You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csptri.c 29 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle() continue;
  235. #define myceiling(w) {ceil(w)}
  236. #define myhuge(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
  239. /* procedure parameter types for -A and -C++ */
  240. #define F2C_proc_par_types 1
  241. #ifdef __cplusplus
  242. typedef logical (*L_fp)(...);
  243. #else
  244. typedef logical (*L_fp)();
  245. #endif
  246. static float spow_ui(float x, integer n) {
  247. float pow=1.0; unsigned long int u;
  248. if(n != 0) {
  249. if(n < 0) n = -n, x = 1/x;
  250. for(u = n; ; ) {
  251. if(u & 01) pow *= x;
  252. if(u >>= 1) x *= x;
  253. else break;
  254. }
  255. }
  256. return pow;
  257. }
  258. static double dpow_ui(double x, integer n) {
  259. double pow=1.0; unsigned long int u;
  260. if(n != 0) {
  261. if(n < 0) n = -n, x = 1/x;
  262. for(u = n; ; ) {
  263. if(u & 01) pow *= x;
  264. if(u >>= 1) x *= x;
  265. else break;
  266. }
  267. }
  268. return pow;
  269. }
  270. #ifdef _MSC_VER
  271. static _Fcomplex cpow_ui(complex x, integer n) {
  272. complex pow={1.0,0.0}; unsigned long int u;
  273. if(n != 0) {
  274. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  275. for(u = n; ; ) {
  276. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  277. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  278. else break;
  279. }
  280. }
  281. _Fcomplex p={pow.r, pow.i};
  282. return p;
  283. }
  284. #else
  285. static _Complex float cpow_ui(_Complex float x, integer n) {
  286. _Complex float pow=1.0; unsigned long int u;
  287. if(n != 0) {
  288. if(n < 0) n = -n, x = 1/x;
  289. for(u = n; ; ) {
  290. if(u & 01) pow *= x;
  291. if(u >>= 1) x *= x;
  292. else break;
  293. }
  294. }
  295. return pow;
  296. }
  297. #endif
  298. #ifdef _MSC_VER
  299. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  300. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  301. if(n != 0) {
  302. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  303. for(u = n; ; ) {
  304. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  305. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  306. else break;
  307. }
  308. }
  309. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  310. return p;
  311. }
  312. #else
  313. static _Complex double zpow_ui(_Complex double x, integer n) {
  314. _Complex double pow=1.0; unsigned long int u;
  315. if(n != 0) {
  316. if(n < 0) n = -n, x = 1/x;
  317. for(u = n; ; ) {
  318. if(u & 01) pow *= x;
  319. if(u >>= 1) x *= x;
  320. else break;
  321. }
  322. }
  323. return pow;
  324. }
  325. #endif
  326. static integer pow_ii(integer x, integer n) {
  327. integer pow; unsigned long int u;
  328. if (n <= 0) {
  329. if (n == 0 || x == 1) pow = 1;
  330. else if (x != -1) pow = x == 0 ? 1/x : 0;
  331. else n = -n;
  332. }
  333. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  334. u = n;
  335. for(pow = 1; ; ) {
  336. if(u & 01) pow *= x;
  337. if(u >>= 1) x *= x;
  338. else break;
  339. }
  340. }
  341. return pow;
  342. }
  343. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  344. {
  345. double m; integer i, mi;
  346. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  347. if (w[i-1]>m) mi=i ,m=w[i-1];
  348. return mi-s+1;
  349. }
  350. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  351. {
  352. float m; integer i, mi;
  353. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  354. if (w[i-1]>m) mi=i ,m=w[i-1];
  355. return mi-s+1;
  356. }
  357. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  358. integer n = *n_, incx = *incx_, incy = *incy_, i;
  359. #ifdef _MSC_VER
  360. _Fcomplex zdotc = {0.0, 0.0};
  361. if (incx == 1 && incy == 1) {
  362. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  363. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  364. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  365. }
  366. } else {
  367. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  368. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  369. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  370. }
  371. }
  372. pCf(z) = zdotc;
  373. }
  374. #else
  375. _Complex float zdotc = 0.0;
  376. if (incx == 1 && incy == 1) {
