You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrsyl.c 31 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static integer c__1 = 1;
  487. /* > \brief \b CTRSYL */
  488. /* =========== DOCUMENTATION =========== */
  489. /* Online html documentation available at */
  490. /* http://www.netlib.org/lapack/explore-html/ */
  491. /* > \htmlonly */
  492. /* > Download CTRSYL + dependencies */
  493. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrsyl.
  494. f"> */
  495. /* > [TGZ]</a> */
  496. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrsyl.
  497. f"> */
  498. /* > [ZIP]</a> */
  499. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrsyl.
  500. f"> */
  501. /* > [TXT]</a> */
  502. /* > \endhtmlonly */
  503. /* Definition: */
  504. /* =========== */
  505. /* SUBROUTINE CTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, */
  506. /* LDC, SCALE, INFO ) */
  507. /* CHARACTER TRANA, TRANB */
  508. /* INTEGER INFO, ISGN, LDA, LDB, LDC, M, N */
  509. /* REAL SCALE */
  510. /* COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * ) */
  511. /* > \par Purpose: */
  512. /* ============= */
  513. /* > */
  514. /* > \verbatim */
  515. /* > */
  516. /* > CTRSYL solves the complex Sylvester matrix equation: */
  517. /* > */
  518. /* > op(A)*X + X*op(B) = scale*C or */
  519. /* > op(A)*X - X*op(B) = scale*C, */
  520. /* > */
  521. /* > where op(A) = A or A**H, and A and B are both upper triangular. A is */
  522. /* > M-by-M and B is N-by-N; the right hand side C and the solution X are */
  523. /* > M-by-N; and scale is an output scale factor, set <= 1 to avoid */
  524. /* > overflow in X. */
  525. /* > \endverbatim */
  526. /* Arguments: */
  527. /* ========== */
  528. /* > \param[in] TRANA */
  529. /* > \verbatim */
  530. /* > TRANA is CHARACTER*1 */
  531. /* > Specifies the option op(A): */
  532. /* > = 'N': op(A) = A (No transpose) */
  533. /* > = 'C': op(A) = A**H (Conjugate transpose) */
  534. /* > \endverbatim */
  535. /* > */
  536. /* > \param[in] TRANB */
  537. /* > \verbatim */
  538. /* > TRANB is CHARACTER*1 */
  539. /* > Specifies the option op(B): */
  540. /* > = 'N': op(B) = B (No transpose) */
  541. /* > = 'C': op(B) = B**H (Conjugate transpose) */
  542. /* > \endverbatim */
  543. /* > */
  544. /* > \param[in] ISGN */
  545. /* > \verbatim */
  546. /* > ISGN is INTEGER */
  547. /* > Specifies the sign in the equation: */
  548. /* > = +1: solve op(A)*X + X*op(B) = scale*C */
  549. /* > = -1: solve op(A)*X - X*op(B) = scale*C */
  550. /* > \endverbatim */
  551. /* > */
  552. /* > \param[in] M */
  553. /* > \verbatim */
  554. /* > M is INTEGER */
  555. /* > The order of the matrix A, and the number of rows in the */
  556. /* > matrices X and C. M >= 0. */
  557. /* > \endverbatim */
  558. /* > */
  559. /* > \param[in] N */
  560. /* > \verbatim */
  561. /* > N is INTEGER */
  562. /* > The order of the matrix B, and the number of columns in the */
  563. /* > matrices X and C. N >= 0. */
  564. /* > \endverbatim */
  565. /* > */
  566. /* > \param[in] A */
  567. /* > \verbatim */
  568. /* > A is COMPLEX array, dimension (LDA,M) */
  569. /* > The upper triangular matrix A. */
  570. /* > \endverbatim */
  571. /* > */
  572. /* > \param[in] LDA */
  573. /* > \verbatim */
  574. /* > LDA is INTEGER */
  575. /* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
  576. /* > \endverbatim */
  577. /* > */
  578. /* > \param[in] B */
  579. /* > \verbatim */
  580. /* > B is COMPLEX array, dimension (LDB,N) */
  581. /* > The upper triangular matrix B. */
  582. /* > \endverbatim */
