755. d__[submat] -= (d__1 = e[smm1], abs(d__1));
  756. /* L40: */
  757. }
  758. indxq = (*n << 2) + 3;
  759. if (*icompq != 2) {
  760. /* Set up workspaces for eigenvalues only/accumulate new vectors */
  761. /* routine */
  762. temp = log((doublereal) (*n)) / log(2.);
  763. lgn = (integer) temp;
  764. if (pow_ii(c__2, lgn) < *n) {
  765. ++lgn;
  766. }
  767. if (pow_ii(c__2, lgn) < *n) {
  768. ++lgn;
  769. }
  770. iprmpt = indxq + *n + 1;
  771. iperm = iprmpt + *n * lgn;
  772. iqptr = iperm + *n * lgn;
  773. igivpt = iqptr + *n + 2;
  774. igivcl = igivpt + *n * lgn;
  775. igivnm = 1;
  776. iq = igivnm + (*n << 1) * lgn;
  777. /* Computing 2nd power */
  778. i__1 = *n;
  779. iwrem = iq + i__1 * i__1 + 1;
  780. /* Initialize pointers */
  781. i__1 = subpbs;
  782. for (i__ = 0; i__ <= i__1; ++i__) {
  783. iwork[iprmpt + i__] = 1;
  784. iwork[igivpt + i__] = 1;
  785. /* L50: */
  786. }
  787. iwork[iqptr] = 1;
  788. }
  789. /* Solve each submatrix eigenproblem at the bottom of the divide and */
  790. /* conquer tree. */
  791. curr = 0;
  792. i__1 = spm1;
  793. for (i__ = 0; i__ <= i__1; ++i__) {
  794. if (i__ == 0) {
  795. submat = 1;
  796. matsiz = iwork[1];
  797. } else {
  798. submat = iwork[i__] + 1;
  799. matsiz = iwork[i__ + 1] - iwork[i__];
  800. }
  801. if (*icompq == 2) {
  802. dsteqr_("I", &matsiz, &d__[submat], &e[submat], &q[submat +
  803. submat * q_dim1], ldq, &work[1], info);
  804. if (*info != 0) {
  805. goto L130;
  806. }
  807. } else {
  808. dsteqr_("I", &matsiz, &d__[submat], &e[submat], &work[iq - 1 +
  809. iwork[iqptr + curr]], &matsiz, &work[1], info);
  810. if (*info != 0) {
  811. goto L130;
  812. }
  813. if (*icompq == 1) {
  814. dgemm_("N", "N", qsiz, &matsiz, &matsiz, &c_b23, &q[submat *
  815. q_dim1 + 1], ldq, &work[iq - 1 + iwork[iqptr + curr]],
  816. &matsiz, &c_b24, &qstore[submat * qstore_dim1 + 1],
  817. ldqs);
  818. }
  819. /* Computing 2nd power */
  820. i__2 = matsiz;
  821. iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
  822. ++curr;
  823. }
  824. k = 1;
  825. i__2 = iwork[i__ + 1];
  826. for (j = submat; j <= i__2; ++j) {
  827. iwork[indxq + j] = k;
  828. ++k;
  829. /* L60: */
  830. }
  831. /* L70: */
  832. }
  833. /* Successively merge eigensystems of adjacent submatrices */
  834. /* into eigensystem for the corresponding larger matrix. */
  835. /* while ( SUBPBS > 1 ) */
  836. curlvl = 1;
  837. L80:
  838. if (subpbs > 1) {
  839. spm2 = subpbs - 2;
  840. i__1 = spm2;
  841. for (i__ = 0; i__ <= i__1; i__ += 2) {
  842. if (i__ == 0) {
  843. submat = 1;
  844. matsiz = iwork[2];
  845. msd2 = iwork[1];
  846. curprb = 0;
  847. } else {
  848. submat = iwork[i__] + 1;
  849. matsiz = iwork[i__ + 2] - iwork[i__];
  850. msd2 = matsiz / 2;
  851. ++curprb;
  852. }
  853. /* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
  854. /* into an eigensystem of size MATSIZ. */
  855. /* DLAED1 is used only for the full eigensystem of a tridiagonal */
  856. /* matrix. */
  857. /* DLAED7 handles the cases in which eigenvalues only or eigenvalues */
  858. /* and eigenvectors of a full symmetric matrix (which was reduced to */
  859. /* tridiagonal form) are desired. */
  860. if (*icompq == 2) {
  861. dlaed1_(&matsiz, &d__[submat], &q[submat + submat * q_dim1],
  862. ldq, &iwork[indxq + submat], &e[submat + msd2 - 1], &
  863. msd2, &work[1], &iwork[subpbs + 1], info);
  864. } else {
  865. dlaed7_(icompq, &matsiz, qsiz, &tlvls, &curlvl, &curprb, &d__[
  866. submat], &qstore[submat * qstore_dim1 + 1], ldqs, &
  867. iwork[indxq + submat], &e[submat + msd2 - 1], &msd2, &
  868. work[iq], &iwork[iqptr], &iwork[iprmpt], &iwork[iperm]
  869. , &iwork[igivpt], &iwork[igivcl], &work[igivnm], &
  870. work[iwrem], &iwork[subpbs + 1], info);
  871. }
  872. if (*info != 0) {
  873. goto L130;
  874. }
  875. iwork[i__ / 2 + 1] = iwork[i__ + 2];
  876. /* L90: */
  877. }
  878. subpbs /= 2;
  879. ++curlvl;
  880. goto L80;
  881. }
  882. /* end while */
  883. /* Re-merge the eigenvalues/vectors which were deflated at the final */
  884. /* merge step. */
  885. if (*icompq == 1) {
  886. i__1 = *n;
  887. for (i__ = 1; i__ <= i__1; ++i__) {
  888. j = iwork[indxq + i__];
  889. work[i__] = d__[j];
  890. dcopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1
  891. + 1], &c__1);
  892. /* L100: */
  893. }
  894. dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
  895. } else if (*icompq == 2) {
  896. i__1 = *n;
  897. for (i__ = 1; i__ <= i__1; ++i__) {
  898. j = iwork[indxq + i__];
  899. work[i__] = d__[j];
  900. dcopy_(n, &q[j * q_dim1 + 1], &c__1, &work[*n * i__ + 1], &c__1);
  901. /* L110: */
  902. }
  903. dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
  904. dlacpy_("A", n, n, &work[*n + 1], n, &q[q_offset], ldq);
  905. } else {
  906. i__1 = *n;
  907. for (i__ = 1; i__ <= i__1; ++i__) {
  908. j = iwork[indxq + i__];
  909. work[i__] = d__[j];
  910. /* L120: */
  911. }
  912. dcopy_(n, &work[1], &c__1, &d__[1], &c__1);
  913. }
  914. goto L140;
  915. L130:
  916. *info = submat * (*n + 1) + submat + matsiz - 1;
  917. L140:
  918. return 0;
  919. /* End of DLAED0 */
  920. } /* dlaed0_ */