  377. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  378. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  379. }
  380. } else {
  381. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  382. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  383. }
  384. }
  385. pCf(z) = zdotc;
  386. }
  387. #endif
  388. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  389. integer n = *n_, incx = *incx_, incy = *incy_, i;
  390. #ifdef _MSC_VER
  391. _Dcomplex zdotc = {0.0, 0.0};
  392. if (incx == 1 && incy == 1) {
  393. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  394. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  395. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  396. }
  397. } else {
  398. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  399. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  400. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  401. }
  402. }
  403. pCd(z) = zdotc;
  404. }
  405. #else
  406. _Complex double zdotc = 0.0;
  407. if (incx == 1 && incy == 1) {
  408. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  409. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  410. }
  411. } else {
  412. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  413. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  414. }
  415. }
  416. pCd(z) = zdotc;
  417. }
  418. #endif
  419. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  420. integer n = *n_, incx = *incx_, incy = *incy_, i;
  421. #ifdef _MSC_VER
  422. _Fcomplex zdotc = {0.0, 0.0};
  423. if (incx == 1 && incy == 1) {
  424. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  425. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  426. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  427. }
  428. } else {
  429. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  430. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  431. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  432. }
  433. }
  434. pCf(z) = zdotc;
  435. }
  436. #else
  437. _Complex float zdotc = 0.0;
  438. if (incx == 1 && incy == 1) {
  439. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  440. zdotc += Cf(&x[i]) * Cf(&y[i]);
  441. }
  442. } else {
  443. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  444. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  445. }
  446. }
  447. pCf(z) = zdotc;
  448. }
  449. #endif
  450. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  451. integer n = *n_, incx = *incx_, incy = *incy_, i;
  452. #ifdef _MSC_VER
  453. _Dcomplex zdotc = {0.0, 0.0};
  454. if (incx == 1 && incy == 1) {
  455. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  456. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  457. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  458. }
  459. } else {
  460. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  461. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  462. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  463. }
  464. }
  465. pCd(z) = zdotc;
  466. }
  467. #else
  468. _Complex double zdotc = 0.0;
  469. if (incx == 1 && incy == 1) {
  470. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  471. zdotc += Cd(&x[i]) * Cd(&y[i]);
  472. }
  473. } else {
  474. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  475. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  476. }
  477. }
  478. pCd(z) = zdotc;
  479. }
  480. #endif
  481. /* -- translated by f2c (version 20000121).
  482. You must link the resulting object file with the libraries:
  483. -lf2c -lm (in that order)
  484. */
  485. /* Table of constant values */
  486. static complex c_b1 = {1.f,0.f};
  487. static complex c_b2 = {0.f,0.f};
  488. static integer c__1 = 1;
  489. /* > \brief \b CSPTRI */
  490. /* =========== DOCUMENTATION =========== */
  491. /* Online html documentation available at */
  492. /* http://www.netlib.org/lapack/explore-html/ */
  493. /* > \htmlonly */
  494. /* > Download CSPTRI + dependencies */
  495. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptri.
  496. f"> */
  497. /* > [TGZ]</a> */
  498. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptri.
  499. f"> */
  500. /* > [ZIP]</a> */
  501. /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptri.