  583. /* > */
  584. /* > \param[in] LDB */
  585. /* > \verbatim */
  586. /* > LDB is INTEGER */
  587. /* > The leading dimension of the array B. LDB >= f2cmax(1,N). */
  588. /* > \endverbatim */
  589. /* > */
  590. /* > \param[in,out] C */
  591. /* > \verbatim */
  592. /* > C is COMPLEX array, dimension (LDC,N) */
  593. /* > On entry, the M-by-N right hand side matrix C. */
  594. /* > On exit, C is overwritten by the solution matrix X. */
  595. /* > \endverbatim */
  596. /* > */
  597. /* > \param[in] LDC */
  598. /* > \verbatim */
  599. /* > LDC is INTEGER */
  600. /* > The leading dimension of the array C. LDC >= f2cmax(1,M) */
  601. /* > \endverbatim */
  602. /* > */
  603. /* > \param[out] SCALE */
  604. /* > \verbatim */
  605. /* > SCALE is REAL */
  606. /* > The scale factor, scale, set <= 1 to avoid overflow in X. */
  607. /* > \endverbatim */
  608. /* > */
  609. /* > \param[out] INFO */
  610. /* > \verbatim */
  611. /* > INFO is INTEGER */
  612. /* > = 0: successful exit */
  613. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  614. /* > = 1: A and B have common or very close eigenvalues; perturbed */
  615. /* > values were used to solve the equation (but the matrices */
  616. /* > A and B are unchanged). */
  617. /* > \endverbatim */
  618. /* Authors: */
  619. /* ======== */
  620. /* > \author Univ. of Tennessee */
  621. /* > \author Univ. of California Berkeley */
  622. /* > \author Univ. of Colorado Denver */
  623. /* > \author NAG Ltd. */
  624. /* > \date December 2016 */
  625. /* > \ingroup complexSYcomputational */
  626. /* ===================================================================== */
  627. /* Subroutine */ int ctrsyl_(char *trana, char *tranb, integer *isgn, integer
  628. *m, integer *n, complex *a, integer *lda, complex *b, integer *ldb,
  629. complex *c__, integer *ldc, real *scale, integer *info)
  630. {
  631. /* System generated locals */
  632. integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
  633. i__3, i__4;
  634. real r__1, r__2;
  635. complex q__1, q__2, q__3, q__4;
  636. /* Local variables */
  637. real smin;
  638. complex suml, sumr;
  639. integer j, k, l;
  640. extern /* Complex */ VOID cdotc_(complex *, integer *, complex *, integer
  641. *, complex *, integer *);
  642. extern logical lsame_(char *, char *);
  643. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  644. *, complex *, integer *);
  645. complex a11;
  646. real db;
  647. extern /* Subroutine */ int slabad_(real *, real *);
  648. extern real clange_(char *, integer *, integer *, complex *, integer *,
  649. real *);
  650. complex x11;
  651. extern /* Complex */ VOID cladiv_(complex *, complex *, complex *);
  652. real scaloc;
  653. extern real slamch_(char *);
  654. extern /* Subroutine */ int csscal_(integer *, real *, complex *, integer
  655. *), xerbla_(char *, integer *, ftnlen);
  656. real bignum;
  657. logical notrna, notrnb;
  658. real smlnum, da11;
  659. complex vec;
  660. real dum[1], eps, sgn;
  661. /* -- LAPACK computational routine (version 3.7.0) -- */
  662. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  663. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  664. /* December 2016 */
  665. /* ===================================================================== */
  666. /* Decode and Test input parameters */
  667. /* Parameter adjustments */
  668. a_dim1 = *lda;
  669. a_offset = 1 + a_dim1 * 1;
  670. a -= a_offset;
  671. b_dim1 = *ldb;
  672. b_offset = 1 + b_dim1 * 1;
  673. b -= b_offset;
  674. c_dim1 = *ldc;
  675. c_offset = 1 + c_dim1 * 1;
  676. c__ -= c_offset;
  677. /* Function Body */
  678. notrna = lsame_(trana, "N");
  679. notrnb = lsame_(tranb, "N");
  680. *info = 0;
  681. if (! notrna && ! lsame_(trana, "C")) {
  682. *info = -1;
  683. } else if (! notrnb && ! lsame_(tranb, "C")) {
  684. *info = -2;
  685. } else if (*isgn != 1 && *isgn != -1) {
  686. *info = -3;
  687. } else if (*m < 0) {
  688. *info = -4;
  689. } else if (*n < 0) {
  690. *info = -5;
  691. } else if (*lda < f2cmax(1,*m)) {
  692. *info = -7;
  693. } else if (*ldb < f2cmax(1,*n)) {
  694. *info = -9;
  695. } else if (*ldc < f2cmax(1,*m)) {
  696. *info = -11;
  697. }
  698. if (*info != 0) {
  699. i__1 = -(*info);
  700. xerbla_("CTRSYL", &i__1, (ftnlen)6);
  701. return 0;
  702. }
  703. /* Quick return if possible */
  704. *scale = 1.f;
  705. if (*m == 0 || *n == 0) {
  706. return 0;
  707. }
  708. /* Set constants to control overflow */
  709. eps = slamch_("P");
  710. smlnum = slamch_("S");
  711. bignum = 1.f / smlnum;
  712. slabad_(&smlnum, &bignum);
  713. smlnum = smlnum * (real) (*m * *n) / eps;
  714. bignum = 1.f / smlnum;
  715. /* Computing MAX */
  716. r__1 = smlnum, r__2 = eps * clange_("M", m, m, &a[a_offset], lda, dum), r__1 = f2cmax(r__1,r__2), r__2 = eps * clange_("M", n, n,
  717. &b[b_offset], ldb, dum);
  718. smin = f2cmax(r__1,r__2);
  719. sgn = (real) (*isgn);
  720. if (notrna && notrnb) {
  721. /* Solve A*X + ISGN*X*B = scale*C. */
  722. /* The (K,L)th block of X is determined starting from */
  723. /* bottom-left corner column by column by */
  724. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  725. /* Where */
  726. /* M L-1 */
  727. /* R(K,L) = SUM [A(K,I)*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)]. */
  728. /* I=K+1 J=1 */
  729. i__1 = *n;
  730. for (l = 1; l <= i__1; ++l) {
  731. for (k = *m; k >= 1; --k) {
  732. i__2 = *m - k;
  733. /* Computing MIN */
  734. i__3 = k + 1;
  735. /* Computing MIN */
  736. i__4 = k + 1;
  737. cdotu_(&q__1, &i__2, &a[k + f2cmin(i__3,*m) * a_dim1], lda, &c__[
  738. f2cmin(i__4,*m) + l * c_dim1], &c__1);
  739. suml.r = q__1.r, suml.i = q__1.i;
  740. i__2 = l - 1;
  741. cdotu_(&q__1, &i__2, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  742. , &c__1);
  743. sumr.r = q__1.r, sumr.i = q__1.i;
  744. i__2 = k + l * c_dim1;
  745. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  746. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  747. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  748. vec.r = q__1.r, vec.i = q__1.i;
  749. scaloc = 1.f;
  750. i__2 = k + k * a_dim1;
  751. i__3 = l + l * b_dim1;
  752. q__2.r = sgn * b[i__3].r, q__2.i = sgn * b[i__3].i;
  753. q__1.r = a[i__2].r + q__2.r, q__1.i = a[i__2].i + q__2.i;
  754. a11.r = q__1.r, a11.i = q__1.i;
  755. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  756. r__2));
  757. if (da11 <= smin) {
  758. a11.r = smin, a11.i = 0.f;
  759. da11 = smin;
  760. *info = 1;
  761. }
  762. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  763. r__2));
  764. if (da11 < 1.f && db > 1.f) {
  765. if (db > bignum * da11) {
  766. scaloc = 1.f / db;
  767. }
  768. }
  769. q__3.r = scaloc, q__3.i = 0.f;
  770. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  771. q__3.i + vec.i * q__3.r;
  772. cladiv_(&q__1, &q__2, &a11);
  773. x11.r = q__1.r, x11.i = q__1.i;
  774. if (scaloc != 1.f) {
  775. i__2 = *n;
  776. for (j = 1; j <= i__2; ++j) {
  777. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  778. /* L10: */
  779. }
  780. *scale *= scaloc;
  781. }
  782. i__2 = k + l * c_dim1;
  783. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  784. /* L20: */