  502. f"> */
  503. /* > [TXT]</a> */
  504. /* > \endhtmlonly */
  505. /* Definition: */
  506. /* =========== */
  507. /* SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO ) */
  508. /* CHARACTER UPLO */
  509. /* INTEGER INFO, N */
  510. /* INTEGER IPIV( * ) */
  511. /* COMPLEX AP( * ), WORK( * ) */
  512. /* > \par Purpose: */
  513. /* ============= */
  514. /* > */
  515. /* > \verbatim */
  516. /* > */
  517. /* > CSPTRI computes the inverse of a complex symmetric indefinite matrix */
  518. /* > A in packed storage using the factorization A = U*D*U**T or */
  519. /* > A = L*D*L**T computed by CSPTRF. */
  520. /* > \endverbatim */
  521. /* Arguments: */
  522. /* ========== */
  523. /* > \param[in] UPLO */
  524. /* > \verbatim */
  525. /* > UPLO is CHARACTER*1 */
  526. /* > Specifies whether the details of the factorization are stored */
  527. /* > as an upper or lower triangular matrix. */
  528. /* > = 'U': Upper triangular, form is A = U*D*U**T; */
  529. /* > = 'L': Lower triangular, form is A = L*D*L**T. */
  530. /* > \endverbatim */
  531. /* > */
  532. /* > \param[in] N */
  533. /* > \verbatim */
  534. /* > N is INTEGER */
  535. /* > The order of the matrix A. N >= 0. */
  536. /* > \endverbatim */
  537. /* > */
  538. /* > \param[in,out] AP */
  539. /* > \verbatim */
  540. /* > AP is COMPLEX array, dimension (N*(N+1)/2) */
  541. /* > On entry, the block diagonal matrix D and the multipliers */
  542. /* > used to obtain the factor U or L as computed by CSPTRF, */
  543. /* > stored as a packed triangular matrix. */
  544. /* > */
  545. /* > On exit, if INFO = 0, the (symmetric) inverse of the original */
  546. /* > matrix, stored as a packed triangular matrix. The j-th column */
  547. /* > of inv(A) is stored in the array AP as follows: */
  548. /* > if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
  549. /* > if UPLO = 'L', */
  550. /* > AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
  551. /* > \endverbatim */
  552. /* > */
  553. /* > \param[in] IPIV */
  554. /* > \verbatim */
  555. /* > IPIV is INTEGER array, dimension (N) */
  556. /* > Details of the interchanges and the block structure of D */
  557. /* > as determined by CSPTRF. */
  558. /* > \endverbatim */
  559. /* > */
  560. /* > \param[out] WORK */
  561. /* > \verbatim */
  562. /* > WORK is COMPLEX array, dimension (N) */
  563. /* > \endverbatim */
  564. /* > */
  565. /* > \param[out] INFO */
  566. /* > \verbatim */
  567. /* > INFO is INTEGER */
  568. /* > = 0: successful exit */
  569. /* > < 0: if INFO = -i, the i-th argument had an illegal value */
  570. /* > > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
  571. /* > inverse could not be computed. */
  572. /* > \endverbatim */
  573. /* Authors: */
  574. /* ======== */
  575. /* > \author Univ. of Tennessee */
  576. /* > \author Univ. of California Berkeley */
  577. /* > \author Univ. of Colorado Denver */
  578. /* > \author NAG Ltd. */
  579. /* > \date December 2016 */
  580. /* > \ingroup complexOTHERcomputational */
  581. /* ===================================================================== */
  582. /* Subroutine */ int csptri_(char *uplo, integer *n, complex *ap, integer *
  583. ipiv, complex *work, integer *info)
  584. {
  585. /* System generated locals */
  586. integer i__1, i__2, i__3;
  587. complex q__1, q__2, q__3;
  588. /* Local variables */
  589. complex temp, akkp1, d__;
  590. integer j, k;
  591. complex t;
  592. extern logical lsame_(char *, char *);
  593. extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
  594. complex *, integer *);
  595. extern /* Complex */ VOID cdotu_(complex *, integer *, complex *, integer
  596. *, complex *, integer *);
  597. extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
  598. complex *, integer *);
  599. integer kstep;
  600. extern /* Subroutine */ int cspmv_(char *, integer *, complex *, complex *
  601. , complex *, integer *, complex *, complex *, integer *);