  785. }
  786. /* L30: */
  787. }
  788. } else if (! notrna && notrnb) {
  789. /* Solve A**H *X + ISGN*X*B = scale*C. */
  790. /* The (K,L)th block of X is determined starting from */
  791. /* upper-left corner column by column by */
  792. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
  793. /* Where */
  794. /* K-1 L-1 */
  795. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)] */
  796. /* I=1 J=1 */
  797. i__1 = *n;
  798. for (l = 1; l <= i__1; ++l) {
  799. i__2 = *m;
  800. for (k = 1; k <= i__2; ++k) {
  801. i__3 = k - 1;
  802. cdotc_(&q__1, &i__3, &a[k * a_dim1 + 1], &c__1, &c__[l *
  803. c_dim1 + 1], &c__1);
  804. suml.r = q__1.r, suml.i = q__1.i;
  805. i__3 = l - 1;
  806. cdotu_(&q__1, &i__3, &c__[k + c_dim1], ldc, &b[l * b_dim1 + 1]
  807. , &c__1);
  808. sumr.r = q__1.r, sumr.i = q__1.i;
  809. i__3 = k + l * c_dim1;
  810. q__3.r = sgn * sumr.r, q__3.i = sgn * sumr.i;
  811. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  812. q__1.r = c__[i__3].r - q__2.r, q__1.i = c__[i__3].i - q__2.i;
  813. vec.r = q__1.r, vec.i = q__1.i;
  814. scaloc = 1.f;
  815. r_cnjg(&q__2, &a[k + k * a_dim1]);
  816. i__3 = l + l * b_dim1;
  817. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  818. q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
  819. a11.r = q__1.r, a11.i = q__1.i;
  820. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  821. r__2));
  822. if (da11 <= smin) {
  823. a11.r = smin, a11.i = 0.f;
  824. da11 = smin;
  825. *info = 1;
  826. }
  827. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  828. r__2));
  829. if (da11 < 1.f && db > 1.f) {
  830. if (db > bignum * da11) {
  831. scaloc = 1.f / db;
  832. }
  833. }
  834. q__3.r = scaloc, q__3.i = 0.f;
  835. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  836. q__3.i + vec.i * q__3.r;
  837. cladiv_(&q__1, &q__2, &a11);
  838. x11.r = q__1.r, x11.i = q__1.i;
  839. if (scaloc != 1.f) {
  840. i__3 = *n;
  841. for (j = 1; j <= i__3; ++j) {
  842. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  843. /* L40: */
  844. }
  845. *scale *= scaloc;
  846. }
  847. i__3 = k + l * c_dim1;
  848. c__[i__3].r = x11.r, c__[i__3].i = x11.i;
  849. /* L50: */
  850. }
  851. /* L60: */
  852. }
  853. } else if (! notrna && ! notrnb) {
  854. /* Solve A**H*X + ISGN*X*B**H = C. */
  855. /* The (K,L)th block of X is determined starting from */
  856. /* upper-right corner column by column by */
  857. /* A**H(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  858. /* Where */
  859. /* K-1 */
  860. /* R(K,L) = SUM [A**H(I,K)*X(I,L)] + */
  861. /* I=1 */
  862. /* N */
  863. /* ISGN*SUM [X(K,J)*B**H(L,J)]. */
  864. /* J=L+1 */
  865. for (l = *n; l >= 1; --l) {
  866. i__1 = *m;
  867. for (k = 1; k <= i__1; ++k) {
  868. i__2 = k - 1;
  869. cdotc_(&q__1, &i__2, &a[k * a_dim1 + 1], &c__1, &c__[l *
  870. c_dim1 + 1], &c__1);
  871. suml.r = q__1.r, suml.i = q__1.i;
  872. i__2 = *n - l;
  873. /* Computing MIN */
  874. i__3 = l + 1;
  875. /* Computing MIN */
  876. i__4 = l + 1;
  877. cdotc_(&q__1, &i__2, &c__[k + f2cmin(i__3,*n) * c_dim1], ldc, &b[
  878. l + f2cmin(i__4,*n) * b_dim1], ldb);
  879. sumr.r = q__1.r, sumr.i = q__1.i;
  880. i__2 = k + l * c_dim1;
  881. r_cnjg(&q__4, &sumr);
  882. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  883. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  884. q__1.r = c__[i__2].r - q__2.r, q__1.i = c__[i__2].i - q__2.i;
  885. vec.r = q__1.r, vec.i = q__1.i;
  886. scaloc = 1.f;
  887. i__2 = k + k * a_dim1;
  888. i__3 = l + l * b_dim1;
  889. q__3.r = sgn * b[i__3].r, q__3.i = sgn * b[i__3].i;