  602. logical upper;
  603. complex ak;
  604. integer kc, kp, kx;
  605. extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
  606. integer kcnext, kpc, npp;
  607. complex akp1;
  608. /* -- LAPACK computational routine (version 3.7.0) -- */
  609. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  610. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  611. /* December 2016 */
  612. /* ===================================================================== */
  613. /* Test the input parameters. */
  614. /* Parameter adjustments */
  615. --work;
  616. --ipiv;
  617. --ap;
  618. /* Function Body */
  619. *info = 0;
  620. upper = lsame_(uplo, "U");
  621. if (! upper && ! lsame_(uplo, "L")) {
  622. *info = -1;
  623. } else if (*n < 0) {
  624. *info = -2;
  625. }
  626. if (*info != 0) {
  627. i__1 = -(*info);
  628. xerbla_("CSPTRI", &i__1, (ftnlen)6);
  629. return 0;
  630. }
  631. /* Quick return if possible */
  632. if (*n == 0) {
  633. return 0;
  634. }
  635. /* Check that the diagonal matrix D is nonsingular. */
  636. if (upper) {
  637. /* Upper triangular storage: examine D from bottom to top */
  638. kp = *n * (*n + 1) / 2;
  639. for (*info = *n; *info >= 1; --(*info)) {
  640. i__1 = kp;
  641. if (ipiv[*info] > 0 && (ap[i__1].r == 0.f && ap[i__1].i == 0.f)) {
  642. return 0;
  643. }
  644. kp -= *info;
  645. /* L10: */
  646. }
  647. } else {
  648. /* Lower triangular storage: examine D from top to bottom. */
  649. kp = 1;
  650. i__1 = *n;
  651. for (*info = 1; *info <= i__1; ++(*info)) {
  652. i__2 = kp;
  653. if (ipiv[*info] > 0 && (ap[i__2].r == 0.f && ap[i__2].i == 0.f)) {
  654. return 0;
  655. }
  656. kp = kp + *n - *info + 1;
  657. /* L20: */
  658. }
  659. }
  660. *info = 0;
  661. if (upper) {
  662. /* Compute inv(A) from the factorization A = U*D*U**T. */
  663. /* K is the main loop index, increasing from 1 to N in steps of */
  664. /* 1 or 2, depending on the size of the diagonal blocks. */
  665. k = 1;
  666. kc = 1;
  667. L30:
  668. /* If K > N, exit from loop. */
  669. if (k > *n) {
  670. goto L50;
  671. }
  672. kcnext = kc + k;
  673. if (ipiv[k] > 0) {
  674. /* 1 x 1 diagonal block */
  675. /* Invert the diagonal block. */
  676. i__1 = kc + k - 1;
  677. c_div(&q__1, &c_b1, &ap[kc + k - 1]);
  678. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  679. /* Compute column K of the inverse. */
  680. if (k > 1) {
  681. i__1 = k - 1;
  682. ccopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  683. i__1 = k - 1;
  684. q__1.r = -1.f, q__1.i = 0.f;
  685. cspmv_(uplo, &i__1, &q__1, &ap[1], &work[1], &c__1, &c_b2, &
  686. ap[kc], &c__1);
  687. i__1 = kc + k - 1;
  688. i__2 = kc + k - 1;
  689. i__3 = k - 1;
  690. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  691. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  692. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  693. }
  694. kstep = 1;
  695. } else {
  696. /* 2 x 2 diagonal block */
  697. /* Invert the diagonal block. */
  698. i__1 = kcnext + k - 1;
  699. t.r = ap[i__1].r, t.i = ap[i__1].i;
  700. c_div(&q__1, &ap[kc + k - 1], &t);
  701. ak.r = q__1.r, ak.i = q__1.i;
  702. c_div(&q__1, &ap[kcnext + k], &t);
  703. akp1.r = q__1.r, akp1.i = q__1.i;
  704. c_div(&q__1, &ap[kcnext + k - 1], &t);
  705. akkp1.r = q__1.r, akkp1.i = q__1.i;
  706. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r * akp1.i +
  707. ak.i * akp1.r;
  708. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  709. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i + t.i
  710. * q__2.r;
  711. d__.r = q__1.r, d__.i = q__1.i;
  712. i__1 = kc + k - 1;
  713. c_div(&q__1, &akp1, &d__);
  714. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  715. i__1 = kcnext + k;
  716. c_div(&q__1, &ak, &d__);
  717. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  718. i__1 = kcnext + k - 1;
  719. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  720. c_div(&q__1, &q__2, &d__);