  890. q__2.r = a[i__2].r + q__3.r, q__2.i = a[i__2].i + q__3.i;
  891. r_cnjg(&q__1, &q__2);
  892. a11.r = q__1.r, a11.i = q__1.i;
  893. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  894. r__2));
  895. if (da11 <= smin) {
  896. a11.r = smin, a11.i = 0.f;
  897. da11 = smin;
  898. *info = 1;
  899. }
  900. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  901. r__2));
  902. if (da11 < 1.f && db > 1.f) {
  903. if (db > bignum * da11) {
  904. scaloc = 1.f / db;
  905. }
  906. }
  907. q__3.r = scaloc, q__3.i = 0.f;
  908. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  909. q__3.i + vec.i * q__3.r;
  910. cladiv_(&q__1, &q__2, &a11);
  911. x11.r = q__1.r, x11.i = q__1.i;
  912. if (scaloc != 1.f) {
  913. i__2 = *n;
  914. for (j = 1; j <= i__2; ++j) {
  915. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  916. /* L70: */
  917. }
  918. *scale *= scaloc;
  919. }
  920. i__2 = k + l * c_dim1;
  921. c__[i__2].r = x11.r, c__[i__2].i = x11.i;
  922. /* L80: */
  923. }
  924. /* L90: */
  925. }
  926. } else if (notrna && ! notrnb) {
  927. /* Solve A*X + ISGN*X*B**H = C. */
  928. /* The (K,L)th block of X is determined starting from */
  929. /* bottom-left corner column by column by */
  930. /* A(K,K)*X(K,L) + ISGN*X(K,L)*B**H(L,L) = C(K,L) - R(K,L) */
  931. /* Where */
  932. /* M N */
  933. /* R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B**H(L,J)] */
  934. /* I=K+1 J=L+1 */
  935. for (l = *n; l >= 1; --l) {
  936. for (k = *m; k >= 1; --k) {
  937. i__1 = *m - k;
  938. /* Computing MIN */
  939. i__2 = k + 1;
  940. /* Computing MIN */
  941. i__3 = k + 1;
  942. cdotu_(&q__1, &i__1, &a[k + f2cmin(i__2,*m) * a_dim1], lda, &c__[
  943. f2cmin(i__3,*m) + l * c_dim1], &c__1);
  944. suml.r = q__1.r, suml.i = q__1.i;
  945. i__1 = *n - l;
  946. /* Computing MIN */
  947. i__2 = l + 1;
  948. /* Computing MIN */
  949. i__3 = l + 1;
  950. cdotc_(&q__1, &i__1, &c__[k + f2cmin(i__2,*n) * c_dim1], ldc, &b[
  951. l + f2cmin(i__3,*n) * b_dim1], ldb);
  952. sumr.r = q__1.r, sumr.i = q__1.i;
  953. i__1 = k + l * c_dim1;
  954. r_cnjg(&q__4, &sumr);
  955. q__3.r = sgn * q__4.r, q__3.i = sgn * q__4.i;
  956. q__2.r = suml.r + q__3.r, q__2.i = suml.i + q__3.i;
  957. q__1.r = c__[i__1].r - q__2.r, q__1.i = c__[i__1].i - q__2.i;
  958. vec.r = q__1.r, vec.i = q__1.i;
  959. scaloc = 1.f;
  960. i__1 = k + k * a_dim1;
  961. r_cnjg(&q__3, &b[l + l * b_dim1]);
  962. q__2.r = sgn * q__3.r, q__2.i = sgn * q__3.i;
  963. q__1.r = a[i__1].r + q__2.r, q__1.i = a[i__1].i + q__2.i;
  964. a11.r = q__1.r, a11.i = q__1.i;
  965. da11 = (r__1 = a11.r, abs(r__1)) + (r__2 = r_imag(&a11), abs(
  966. r__2));
  967. if (da11 <= smin) {
  968. a11.r = smin, a11.i = 0.f;
  969. da11 = smin;
  970. *info = 1;
  971. }
  972. db = (r__1 = vec.r, abs(r__1)) + (r__2 = r_imag(&vec), abs(
  973. r__2));
  974. if (da11 < 1.f && db > 1.f) {
  975. if (db > bignum * da11) {
  976. scaloc = 1.f / db;
  977. }
  978. }
  979. q__3.r = scaloc, q__3.i = 0.f;
  980. q__2.r = vec.r * q__3.r - vec.i * q__3.i, q__2.i = vec.r *
  981. q__3.i + vec.i * q__3.r;
  982. cladiv_(&q__1, &q__2, &a11);
  983. x11.r = q__1.r, x11.i = q__1.i;
  984. if (scaloc != 1.f) {
  985. i__1 = *n;
  986. for (j = 1; j <= i__1; ++j) {
  987. csscal_(m, &scaloc, &c__[j * c_dim1 + 1], &c__1);
  988. /* L100: */
  989. }
  990. *scale *= scaloc;
  991. }
  992. i__1 = k + l * c_dim1;
  993. c__[i__1].r = x11.r, c__[i__1].i = x11.i;
  994. /* L110: */
  995. }
  996. /* L120: */
  997. }
  998. }
  999. return 0;
  1000. /* End of CTRSYL */
  1001. } /* ctrsyl_ */