  721. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  722. /* Compute columns K and K+1 of the inverse. */
  723. if (k > 1) {
  724. i__1 = k - 1;
  725. ccopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
  726. i__1 = k - 1;
  727. q__1.r = -1.f, q__1.i = 0.f;
  728. cspmv_(uplo, &i__1, &q__1, &ap[1], &work[1], &c__1, &c_b2, &
  729. ap[kc], &c__1);
  730. i__1 = kc + k - 1;
  731. i__2 = kc + k - 1;
  732. i__3 = k - 1;
  733. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
  734. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  735. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  736. i__1 = kcnext + k - 1;
  737. i__2 = kcnext + k - 1;
  738. i__3 = k - 1;
  739. cdotu_(&q__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1);
  740. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  741. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  742. i__1 = k - 1;
  743. ccopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
  744. i__1 = k - 1;
  745. q__1.r = -1.f, q__1.i = 0.f;
  746. cspmv_(uplo, &i__1, &q__1, &ap[1], &work[1], &c__1, &c_b2, &
  747. ap[kcnext], &c__1);
  748. i__1 = kcnext + k;
  749. i__2 = kcnext + k;
  750. i__3 = k - 1;
  751. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1);
  752. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  753. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  754. }
  755. kstep = 2;
  756. kcnext = kcnext + k + 1;
  757. }
  758. kp = (i__1 = ipiv[k], abs(i__1));
  759. if (kp != k) {
  760. /* Interchange rows and columns K and KP in the leading */
  761. /* submatrix A(1:k+1,1:k+1) */
  762. kpc = (kp - 1) * kp / 2 + 1;
  763. i__1 = kp - 1;
  764. cswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
  765. kx = kpc + kp - 1;
  766. i__1 = k - 1;
  767. for (j = kp + 1; j <= i__1; ++j) {
  768. kx = kx + j - 1;
  769. i__2 = kc + j - 1;
  770. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  771. i__2 = kc + j - 1;
  772. i__3 = kx;
  773. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  774. i__2 = kx;
  775. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  776. /* L40: */
  777. }
  778. i__1 = kc + k - 1;
  779. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  780. i__1 = kc + k - 1;
  781. i__2 = kpc + kp - 1;
  782. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  783. i__1 = kpc + kp - 1;
  784. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  785. if (kstep == 2) {
  786. i__1 = kc + k + k - 1;
  787. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  788. i__1 = kc + k + k - 1;
  789. i__2 = kc + k + kp - 1;
  790. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  791. i__1 = kc + k + kp - 1;
  792. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  793. }
  794. }
  795. k += kstep;
  796. kc = kcnext;
  797. goto L30;
  798. L50:
  799. ;
  800. } else {
  801. /* Compute inv(A) from the factorization A = L*D*L**T. */
  802. /* K is the main loop index, increasing from 1 to N in steps of */
  803. /* 1 or 2, depending on the size of the diagonal blocks. */
  804. npp = *n * (*n + 1) / 2;
  805. k = *n;
  806. kc = npp;
  807. L60:
  808. /* If K < 1, exit from loop. */
  809. if (k < 1) {
  810. goto L80;
  811. }
  812. kcnext = kc - (*n - k + 2);
  813. if (ipiv[k] > 0) {
  814. /* 1 x 1 diagonal block */
  815. /* Invert the diagonal block. */
  816. i__1 = kc;
  817. c_div(&q__1, &c_b1, &ap[kc]);
  818. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  819. /* Compute column K of the inverse. */
  820. if (k < *n) {
  821. i__1 = *n - k;
  822. ccopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  823. i__1 = *n - k;
  824. q__1.r = -1.f, q__1.i = 0.f;
  825. cspmv_(uplo, &i__1, &q__1, &ap[kc + *n - k + 1], &work[1], &
  826. c__1, &c_b2, &ap[kc + 1], &c__1);
  827. i__1 = kc;
  828. i__2 = kc;
  829. i__3 = *n - k;
  830. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  831. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  832. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  833. }
  834. kstep = 1;
  835. } else {
  836. /* 2 x 2 diagonal block */
  837. /* Invert the diagonal block. */
  838. i__1 = kcnext + 1;
  839. t.r = ap[i__1].r, t.i = ap[i__1].i;
  840. c_div(&q__1, &ap[kcnext], &t);
  841. ak.r = q__1.r, ak.i = q__1.i;
  842. c_div(&q__1, &ap[kc], &t);
  843. akp1.r = q__1.r, akp1.i = q__1.i;
  844. c_div(&q__1, &ap[kcnext + 1], &t);
  845. akkp1.r = q__1.r, akkp1.i = q__1.i;
  846. q__3.r = ak.r * akp1.r - ak.i * akp1.i, q__3.i = ak.r * akp1.i +
  847. ak.i * akp1.r;
  848. q__2.r = q__3.r - 1.f, q__2.i = q__3.i + 0.f;
  849. q__1.r = t.r * q__2.r - t.i * q__2.i, q__1.i = t.r * q__2.i + t.i
  850. * q__2.r;
  851. d__.r = q__1.r, d__.i = q__1.i;
  852. i__1 = kcnext;
  853. c_div(&q__1, &akp1, &d__);
  854. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  855. i__1 = kc;
  856. c_div(&q__1, &ak, &d__);
  857. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  858. i__1 = kcnext + 1;
  859. q__2.r = -akkp1.r, q__2.i = -akkp1.i;
  860. c_div(&q__1, &q__2, &d__);
  861. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  862. /* Compute columns K-1 and K of the inverse. */
  863. if (k < *n) {
  864. i__1 = *n - k;
  865. ccopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
  866. i__1 = *n - k;
  867. q__1.r = -1.f, q__1.i = 0.f;
  868. cspmv_(uplo, &i__1, &q__1, &ap[kc + (*n - k + 1)], &work[1], &
  869. c__1, &c_b2, &ap[kc + 1], &c__1);
  870. i__1 = kc;
  871. i__2 = kc;
  872. i__3 = *n - k;
  873. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
  874. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  875. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  876. i__1 = kcnext + 1;
  877. i__2 = kcnext + 1;
  878. i__3 = *n - k;
  879. cdotu_(&q__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], &
  880. c__1);
  881. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  882. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  883. i__1 = *n - k;
  884. ccopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
  885. i__1 = *n - k;
  886. q__1.r = -1.f, q__1.i = 0.f;
  887. cspmv_(uplo, &i__1, &q__1, &ap[kc + (*n - k + 1)], &work[1], &
  888. c__1, &c_b2, &ap[kcnext + 2], &c__1);
  889. i__1 = kcnext;
  890. i__2 = kcnext;
  891. i__3 = *n - k;
  892. cdotu_(&q__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1);
  893. q__1.r = ap[i__2].r - q__2.r, q__1.i = ap[i__2].i - q__2.i;
  894. ap[i__1].r = q__1.r, ap[i__1].i = q__1.i;
  895. }
  896. kstep = 2;
  897. kcnext -= *n - k + 3;
  898. }
  899. kp = (i__1 = ipiv[k], abs(i__1));
  900. if (kp != k) {
  901. /* Interchange rows and columns K and KP in the trailing */
  902. /* submatrix A(k-1:n,k-1:n) */
  903. kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
  904. if (kp < *n) {
  905. i__1 = *n - kp;
  906. cswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
  907. c__1);
  908. }
  909. kx = kc + kp - k;
  910. i__1 = kp - 1;
  911. for (j = k + 1; j <= i__1; ++j) {
  912. kx = kx + *n - j + 1;
  913. i__2 = kc + j - k;
  914. temp.r = ap[i__2].r, temp.i = ap[i__2].i;
  915. i__2 = kc + j - k;
  916. i__3 = kx;
  917. ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
  918. i__2 = kx;
  919. ap[i__2].r = temp.r, ap[i__2].i = temp.i;
  920. /* L70: */
  921. }
  922. i__1 = kc;
  923. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  924. i__1 = kc;
  925. i__2 = kpc;
  926. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  927. i__1 = kpc;
  928. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  929. if (kstep == 2) {
  930. i__1 = kc - *n + k - 1;
  931. temp.r = ap[i__1].r, temp.i = ap[i__1].i;
  932. i__1 = kc - *n + k - 1;
  933. i__2 = kc - *n + kp - 1;
  934. ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
  935. i__1 = kc - *n + kp - 1;
  936. ap[i__1].r = temp.r, ap[i__1].i = temp.i;
  937. }
  938. }
  939. k -= kstep;
  940. kc = kcnext;
  941. goto L60;
  942. L80:
  943. ;
  944. }
  945. return 0;
  946. /* End of CSPTRI */
  947. } /* csptri_ */